[1] |
WILKERSON D C, WOLFE S A, GRIMES S R. H1t/GC-box and H1t/TE1 element are essential for promoter activity of the testis-specific histone H1t gene[J]. Biology of Reproduction, 2002, 67(4): 1157-1164.
DOI
URL
|
[2] |
TAKADA S, BEREZIKOV E, CHOI Y L, et al. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos[J]. RNA, 2009, 15(8): 1507-1514.
DOI
URL
|
[3] |
BJÖRK J K, SANDQVIST A, ELSING A N, et al. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis[J]. Development (Cambridge, England), 2010, 137(19): 3177-3184.
DOI
URL
|
[4] |
YU M, MU H L, NIU Z W, et al. miR-34c enhances mouse spermatogonial stem cells differentiation by targeting Nanos2[J]. Journal of Cellular Biochemistry, 2014, 115(2): 232-242.
DOI
URL
|
[5] |
WANG Y J, ZUO Q S, BI Y L, et al. miR-31 regulates spermatogonial stem cells meiosis via targeting Stra8[J]. Journal of Cellular Biochemistry, 2017, 118(12): 4844-4853.
DOI
URL
|
[6] |
ZHONG Z W, DONG Z, YANG L H, et al. MicroRNA-31-5p modulates cell cycle by targeting human mutL homolog 1 in human cancer cells[J]. Tumour Biology, 2013, 34(3): 1959-1965.
DOI
URL
|
[7] |
刘慰华, 黎佼, 刘彬, 等. miRNA-31在高糖诱导内皮细胞功能障碍中的作用[J]. 广东医学, 2014, 35(22): 3449-3452.
|
|
LIU W H, LI J, LIU B, et al. The role of miRNA-31 in high glucose-induced endothelial cell dysfunction[J]. Guangdong Medical Journal, 2014, 35(22): 3449-3452. (in Chinese with English abstract)
|
[8] |
陈涛. MicroRNA-31/FIH-1调控关系在结直肠癌发生发展中的作用及其机制研究[D]. 上海: 复旦大学, 2014.
|
|
CHEN T. The role of MiRNA-31/FIH-1 Nexus in the progression of colorectal cancer and the mechanism study[D]. Shanghai: Fudan University, 2014. (in Chinese with English abstract)
|
[9] |
唐燚, 刘波, 李楠, 等. miRNA-31-5p在过量维甲酸抑制C2C12细胞增殖中的调控机制研究[J]. 大连医科大学学报, 2016, 38(1): 6-11.
|
|
TANG Y, LIU B, LI N, et al. Regulatory mechanisms of miRNA-31-5p in excess retinoic acid-induced abnormal C2C12 cell proliferation[J]. Journal of Dalian Medical University, 2016, 38(1): 6-11. (in Chinese with English abstract)
|
[10] |
左其生. 鸡原始生殖细胞形成过程中C2EIP功能及其调控机制的研究[D]. 扬州: 扬州大学, 2017.
|
|
ZUO Q S. Study on the function and regulation mechanism of C2EIP in chicken primordial germ cells[D]. Yangzhou: Yangzhou University, 2017. (in Chinese with English abstract)
|
[11] |
彭耀中, 杜鹏, 张学勇. DNMT1通过miRNA-148b-3p调控脑胶质瘤U87细胞替莫唑胺耐药性的作用机制[J]. 癌症进展, 2019, 17(18): 2207-2210.
|
|
PENG Y Z, DU P, ZHANG X Y. Effect of DNMT1 on temozolomide resistance via regulating miRNA-148b-3p expression in glioma U87 cells[J]. Oncology Progress, 2019, 17(18): 2207-2210. (in Chinese with English abstract)
|
[12] |
刘海亭. 长链非编码RNA HNF1A-AS1对胃癌进展的调控作用及相关机制研究[D]. 济南: 山东大学, 2019.
|
|
LIU H T. Function and mechanism study of long non-coding RNA HNF1A-AS1 in gastric cancer progression[D]. Jinan: Shandong University, 2019. (in Chinese with English abstract)
|
[13] |
吴大鹏. XIST/miR-193a-3p/RSF1调控骨肉瘤中发生发展过程的机制研究[D]. 郑州: 郑州大学, 2019.
|
|
WU D P. Study on the mechanism of XIST/miR-193a-3p/RSF1 to regulate the occurrence and development of osteosarcoma[D]. Zhengzhou: Zhengzhou University, 2019. (in Chinese with English abstract)
|
[14] |
陈诚, 张学军. miR-182受TEAD1转录调控参与黑素瘤细胞转移[J]. 中国临床医学, 2019, 26(1): 89-92.
|
|
CHEN C, ZHANG X J. miR-182 is transcriptional regulated by TEAD1 and regulates the metastasis of melanoma induced by TEAD1[J]. Chinese Journal of Clinical Medicine, 2019, 26(1): 89-92. (in Chinese with English abstract)
|
[15] |
JIANG X Y, XUE M, FU Z Y, et al. Insight into the effects of adipose tissue inflammation factors on miR-378 expression and the underlying mechanism[J]. Cellular Physiology and Biochemistry, 2014, 33(6): 1778-1788.
DOI
URL
|
[16] |
ZHAO Y, SAMAL E, SRIVASTAVA D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436(7048): 214-220.
DOI
URL
|
[17] |
YIN M M, LYU M, YAO G D, et al. Transactivation of microRNA-383 by steroidogenic factor-1 promotes estradiol release from mouse ovarian granulosa cells by targeting RBMS1[J]. Molecular Endocrinology, 2012, 26(7): 1129-1143.
DOI
URL
|
[18] |
JANGA S C, VALLABHANENI S. MicroRNAs as post-transcriptional machines and their interplay with cellular networks[J]. Advances in Experimental Medicine and Biology, 2011, 722: 59-74.
|
[19] |
LIN S L, CHANG S J E, YING S Y. Transgene-like animal models using intronic microRNAs[J]. Methods in Molecular Biology, 2018, 1733: 239-254.
|