浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 128-140.DOI: 10.3969/j.issn.1004-1524.2022.01.16
收稿日期:
2021-01-10
出版日期:
2022-01-25
发布日期:
2022-02-05
通讯作者:
蔡燕飞
作者简介:
* 蔡燕飞,E-mail: yanfeicai@scau.edu.cn基金资助:
YAN Jingting(), QIAO Kai, CAI Yanfei*(
)
Received:
2021-01-10
Online:
2022-01-25
Published:
2022-02-05
Contact:
CAI Yanfei
摘要:
为确定rpoB、gyrA和cheA基因在芽孢杆菌近缘种鉴定上的有效性,通过Blast-N算法,比对菌肥常用芽孢杆菌模式菌16S rRNA、rpoB、gyrA、cheA基因的序列差异,确定其应用效力。据此,提出一种根据菌株原始信息选择对应的基因引物扩增其序列,通过序列相似度和系统发育树快速、准确鉴定芽孢杆菌菌种的方法,并以19株可用于微生物肥料生产的芽孢杆菌分离株为材料,验证该方法的可行性。结果显示:地衣芽孢杆菌(Bacillus licheniformis)与枯草芽孢杆菌亚种(Bacillus subtilis subsp. subtilis、Bacillus subtilis subsp. inaquosorum、Bacillus subtilis subsp. spizizenii)、解淀粉芽孢杆菌亚种(Bacillus amyloliquefaciens、Bacillus velezensis)之间rpoB、gyrA、cheA基因序列的一致性分别为84.93%~86.57%、低于78.21%和78.25%~78.58%,枯草芽孢杆菌和解淀粉芽孢杆菌亚种之间gyrA基因序列的一致性为81.01%~95.82%,cheA基因序列的一致性为94.50%~95.83%,蜡样芽孢杆菌亚种(Bacillus cereus、Bacillus thuringiensis)之间gyrA基因序列的一致性为94.54%,巨大芽孢杆菌(Bacillus megaterium)和阿氏芽孢杆菌(Bacillus aryabhattai)cheA基因序列的一致性为94.55%。序列差异表明,rpoB、gyrA和cheA基因可以区分地衣芽孢杆菌、枯草芽孢杆菌组和解淀粉芽孢杆菌组,gyrA和cheA基因可以鉴定出枯草芽孢杆菌组、解淀粉芽孢杆菌组的亚种,gyrA基因能够鉴定蜡样芽孢杆菌组的亚种,cheA基因能区分巨大芽孢杆菌和阿氏芽孢杆菌。应用所提方法,将19株芽孢杆菌分离株鉴定为茹氏短芽孢杆菌(Brevibacillus reuszeri)、Bacillus mesonae、五大连池芽孢杆菌(Bacillus wudalianchiensis)、大猩猩芽孢杆菌(Bacillus massiliogorillae)、枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. subtilis)、蜡样芽孢杆菌、阿氏芽孢杆菌和贝莱斯芽孢杆菌(Bacillus velezensis)。
中图分类号:
颜静婷, 乔凯, 蔡燕飞. rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用[J]. 浙江农业学报, 2022, 34(1): 128-140.
YAN Jingting, QIAO Kai, CAI Yanfei. Application of rpoB, gyrA and cheA genes in identifying Bacillus genus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 128-140.
菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
---|---|---|---|---|---|---|---|
16S rRNA | rpoB | gyrA | cheA | ||||
巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
Rhizosphere soil of diseased beet | |||||||
枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
Bacillus subtilis subsp. subtilis | |||||||
Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
Bacillus subtilis subsp. spizizenii | |||||||
苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
表1 供试芽孢杆菌模式菌及其相关信息
Table 1 Basic information of reference Bacillustype strains used in present study
菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
---|---|---|---|---|---|---|---|
16S rRNA | rpoB | gyrA | cheA | ||||
巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
Rhizosphere soil of diseased beet | |||||||
枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
Bacillus subtilis subsp. subtilis | |||||||
Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
Bacillus subtilis subsp. spizizenii | |||||||
苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
---|---|---|---|
YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
表2 供试芽孢杆菌分离株的促生特性和来源
Table 2 Origins and growth-promoting properties of Bacillus isolates used in present study
菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
---|---|---|---|
YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
---|---|---|---|
16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
表3 特异性引物序列
Table 3 Sequences of designed specific primers
引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
---|---|---|---|
16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
---|---|---|---|---|---|---|---|---|---|---|
B. v | 99.61 | |||||||||
B. sub | 99.48 | 99.68 | ||||||||
B. ina | 99.42 | 99.49 | 99.74 | |||||||
B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
表4 芽孢杆菌模式菌的16S rRNA基因序列一致性
Table 4 Sequence identities of 16S rRNA gene in reference strains within Bacillus genus %
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
---|---|---|---|---|---|---|---|---|---|---|
B. v | 99.61 | |||||||||
B. sub | 99.48 | 99.68 | ||||||||
B. ina | 99.42 | 99.49 | 99.74 | |||||||
B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 98.44 | |||||||
B. sub | 90.23 | 90.31 | ||||||
B. ina | 90.29 | 90.26 | 97.88 | |||||
B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
表5 芽孢杆菌模式菌的rpoB基因序列一致性
Table 5 Sequence identities of rpoB gene in reference strains within Bacillus genus %
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 98.44 | |||||||
B. sub | 90.23 | 90.31 | ||||||
B. ina | 90.29 | 90.26 | 97.88 | |||||
B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
---|---|---|---|---|---|---|---|---|---|
B. v | 94.65 | ||||||||
B. sub | NF | NF | |||||||
B. ina | NF | NF | 94.50 | ||||||
B. spi | NF | NF | 95.00 | 95.83 | |||||
B. lich | 78.21 | NF | NF | NF | NF | ||||
B. t | NF | NF | NF | NF | NF | NF | |||
B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
表6 芽孢杆菌模式菌的cheA基因序列一致性
Table 6 Sequence identities of cheA gene in reference strains within Bacillus genus
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
---|---|---|---|---|---|---|---|---|---|
B. v | 94.65 | ||||||||
B. sub | NF | NF | |||||||
B. ina | NF | NF | 94.50 | ||||||
B. spi | NF | NF | 95.00 | 95.83 | |||||
B. lich | 78.21 | NF | NF | NF | NF | ||||
B. t | NF | NF | NF | NF | NF | NF | |||
B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 95.08 | |||||||
B. sub | 81.16 | NF | ||||||
B. ina | 81.16 | 81.01 | 94.00 | |||||
B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
B. t | NF | NF | NF | NF | NF | NF | ||
B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
表7 芽孢杆菌模式菌的gyrA基因序列一致性
Table 7 Sequence identities of gyrA gene in reference strains within Bacillus genus
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 95.08 | |||||||
B. sub | 81.16 | NF | ||||||
B. ina | 81.16 | 81.01 | 94.00 | |||||
B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
B. t | NF | NF | NF | NF | NF | NF | ||
B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
---|---|
多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
表8 鉴定菌种所用引物对应表
Table 8 Strains and corresponding primers for identification
菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
---|---|
多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
图2 PCR扩增产物电泳结果 M,DNA分子量标记;1,YC001;2,YC002;3,YC003;4,YC004;5,YC005;6,YC006;7,YC009;8,YC010;9,YC011;10,YC012;11,YC013;12,YC014;13,YC015;14,YC016;15,YC017。
Fig.2 Electrophoretic results of PCR amplified products 1, DNA marker; 1, YC001; 2, YC002; 3, YC003; 4, YC004; 5, YC005; 6,YC006; 7,YC009; 8, YC010; 9,YC011; 10, YC012; 11, YC013; 12, YC014; 13, YC015; 14, YC016; 15, YC017.
分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
---|---|---|---|---|---|---|
YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
表9 分离株与枯草芽孢杆菌复合体模式菌的rpoB基因序列一致性
Table 9 Sequence identities of rpoB gene between Bacillus isolates and reference strains within B.subtilis complex %
分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
---|---|---|---|---|---|---|
YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
---|---|---|
YC009 | 94.06 | 98.42 |
YC010 | 94.75 | 95.77 |
YC011 | 96.90 | 94.64 |
YC012 | 94.99 | 96.11 |
YC013 | 94.86 | 95.94 |
YC014 | 94.31 | 97.97 |
YC015 | 96.42 | 94.61 |
YC016 | 94.29 | 98.76 |
YC017 | 94.92 | 95.99 |
表10 分离株与相应模式菌的cheA序列比对结果
Table 10 Sequence identities of cheA gene between Bacillus isolates and corresponding reference strains %
分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
---|---|---|
YC009 | 94.06 | 98.42 |
YC010 | 94.75 | 95.77 |
YC011 | 96.90 | 94.64 |
YC012 | 94.99 | 96.11 |
YC013 | 94.86 | 95.94 |
YC014 | 94.31 | 97.97 |
YC015 | 96.42 | 94.61 |
YC016 | 94.29 | 98.76 |
YC017 | 94.92 | 95.99 |
[1] |
ABHILASH P C, DUBEY R K, TRIPATHI V, et al. Plant growth-promoting microorganisms for environmental sustainability[J]. Trends in Biotechnology, 2016, 34(11): 847-850.
DOI URL |
[2] |
KOUR D, RANA K L, YADAV A N, et al. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101487.
DOI URL |
[3] |
BASHAN Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnology Advances, 1998, 16(4): 729-770.
DOI URL |
[4] |
NAVON A. Bacillus thuringiensis insecticides in crop protection: reality and prospects[J]. Crop Protection, 2000, 19(8/9/10): 669-676.
DOI URL |
[5] |
SCHALLMEY M, SINGH A, WARD O P. Developments in the use of Bacillus species for industrial production[J]. Canadian Journal of Microbiology, 2004, 50(1): 1-17.
DOI URL |
[6] |
FRITZE D. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria[J]. Phytopathology, 2004, 94(11): 1245-1248.
DOI URL |
[7] |
DUNLAP C A. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists[J]. Biological Control, 2019, 134: 82-86.
DOI URL |
[8] |
FIRA D, DIMKIĆ I, BERIĆ T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.
DOI URL |
[9] |
TALBOYS P J, OWEN D W, HEALEY J R, et al. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum[J]. BMC Plant Biology, 2014, 14(1): 1-9.
DOI URL |
[10] | 常文智, 马鸣超, 李力, 等. 施用胶质类芽孢杆菌对土壤生物活性和花生产量的影响[J]. 中国土壤与肥料, 2014(1): 84-89. |
CHANG W Z, MA M C, LI L, et al. Effects of Paenibacillus mucilaginosus on soil biological activity and yield of peanut[J]. Soil and Fertilizer Sciences in China, 2014(1): 84-89.(in Chinese with English abstract) | |
[11] | 张伟伟, 王宝琴. 一株胶质芽孢杆菌解磷活性及其适宜解磷条件研究[J]. 中国农学通报, 2014, 30(21): 136-140. |
ZHANG W W, WANG B Q. Study on phosphate-solubilizing activity and suitable conditions of a strain of Bacillus mucilaginosus[J]. Chinese Agricultural Science Bulletin, 2014, 30(21): 136-140.(in Chinese with English abstract) | |
[12] |
NICHOLSON W L, MUNAKATA N, HORNECK G, et al. Resistance of Bacillus endosporesto extreme terrestrial and extraterrestrial environments[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3): 548-572.
DOI URL |
[13] |
ELSHAGHABEE F M F, ROKANA N, GULHANE R D, et al. Bacillus as potential probiotics: status, concerns, and future perspectives[J]. Frontiers in Microbiology, 2017, 8: 1490.
DOI URL |
[14] |
ULRICH N, NAGLER K, LAUE M, et al. Experimental studies addressing the longevity of Bacillus subtilis spores: the first data from a 500-year experiment[J]. PLoS One, 2018, 13(12): e0208425.
DOI URL |
[15] | GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401. |
[16] |
REVA O N, DIXELIUS C, MEIJER J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis[J]. FEMS Microbiology Ecology, 2004, 48(2): 249-259.
DOI URL |
[17] |
VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis[J]. Canadian Journal of Microbiology, 2007, 53(6): 673-687.
DOI URL |
[18] |
TAYEB L A, LEFEVRE M, PASSET V, et al. Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences[J]. Research in Microbiology, 2008, 159(3): 169-177.
DOI URL |
[19] |
KIM B J, LEE S H, LYU M A, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB)[J]. Journal of Clinical Microbiology, 1999, 37(6): 1714-1720.
DOI URL |
[20] |
YAMAMOTO S, BOUVET P J M, HARAYAMA S. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization[J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(1): 87-95.
DOI URL |
[21] |
DUNLAP C A, KIM S J, KWON S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1212-1217.
DOI URL |
[22] | 王振亚. 胶质类芽孢杆菌3016基因组学初步研究[D]. 泰安: 山东农业大学, 2012. |
WANG Z Y. Preliminary analysis on the genome of Paenibacillus mucilaginosus[D]. Tai’an: Shandong Agricultural University, 2012. (in Chinese with English abstract) | |
[23] | 王璇. 胶质类芽孢杆菌3016全基因组测序及菌种水平特异分子标识的筛选和鉴定[D]. 泰安: 山东农业大学, 2011. |
WANG X. Genome sequencing of Paenibacillus mucilaginosus 3016 and screening/identification of special molecular marker at species level[D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese with English abstract) | |
[24] | SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
[25] |
CASE R J, BOUCHER Y, DAHLLÖF I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J]. Applied and Environmental Microbiology, 2007, 73(1): 278-288.
DOI URL |
[26] |
KI J S, ZHANG W, QIAN P Y. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification[J]. Journal of Microbiological Methods, 2009, 77(1): 48-57.
DOI URL |
[27] | MAUGHAN H, VAN DER AUWERA G. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading[J]. Infection, Genetics and Evolution, 2011, 11(5): 789-797. |
[28] |
STUBBS S L, BRAZIER J S, TALBOT P R, et al. PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes[J]. Journal of Clinical Microbiology, 2000, 38(9): 3209-3213.
DOI URL |
[29] |
FOX G E, WISOTZKEY J D, JURTSHUK P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. International Journal of Systematic Bacteriology, 1992, 42(1): 166-170.
DOI URL |
[30] |
CELANDRONI F, VECCHIONE A, CARA A, et al. Identification of Bacillus species: implication on the quality of probiotic formulations[J]. PLoS One, 2019, 14(5): e0217021.
DOI URL |
[31] |
GADHAVE K R, DEVLIN P F, EBERTZ A, et al. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner[J]. Microbial Ecology, 2018, 76(3): 741-750.
DOI URL |
[32] |
MUGADZA D T, OWUSU-DARKO R, BUYS E M. Short communication: source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing[J]. Journal of Dairy Science, 2019, 102(1): 135-139.
DOI URL |
[33] |
SENESI S, CELANDRONI F, TAVANTI A, et al. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy[J]. Applied and Environmental Microbiology, 2001, 67(2): 834-839.
DOI URL |
[34] |
AIT TAYEB L, AGERON E, GRIMONT F, et al. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J]. Research in Microbiology, 2005, 156(5/6): 763-773.
DOI URL |
[35] |
WANG X Q, VU A, LEE K, et al. CheA-receptor interaction sites in bacterial chemotaxis[J]. Journal of Molecular Biology, 2012, 422(2): 282-290.
DOI URL |
[36] |
BARNES M H, LAMARR W A, FOSTER K A. DNA gyrase and DNA topoisomerase of Bacillus subtilis: expression and characterization of recombinant enzymes encoded by the gyrA, gyrB and parC, parE genes[J]. Protein Expression and Purification, 2003, 29(2): 259-264.
DOI URL |
[37] |
CHUN J, BAE K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie Van Leeuwenhoek, 2000, 78(2): 123-127.
DOI URL |
[38] | 程琳琳, 王芳, 吴琼, 等. 微生物菌剂中5种芽孢杆菌实时荧光PCR鉴定[J]. 中国卫生检验杂志, 2010, 20(2): 246-248. |
CHENG L L, WANG F, WU Q, et al. Identification of five Bacillus species used in environment microbe agentia with real-time PCR[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(2): 246-248.(in Chinese with English abstract) | |
[39] |
ABD ALAMER I S, TOMAH A A, LI B, et al. Isolation, identification and characterization of rhizobacteria strains for biological control of bacterial wilt (Ralstonia solanacearum) of eggplant in China[J]. Agriculture, 2020, 10(2): 37.
DOI URL |
[40] | 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. |
LI S Z, CHEN Y, YANG R H, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp[J]. Acta Microbiologica Sinica, 2019, 59(10): 1969-1983. (in Chinese with English abstract) | |
[41] |
MASUM M M I, LIU L, YANG M, et al. Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae[J]. Journal of Applied Microbiology, 2018, 125(6): 1852-1867.
DOI URL |
[42] | YU C, JIN J, MENG L Q, et al. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29[J]. Cellular and Molecular Biology (Noisy-Le-Grand, France), 2017, 63(5): 19-24. |
[43] |
BLACKWOOD K S, TURENNE C Y, HARMSEN D, et al. Reassessment of sequence-based targets for identification of Bacillus species[J]. Journal of Clinical Microbiology, 2004, 42(4): 1626-1630.
DOI URL |
[44] |
CAAMAÑO-ANTELO S, FERNÁNDEZ-NO I C, BÖHME K, et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes[J]. Food Microbiology, 2015, 46: 288-298.
DOI URL |
[45] |
QI Y, PATRA G, LIANG X D, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis[J]. Applied and Environmental Microbiology, 2001, 67(8): 3720-3727.
DOI URL |
[46] |
KO K S, KIM J M, KIM J W, et al. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR[J]. Journal of Clinical Microbiology, 2003, 41(7): 2908-2914.
DOI URL |
[1] | 冯欣欣, 李凤兰, 徐永清, 李磊, 贺付蒙, 冯艳忠, 袁强, 刘娣. 新疆寒冷地区腐木中产纤维素酶菌株的筛选与低温产酶特性[J]. 浙江农业学报, 2021, 33(8): 1468-1476. |
[2] | 江宇航, 辛维岗, 张棋麟, 邓先余, 王峰, 林连兵. 霉变饲用玉米真菌的分离、鉴定与乳酸菌素对其的防霉抑菌效果[J]. 浙江农业学报, 2021, 33(7): 1283-1291. |
[3] | 李福艳, 刘晓玉, 颜静婷, 蔡燕飞. 三株产吲哚乙酸根际促生芽孢杆菌的筛选鉴定及其促生作用[J]. 浙江农业学报, 2021, 33(5): 873-884. |
[4] | 杨梅, 胡小兰, 申涛, 谭康, 刘代铃, 邱红波. 玉米第8染色体单片段代换系的构建与灰斑病抗性材料筛选[J]. 浙江农业学报, 2021, 33(3): 383-389. |
[5] | 刘磊, 王讯, 罗毅, 梁继元, 颜培祺, 李昕怡, 刘薇, 刘辰恺, 李佳佳. 鸽小肠上皮细胞的分离培养与鉴定[J]. 浙江农业学报, 2021, 33(2): 239-247. |
[6] | 忻晓庭, 刘大群, 张程程, 吴敏, 陈登高, 章检明. 我国特色发酵蔬菜降解亚硝酸盐菌株的筛选鉴定及应用[J]. 浙江农业学报, 2021, 33(2): 335-345. |
[7] | 程安东, 汪本勤. 金寨县桑黄的菌种鉴定与生长特性研究[J]. 浙江农业学报, 2021, 33(12): 2234-2244. |
[8] | 杨成年, 李芳, 朱成科, 唐征县, 易子琳, 韩璐璐, 阳龙江, 彭小倩, 贺蝶, 李杨, 任朝颖, 吕光俊. 杂交鲟出血病病原的分离鉴定与组织病理学观察[J]. 浙江农业学报, 2021, 33(12): 2275-2285. |
[9] | 陈梦竹, 康振亚, 郭向辉, 耿毅, 白明焕, 欧阳萍, 陈德芳, 黄小丽, 赖为民. 一株岩原鲤源致病性ST-251型嗜水气单胞菌的分离与生物学特性研究[J]. 浙江农业学报, 2021, 33(12): 2286-2294. |
[10] | 王士臻, 王教瑜, 王艳丽, 孙国仓. 麦瘟病与小麦抗麦瘟基因研究进展[J]. 浙江农业学报, 2021, 33(11): 2205-2212. |
[11] | 陈文强, 汪小福, 陈笑芸, 彭城, 徐俊锋, 蔡健. 基于ITS2和SNP技术鉴定浙江铁皮石斛的初步研究[J]. 浙江农业学报, 2021, 33(1): 69-76. |
[12] | 高竞, 方伟, 顾佳悦, 严淑娴, 邵帅, 梁辰飞, 秦华, 陈俊辉, 徐秋芳. 荧光标记解淀粉芽孢杆菌WK1在山核桃树体和土壤中的定殖规律[J]. 浙江农业学报, 2021, 33(1): 77-86. |
[13] | 徐雪芬, 倪春辉, 李惠霞, 李焕宇, 李文豪, 陈垣, 胡芳弟. 党参根腐病病原菌鉴定及其室内毒力测定[J]. 浙江农业学报, 2021, 33(1): 96-103. |
[14] | 廖朝美, 游敏芳, 谭光辉, 李杰章, 张依裕, 覃媛钰, 刘若余. 三穗鸭PRKCB基因内含子14的变异对蛋壳品质的影响[J]. 浙江农业学报, 2020, 32(9): 1574-1580. |
[15] | 桂雪儿, 王志, 李思婷, 贺濛初, 朱杰, 冯士彬, 吴金节. 鸡源复合益生菌对青年白羽肉杂鸡免疫球蛋白和Toll样受体通路的影响[J]. 浙江农业学报, 2020, 32(9): 1609-1614. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||