浙江农业学报 ›› 2022, Vol. 34 ›› Issue (3): 614-625.DOI: 10.3969/j.issn.1004-1524.2022.03.22
秦伟1(), 于英杰1,*(
), 赖庆辉1, 占才学2, 袁海阔3, 张海军1
收稿日期:
2020-09-20
出版日期:
2022-03-25
发布日期:
2022-03-30
通讯作者:
于英杰
作者简介:
于英杰,E-mail: 646677093@qq.com基金资助:
QIN Wei1(), YU Yingjie1,*(
), LAI Qinghui1, ZHAN Caixue2, YUAN Haikuo3, ZHANG Haijun1
Received:
2020-09-20
Online:
2022-03-25
Published:
2022-03-30
Contact:
YU Yingjie
摘要:
为实现三七种苗的定向移栽,设计了一种导苗管式三七种苗栽植机构,对导苗管式三七种苗栽植机构作业时的定向过程、导苗过程机理进行了分析,确定了影响种苗栽植的主要因素;采用EDEM软件进行了定向过程的单因素仿真试验,根据仿真试验结果搭建了定向台架,进行了定向机构定向性能的正交试验,确定了定向机构优化后的工作参数组合。选取机组前进速度、定向盘转速和导苗管倾斜角度为试验因素,进行三因素五水平正交旋转中心组合试验,建立了株距合格率和重栽率的数学模型,分析了各试验因素及其交互作用对株距合格率和重栽率的影响规律,优化了参数组合,结果表明:当导苗管倾斜角度的水平固定为74.32°,机组前进速度为0.95~1.11 km·h-1,定向盘转速为24.32~27.57 r·min-1,此时栽植机构的株距合格率大于90%,重栽率小于5%。为验证优化结果的可靠性,进行了栽植机构台架性能的验证性试验,设置机组前进速度1 km·h-1,定向盘转速25 r·min-1,导苗管倾斜角度为75°,此时株距合格率为90.6%,重栽率为4.2%,试验结果符合国家作业标准,满足三七种苗移栽的农艺要求。
中图分类号:
秦伟, 于英杰, 赖庆辉, 占才学, 袁海阔, 张海军. 导苗管式三七种苗栽植机构参数优化试验[J]. 浙江农业学报, 2022, 34(3): 614-625.
QIN Wei, YU Yingjie, LAI Qinghui, ZHAN Caixue, YUAN Haikuo, ZHANG Haijun. Parameter optimization experiment of seedling guiding tube transplanting machine of Panax notoginseng seedling[J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 614-625.
图1 导苗管式三七种苗栽植机构 1,开沟器;2,机架;3,电机;4,同步带Ⅰ;5,同步带Ⅱ; 6,接苗盘;7,接苗斗;8,定向斗;9,定向盘;10,固定环;11,中间承接筒;12,导苗管;13,镇压轮。
Fig.1 Structure of seedling guiding tube transplanting machine of P.notoginseng seedling 1, Ditcher; 2, Frame; 3, Motor; 4, Synchronous belt Ⅰ; 5, Synchronous belt Ⅱ; 6, Seedling plate; 7, Seedling hopper; 8, Directional bucket; 9, Directional plate; 10, Fixed ring; 11, Intermediate receptacle tube; 12, Seedling tube; 13, Packer wheel.
水平 Level | 试验因素Test factors | ||
---|---|---|---|
A/(r·min-1) | B/° | C | |
1 | 20 | 15 | 一级Grade 1 |
2 | 25 | 20 | 二级Grade 2 |
3 | 30 | 25 | 三级Grade 3 |
表1 试验因素编码
Table 1 Code of test factors
水平 Level | 试验因素Test factors | ||
---|---|---|---|
A/(r·min-1) | B/° | C | |
1 | 20 | 15 | 一级Grade 1 |
2 | 25 | 20 | 二级Grade 2 |
3 | 30 | 25 | 三级Grade 3 |
序号 No. | A | B | C | B×C | X/% |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 79.21 |
2 | 1 | 2 | 2 | 2 | 89.35 |
3 | 1 | 3 | 3 | 3 | 82.30 |
4 | 2 | 1 | 2 | 3 | 74.31 |
5 | 2 | 2 | 3 | 1 | 76.73 |
6 | 2 | 3 | 1 | 2 | 72.56 |
7 | 3 | 1 | 3 | 2 | 57.33 |
8 | 3 | 2 | 1 | 3 | 65.11 |
9 | 3 | 3 | 2 | 1 | 61.29 |
X /% | 86.32 | 70.28 | 72.29 | 72.41 | |
74.52 | 76.93 | 74.98 | 73.08 | ||
61.24 | 72.05 | 72.12 | 73.91 | ||
25.08 a | 6.65 b | 2.86 c | 1.50 |
表2 试验方案与结果
Table 2 Experimental scheme and test results
序号 No. | A | B | C | B×C | X/% |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 79.21 |
2 | 1 | 2 | 2 | 2 | 89.35 |
3 | 1 | 3 | 3 | 3 | 82.30 |
4 | 2 | 1 | 2 | 3 | 74.31 |
5 | 2 | 2 | 3 | 1 | 76.73 |
6 | 2 | 3 | 1 | 2 | 72.56 |
7 | 3 | 1 | 3 | 2 | 57.33 |
8 | 3 | 2 | 1 | 3 | 65.11 |
9 | 3 | 3 | 2 | 1 | 61.29 |
X /% | 86.32 | 70.28 | 72.29 | 72.41 | |
74.52 | 76.93 | 74.98 | 73.08 | ||
61.24 | 72.05 | 72.12 | 73.91 | ||
25.08 a | 6.65 b | 2.86 c | 1.50 |
方差来源 Sources | SS | df | F | P |
---|---|---|---|---|
A | 759.91 | 2 | 225.34 | 0.004 4 |
B | 74.22 | 2 | 22.01 | 0.043 5 |
C | 15.46 | 2 | 4.59 | 0.179 0 |
误差Error | 3.37 | 2 | ||
总和Sum | 852.97 | 8 |
表3 方差分析
Table 3 Variance analysis
方差来源 Sources | SS | df | F | P |
---|---|---|---|---|
A | 759.91 | 2 | 225.34 | 0.004 4 |
B | 74.22 | 2 | 22.01 | 0.043 5 |
C | 15.46 | 2 | 4.59 | 0.179 0 |
误差Error | 3.37 | 2 | ||
总和Sum | 852.97 | 8 |
编码 Code | 试验因素Test factors | ||
---|---|---|---|
D1/(km·h-1) | D2/(r·min-1) | D3/° | |
-1.682 | 0.8 | 20 | 60 |
-1 | 0.88 | 22 | 65 |
0 | 1.0 | 25 | 75 |
1 | 1.12 | 28 | 80 |
1.682 | 1.2 | 30 | 85 |
表4 试验因素编码
Table 4 Code of test factors
编码 Code | 试验因素Test factors | ||
---|---|---|---|
D1/(km·h-1) | D2/(r·min-1) | D3/° | |
-1.682 | 0.8 | 20 | 60 |
-1 | 0.88 | 22 | 65 |
0 | 1.0 | 25 | 75 |
1 | 1.12 | 28 | 80 |
1.682 | 1.2 | 30 | 85 |
序号 No. | 试验因素Test factors | 试验结果Test results | |||
---|---|---|---|---|---|
D1/ (km·h-1) | D2/ (r·min-1) | D3/(°) | Y1/% | Y2/% | |
1 | -1 | -1 | -1 | 65.2 | 18.1 |
2 | 1 | -1 | -1 | 71.6 | 13.7 |
3 | -1 | 1 | -1 | 67.7 | 15.6 |
4 | 1 | 1 | -1 | 80.4 | 7.1 |
5 | -1 | -1 | 1 | 73.4 | 9.5 |
6 | 1 | -1 | 1 | 70.5 | 12.4 |
7 | -1 | 1 | 1 | 82.2 | 7.7 |
8 | 1 | 1 | 1 | 83.7 | 10.9 |
9 | -1.682 | 0 | 0 | 71.5 | 13.7 |
10 | 1.682 | 0 | 0 | 84.6 | 8.0 |
11 | 0 | -1.682 | 0 | 70.8 | 14.6 |
12 | 0 | 1.682 | 0 | 81.3 | 9.8 |
13 | 0 | 0 | -1.682 | 71.2 | 14.3 |
14 | 0 | 0 | 1.682 | 78.5 | 14.8 |
15 | 0 | 0 | 0 | 90.6 | 4.3 |
16 | 0 | 0 | 0 | 91.3 | 5.9 |
17 | 0 | 0 | 0 | 91.5 | 1.5 |
18 | 0 | 0 | 0 | 93.3 | 4.8 |
19 | 0 | 0 | 0 | 92.3 | 3.5 |
20 | 0 | 0 | 0 | 82.5 | 7.3 |
21 | 0 | 0 | 0 | 95.1 | 2.3 |
22 | 0 | 0 | 0 | 89.7 | 6.6 |
23 | 0 | 0 | 0 | 93.1 | 1.8 |
表5 试验设计方案及结果
Table 5 Test design scheme and results
序号 No. | 试验因素Test factors | 试验结果Test results | |||
---|---|---|---|---|---|
D1/ (km·h-1) | D2/ (r·min-1) | D3/(°) | Y1/% | Y2/% | |
1 | -1 | -1 | -1 | 65.2 | 18.1 |
2 | 1 | -1 | -1 | 71.6 | 13.7 |
3 | -1 | 1 | -1 | 67.7 | 15.6 |
4 | 1 | 1 | -1 | 80.4 | 7.1 |
5 | -1 | -1 | 1 | 73.4 | 9.5 |
6 | 1 | -1 | 1 | 70.5 | 12.4 |
7 | -1 | 1 | 1 | 82.2 | 7.7 |
8 | 1 | 1 | 1 | 83.7 | 10.9 |
9 | -1.682 | 0 | 0 | 71.5 | 13.7 |
10 | 1.682 | 0 | 0 | 84.6 | 8.0 |
11 | 0 | -1.682 | 0 | 70.8 | 14.6 |
12 | 0 | 1.682 | 0 | 81.3 | 9.8 |
13 | 0 | 0 | -1.682 | 71.2 | 14.3 |
14 | 0 | 0 | 1.682 | 78.5 | 14.8 |
15 | 0 | 0 | 0 | 90.6 | 4.3 |
16 | 0 | 0 | 0 | 91.3 | 5.9 |
17 | 0 | 0 | 0 | 91.5 | 1.5 |
18 | 0 | 0 | 0 | 93.3 | 4.8 |
19 | 0 | 0 | 0 | 92.3 | 3.5 |
20 | 0 | 0 | 0 | 82.5 | 7.3 |
21 | 0 | 0 | 0 | 95.1 | 2.3 |
22 | 0 | 0 | 0 | 89.7 | 6.6 |
23 | 0 | 0 | 0 | 93.1 | 1.8 |
来源 Sources | Y1 | Y2 | ||
---|---|---|---|---|
F | P | F | P | |
模型Model | 22.193 27 | <0.000 1 | 11.943 95 | <0.000 1 |
D1 | 12.241 75 | 0.003 9 | 4.494 047 | 0.046 9 |
D2 | 20.137 84 | 0.000 6 | 7.014 978 | 0.020 1 |
D3 | 10.718 27 | 0.006 0 | 2.898 229 | 0.112 5 |
D1D2 | 1.515 662 | 0.240 1 | 0.412 58 | 0.531 8 |
D1D3 | 5.563 427 | 0.034 7 | 10.314 49 | 0.006 8 |
D2D3 | 1.515 662 | 0.240 1 | 0.961 162 | 0.344 8 |
| 39.085 18 | <0.000 1 | 16.050 8 | 0.001 5 |
| 51.395 87 | <0.000 1 | 24.166 66 | 0.000 3 |
| 59.590 03 | <0.000 1 | 42.241 73 | <0.000 1 |
失拟项 | 0.313 803 | 0.891 3 | 0.943 585 | 0.502 4 |
Lack of fit |
表6 方差分析表
Table 6 Table of variance analysis
来源 Sources | Y1 | Y2 | ||
---|---|---|---|---|
F | P | F | P | |
模型Model | 22.193 27 | <0.000 1 | 11.943 95 | <0.000 1 |
D1 | 12.241 75 | 0.003 9 | 4.494 047 | 0.046 9 |
D2 | 20.137 84 | 0.000 6 | 7.014 978 | 0.020 1 |
D3 | 10.718 27 | 0.006 0 | 2.898 229 | 0.112 5 |
D1D2 | 1.515 662 | 0.240 1 | 0.412 58 | 0.531 8 |
D1D3 | 5.563 427 | 0.034 7 | 10.314 49 | 0.006 8 |
D2D3 | 1.515 662 | 0.240 1 | 0.961 162 | 0.344 8 |
| 39.085 18 | <0.000 1 | 16.050 8 | 0.001 5 |
| 51.395 87 | <0.000 1 | 24.166 66 | 0.000 3 |
| 59.590 03 | <0.000 1 | 42.241 73 | <0.000 1 |
失拟项 | 0.313 803 | 0.891 3 | 0.943 585 | 0.502 4 |
Lack of fit |
序号 No. | D1/ (km·h-1) | D2/ (r·min-1) | Y1/% | Y2/% |
---|---|---|---|---|
1 | 1.0 | 25 | 89.3 | 4.9 |
2 | 1.0 | 25 | 91.6 | 3.8 |
3 | 1.0 | 25 | 91.2 | 3.6 |
4 | 1.0 | 25 | 90.1 | 4.5 |
5 | 1.0 | 25 | 90.8 | 4.2 |
表7 试验验证结果
Table 7 Results of tests
序号 No. | D1/ (km·h-1) | D2/ (r·min-1) | Y1/% | Y2/% |
---|---|---|---|---|
1 | 1.0 | 25 | 89.3 | 4.9 |
2 | 1.0 | 25 | 91.6 | 3.8 |
3 | 1.0 | 25 | 91.2 | 3.6 |
4 | 1.0 | 25 | 90.1 | 4.5 |
5 | 1.0 | 25 | 90.8 | 4.2 |
[1] | 赖庆辉, 袁海阔, 胡子武, 等. 滚筒板齿式三七种苗分离装置结构设计与试验[J]. 农业机械学报, 2018, 49(4): 121-129. |
LAI Q H, YUAN H K, HU Z W, et al. Design and experiment on seedling separation device of Panax notoginseng seedlings based on roller zigzag mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 121-129. (in Chinese with English abstract) | |
[2] | 胡子武. 三七移栽机分离装置设计与试验研究[D]. 昆明: 昆明理工大学, 2017. |
HU Z W. Design and experimental study on the separating device of Panax notoginseng transplanter[D]. Kunming: Kunming University of Science and Technology, 2017. (in Chinese with English abstract) | |
[3] | 赵景文, 李凯, 李治国, 等. 链夹式甘蓝移栽机优化设计与试验[J]. 农业工程, 2017, 7(增刊1): 16-18. |
ZHAO J W, LI K, LI Z G, et al. Optimization design and experiments of chain clip kale transplanter[J]. Agricultural Engineering, 2017, 7(S1): 16-18. (in Chinese with English abstract) | |
[4] | 倪向东, 梅卫江. 导管式番茄移栽机的设计[J]. 农机化研究, 2011, 33(2): 84-86. |
NI X D, MEI W J. Design on the tomato transplanting machine[J]. Journal of Agricultural Mechanization Research, 2011, 33(2): 84-86. (in Chinese with English abstract) | |
[5] | 侯加林, 黄圣海, 牛子孺, 等. 双鸭嘴式大蒜正头装置调头机理分析与试验[J]. 农业机械学报, 2018, 49(11): 87-96. |
HOU J L, HUANG S H, NIU Z R, et al. Mechanism analysis and test of adjusting garlics upwards using two duckbill devices[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 87-96. (in Chinese with English abstract) | |
[6] | 韩霞, 陈海涛. 番茄链式纸钵苗移栽机栽植机构参数优化试验[J]. 东北农业大学学报, 2018, 49(4): 79-86. |
HAN X, CHEN H T. Parameter optimization experiment of paper pot seedling transplanting machine for tomato[J]. Journal of Northeast Agricultural University, 2018, 49(4): 79-86. (in Chinese with English abstract) | |
[7] | 胡建平, 潘杰, 张晨迪, 等. 行星轮栽植机构优化设计与试验[J]. 农业机械学报, 2018, 49(11): 78-86. |
HU J P, PAN J, ZHANG C D, et al. Optimization design and experiment on planetary gears planting mechanism of self-propelled transplanting machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 78-86. (in Chinese with English abstract) | |
[8] | 徐高伟, 刘宏新, 荐世春, 等. 基于五杆机构的丹参膜上移栽机构设计与试验[J]. 农业机械学报, 2018, 49(9): 55-65. |
XU G W, LIU H X, JIAN S C, et al. Design and test of transplanting mechanism on mulch-film of Salvia miltiorrhiza based on five-bar mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(9): 55-65. (in Chinese with English abstract) | |
[9] | 韦利波, 王维新, 闫琴. 甘草移栽机的设计与运动分析[J]. 石河子大学学报(自然科学版), 2011, 29(3): 367-369. |
WEI L B, WANG W X, YAN Q. Design and motion analysis of the licorice transplanter[J]. Journal of Shihezi University (Natural Science), 2011, 29(3): 367-369. (in Chinese with English abstract) | |
[10] | 姜彩宇, 刘文亮, 刘枫, 等. 一种根茎类作物栽植设备[J]. 农机使用与维修, 2018(8): 1-5. |
JIANG C Y, LIU W L, LIU F, et al. A rhizome crop planting equipment[J]. Agricultural Mechanization Using & Maintenance, 2018(8): 1-5. (in Chinese) | |
[11] | 张亮, 刘文亮, 刘枫, 等. 人参移栽机国内外技术对比分析[J]. 内燃机与配件, 2017(19): 120-121. |
ZHANG L, LIU W L, LIU F, et al. Comparative analysis of ginseng transplanter technology at home and abroad[J]. Internal Combustion Engine & Parts, 2017(19): 120-121. (in Chinese) | |
[12] | 董哲, 林选知, 张瑞勤, 等. 导苗管式移栽机的烟苗移栽质量影响因素分析[J]. 农机化研究, 2012, 34(4): 38-41. |
DONG Z, LIN X Z, ZHANG R Q, et al. Quality of flue-cured tobacco seedling transplanting factors analysis with transplanter with chute[J]. Journal of Agricultural Mechanization Research, 2012, 34(4): 38-41. (in Chinese with English abstract) | |
[13] | 王永维, 唐燕海, 王俊, 等. 蔬菜钵苗高速移栽机吊杯式栽植器参数优化[J]. 农业机械学报, 2016, 47(1): 91-100. |
WANG Y W, TANG Y H, WANG J, et al. Parameter optimization for dibble-type planting apparatus of vegetable pot seedling transplanter in high-speed condition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 91-100. (in Chinese with English abstract) | |
[14] | ZHANG W, NIU Z J, LI L H, et al. Design and optimization of seedling-feeding device for automatic maize transplanter with maize straw seedling-sprouting tray[J]. International Journal of Agricultural and Biological Engineering, 2015, 8(6): 1-12. |
[15] | 周福君, 芦杰, 杜佳兴. 玉米钵苗移栽机圆盘式栽植机构参数优化及试验[J]. 农业工程学报, 2014, 30(1): 18-24. |
ZHOU F J, LU J, DU J X. Parameters optimization and experiment of corn-paper transplanting machine with seedling disk[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(1): 18-24. (in Chinese with English abstract) | |
[16] | 陈科. 2ZDJ-2型移栽机导苗机构的研究与设计[D]. 北京: 中国农业机械化科学研究院, 2015. |
CHEN K. Research and design on guiding device of 2ZDJ-2 transplanter[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2015. (in Chinese with English abstract) | |
[17] | 赖庆辉, 袁海阔, 胡子武, 等. 三七种苗物料特性研究及离散元法参数标定[J]. 扬州大学学报(农业与生命科学版), 2018, 39(2): 74-79. |
LAI Q H, YUAN H K, HU Z W, et al. Experimental study of physical characteristics and parameters calibration of Panax notoginseng seedling[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2018, 39(2): 74-79. (in Chinese with English abstract) | |
[18] |
MA Z, LI Y M, XU L Z, et al. Dispersion and migration of agricultural particles in a variable-amplitude screen box based on the discrete element method[J]. Computers and Electronics in Agriculture, 2017, 142: 173-180.
DOI URL |
[19] | LIU F Y, ZHANG J, CHEN J. Modeling of flexible wheat straw by discrete element method and its parameter calibration[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(5): 42-46. |
[20] | 赵选民. 试验设计方法[M]. 北京: 科学出版社, 2006. |
[1] | 刘艳伟, 周潇, 杨启良, 茶品元. 不同施肥和灌溉水平对三七生长特性和发病率的影响[J]. 浙江农业学报, 2021, 33(8): 1426-1435. |
[2] | 张棚, 张希, 杨雪妍, 刘元林, 李儒, 龙鸣, 田晓静, 张福梅, 陈士恩, 马忠仁. 基于微量元素分析的三七产地及其主侧根鉴别[J]. 浙江农业学报, 2021, 33(7): 1300-1308. |
[3] | 陈秀霞, 池洪树, 许斌福, 谢岸桦, 方冬兰, 龚晖. 口服三七总皂甙对大黄鱼免疫功能的影响[J]. 浙江农业学报, 2021, 33(4): 610-617. |
[4] | 王一鸣, 龙胜举, 陈延, 贺忠群, 赵英鹏, 仰路希, 严文一. 土壤酸化对景天三七叶片光合特性及超微结构的影响[J]. 浙江农业学报, 2019, 31(6): 915-921. |
[5] | 赵英鹏, 贺忠群. 根际pH调控下景天三七对铅积累及铅胁迫的生理响应[J]. 浙江农业学报, 2018, 30(1): 71-79. |
[6] | 杨粉团1,2,曹庆军1,姜晓莉1,Lamine Dallio3,梁尧1,李刚1,*. 玉米种子定向入土方式与叶片空间分布关系 [J]. 浙江农业学报, 2015, 27(3): 406-. |
[7] | 拱健婷;张子龙*;王雄飞. 不同氮素水平下三七根系分泌物对小麦的化感作用[J]. , 2014, 26(2): 0-356361. |
[8] | 范坚强;周彬;宋纪真;王金华;*;陈义强;王永泽. 片烟黑曲霉菌株产纤维素酶的条件优化及酶的分离纯化[J]. , 2012, 24(6): 0-1128. |
[9] | 周莉;汤江武;王新;姚晓红;吴逸飞;葛向阳;*. 好氧反硝化细菌的筛选鉴定及其反硝化反应条件优化[J]. , 2011, 23(5): 0-947. |
[10] | 李梦琴;王跃;徐艳艳;周洪禄;刘延奇. 响应曲面法优化小麦麸皮超高压改性条件[J]. , 2011, 23(3): 0-603. |
[11] | 许少春;李艳丽;柳 永;汤江武;许尧兴*. 黑曲霉β一甘露聚糖酶的诱变选育及部分酶学特性[J]. , 2009, 21(3): 0-273. |
[12] | 许尧兴;许少春;姚晓红;李艳丽. α-半乳糖苷酶产酶菌种的定向筛选及诱变选育[J]. , 2006, 18(5): 0-364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||