浙江农业学报 ›› 2022, Vol. 34 ›› Issue (6): 1162-1174.DOI: 10.3969/j.issn.1004-1524.2022.06.07
收稿日期:
2021-08-26
出版日期:
2022-06-25
发布日期:
2022-06-30
作者简介:
刘凯(1982—),男,安徽马鞍山人,硕士,高级工程师,主要从事鱼类遗传与免疫研究。E-mail: liukai0106@email.cn
基金资助:
LIU Kai(), XIE Nan, GUO Wei, MA Hengjia
Received:
2021-08-26
Online:
2022-06-25
Published:
2022-06-30
摘要:
主要组织相容复合体(major histocompatibility complex,MHC)是一类具有高度多态性的分子,在脊椎动物的先天免疫应答中起到重要作用。根据已报道鱼类的MHCⅠα基因序列设计特异性引物,通过RT-PCR和RACE技术克隆三角鲂MHCⅠα基因cDNA序列全长,命名为Mete-UAA,并对其进行生物信息学分析。结果显示,Mete-UAA全长为2 102 bp,包含1 044 bp的开放阅读框,编码347个氨基酸。编码的MHCⅠα蛋白质预测分子量为38 699.18,等电点5.23,含有16个氨基酸组成的信号肽,具有亲水性,定位于细胞膜上,具有1个N-糖基化、3个O-糖基化和39个磷酸化的潜在位点。氨基酸序列同源性比对发现,Mete-UAA氨基酸序列与团头鲂同源性最高为75.79%,与草鱼同源性稍低于团头鲂,为75.25%。Mete-UAA具有MHCⅠα的典型结构特征,包含1个前导肽、3个胞外结构域、1个跨膜区和1个胞质区。二级结构分析显示,Mete-UAA蛋白质中α-螺旋、β-转角、延伸链和无规则卷曲所占的比例分别为25.94%、9.22%、26.80%和38.04%。基于转录组学分析表明,感染嗜水气单胞菌(Aeromonas hydrophila)后三角鲂MHCⅠα基因表达呈总体下降趋势。本研究从三角鲂肝中成功克隆MHCⅠα基因,分析了其生物信息学特征,为后续研究MHCⅠα参与调控三角鲂先天免疫应答的机制提供理论基础。
中图分类号:
刘凯, 谢楠, 郭炜, 马恒甲. 三角鲂MHCⅠα基因全长cDNA克隆与生物信息学分析[J]. 浙江农业学报, 2022, 34(6): 1162-1174.
LIU Kai, XIE Nan, GUO Wei, MA Hengjia. Full-length cDNA cloning and bioinformatic analysis of MHCⅠα gene from black amur bream (Megalobrama terminalis)[J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1162-1174.
引物名称 Primer name | 引物序列 Primer Sequences (5'-3') |
---|---|
MHCⅠ-Z-NF1 | CTWCACTGSTGTGTCTGGAG |
MHCⅠ-Z-NR1 | GGWGATTGTTACTCCACTGGG |
MHCⅠ-3-GSP1 | ATCCTCAAGCTACGATTACCAAGG |
MHCⅠ-3-GSP2 | GTCTCTCCTCAGGTGTCTCTGTTG |
MHCⅠ-5-GSP1 | GGGTGCTCTTATCCAGGGCGAGGAAG |
MHCⅠ-5-GSP2 | GCTCCCTCATTCTGTCTGATCCACTCTG |
Outer primer | TACCGTCGTTCCACTAGTGATTT |
Inner primer | CGCGGATCCTCCACTAGTGATTTCACTATAGG |
Univers primer | TAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT |
Short primer | CTAATACGACTCACTATAGGGC |
表1 三角鲂MHCⅠα基因cDNA全长克隆使用的引物序列
Table 1 Primer sequences used in full-length cDNA cloning of MHCⅠα from Megalobrama terminalis
引物名称 Primer name | 引物序列 Primer Sequences (5'-3') |
---|---|
MHCⅠ-Z-NF1 | CTWCACTGSTGTGTCTGGAG |
MHCⅠ-Z-NR1 | GGWGATTGTTACTCCACTGGG |
MHCⅠ-3-GSP1 | ATCCTCAAGCTACGATTACCAAGG |
MHCⅠ-3-GSP2 | GTCTCTCCTCAGGTGTCTCTGTTG |
MHCⅠ-5-GSP1 | GGGTGCTCTTATCCAGGGCGAGGAAG |
MHCⅠ-5-GSP2 | GCTCCCTCATTCTGTCTGATCCACTCTG |
Outer primer | TACCGTCGTTCCACTAGTGATTT |
Inner primer | CGCGGATCCTCCACTAGTGATTTCACTATAGG |
Univers primer | TAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT |
Short primer | CTAATACGACTCACTATAGGGC |
图1 三角鲂MHCⅠα基因片段克隆电泳图 A,MHCⅠα基因核心片段;B,3' RACE第二轮扩增后片断;C,5' RACE第二轮扩增后片断。Marker,DNA标准物质。
Fig. 1 Electrophoresis of amplified MHCⅠα fragment from Megalobrama terminalis A, MHCⅠα core fragment; B, 3'RACE amplified fragment; C, 5'RACE amplified fragment. Marker, DNA marker.
图3 三角鲂MHCⅠα蛋白质的保守结构域(A)、二级结构(B)和卷曲螺旋结构(C)预测 图B中蓝色代表α-螺旋,绿色代表β-转角,紫色代表延伸链,红色代表无规则卷曲。
Fig. 3 Predicted conservative domain (A), secondary structure (B), and coiled-coil structure (C) of MHCⅠα protein from Megalobrama terminalis In figure B, Blue represented α-helix, green represented β-turn, purple represented extended chain, red represented random coil.
图 4 MHCⅠα蛋白质的三级结构预测模型 A,三角鲂Mete-UAA编码蛋白的三级结构预测模型;B,团头鲂Meam-UBA*F8-0102编码蛋白的三级结构预测模型。
Fig. 4 Predicted tertiary structure model of MHCⅠαprotein A, Prediction model of tertiary structure of Mete-UAA coding protein of Megalobrama terminalis; B, Prediction model of tertiary structure of Meam-UBA*F8-0102 coding protein of Megalobrama amblycephala.
图5 三角鲂MHCⅠα蛋白质信号肽(A)、磷酸化位点(B)、N-糖基化位点(C)和蛋白跨膜区(D)预测
Fig. 5 Predicted signal peptide (A), phosphorylation sites (B), N-glycosylated sites (C), and protein transmembrane (D) of MHCⅠα protein from Megalobrama terminalis
图6 基于MHCⅠα氨基酸序列的三角鲂和其他物种多重序列比对 每列上的氨基酸残基一致性越高则该列的颜色越深,圈中字符为高度保守的半胱氨酸残基。
Fig. 6 Multiple alignments of MHCⅠα’s amino acid sequence from Megalobrama terminalis and other animals The higher the identity of the amino acid residues on each column, the darker the column, the characters in the circle were highly conservative cysteine residues.
图7 基于MHCⅠα氨基酸序列的三角鲂和其他物种最大似然系统发育分析 进化树节点上的数字分别表示SH-aLRT检验和Ultrafast Bootstrap校验的百分数。
Fig. 7 Phylogenetic analysis of MHCⅠα's amino acid sequence from Megalobrama terminalis and other fish by Maximum Likelihood method Values shown at each node of the tree correspond to the SH-aLRT test values and Ultrafast Bootstrap value given in percentages.
[1] | BRUCE F. Molecular biology of the cell, 5th edition[J]. Medicine & Science in Sports & Exercise, 2008, 40(9): 1709. |
[2] |
CARDWELL T N, SHEFFER R J, HEDRICK P W. MHC variation and tissue transplantation in fish[J]. Journal of Heredity, 2001, 92(4): 305-308.
DOI URL |
[3] | DIJKSTRA J M, YOSHIURA Y, KIRYU I, et al. The promoter of the classical MHC class I locus in rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2003, 14(2): 177-185. |
[4] |
KAUFMAN J. Unfinished business: evolution of the MHC and the adaptive immune system of jawed vertebrates[J]. Annual Review of Immunology, 2018, 36: 383-409.
DOI URL |
[5] |
VAN KAER L, PAREKH V V, POSTOAK J L, et al. Role of autophagy in MHC class I-restricted antigen presentation[J]. Molecular Immunology, 2019, 113: 2-5.
DOI URL |
[6] | MILNER C M, CAMPBELL R D. Genetic organization of the human MHC class III region[J]. Frontiers in Bioscience, 2001, 6: D914-D926. |
[7] |
KAASTRUP P, STET R J, TIGCHELAAR A J, et al. A major histocompatibility locus in fish: serological identification and segregation of transplantation antigens in the common carp (Cyprinus carpio L.)[J]. Immunogenetics, 1989, 30(4): 284-290.
DOI URL |
[8] | HASHIMOTO K, NAKANISHI T, KUROSAWA Y. Isolation of carp genes encoding major histocompatibility complex antigens[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(17): 6863-6867. |
[9] | KATAGIRI T, HIRONO I, AOKI T, et al. Isolation of major histocompatibility complex class I cDNA from pink salmon (Oncorhynchus gorbuscha)[J]. Developmental & Comparative Immunology, 1996, 20(3): 217-228. |
[10] | KOPPANG E O, PRESS C M, RØNNINGEN K, et al. Expression of MHC class I mRNA in tissues from vaccinated and non-vaccinated Atlantic salmon (Salmo salar L.)[J]. Fish & Shellfish Immunology, 1998, 8(8): 577-587. |
[11] |
SÜLTMANN, MURRAY, KLEIN. Identification of seven genes in the major histocompatibility complex class I region of the zebrafish[J]. Scandinavian Journal of Immunology, 2000, 51(6): 577-585.
DOI URL |
[12] |
AOYAGI K, DIJKSTRA J M, XIA C, et al. Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss)[J]. Journal of Immunology, 2002, 168(1): 260-273.
DOI URL |
[13] | YANG T Y, HAO H F, JIA Z H, et al. Characterisation of grass carp (Ctenopharyngodon idellus) MHC class I domain lineages[J]. Fish & Shellfish Immunology, 2006, 21(5): 583-591. |
[14] | 马晓茜, 刘至治, 李思发, 等. 团头鲂主要组织相容性复合体Ⅰ类基因全长cDNA的克隆及组织表达分析[J]. 上海海洋大学学报, 2011, 20(1): 34-43. |
MA X Q, LIU Z Z, LI S F, et al. Full length cDNA cloning and tissue expression of major histocompatibility complex (MHC) class Ⅰ from blunt snout bream (Megalobrama amblycephala)[J]. Journal of Shanghai Ocean University, 2011, 20(1): 34-43. (in Chinese with English abstract) | |
[15] | 成庆泰, 郑葆珊. 中国鱼类系统检索[M]. 北京: 科学出版社, 1987. |
[16] | 胡雪松, 石连玉. 我国三角鲂种质资源的研究进展[J]. 水产学杂志, 2020, 33(3): 84-89. |
HU X S, SHI L Y. A review: research progress on germplasm resource of black bream (Megalobrama terminalis) in China[J]. Chinese Journal of Fisheries, 2020, 33(3): 84-89. (in Chinese with English abstract) | |
[17] | 冯晓宇. 浙江省三角鲂研究进展及示范推广情况[J]. 科学养鱼, 2009(10):40-41. |
FENG X Y. Study progress and dissemination situation of triangular bream in Zhejiang Province[J]. Scientific Fish Farming, 2009(10):40-41. (in Chinese) | |
[18] | LUO W, ZHANG J, WEN J F, et al. Molecular cloning and expression analysis of major histocompatibility complex class I, IIA and IIB genes of blunt snout bream (Megalobrama amblycephala)[J]. Developmental & Comparative Immunology, 2014, 42(2): 169-173. |
[19] | 王超, 张龙岗, 吴蒙蒙, 等. 吞噬作用在尼罗罗非鱼抵抗嗜水气单胞菌感染过程中的重要作用[J]. 中国水产科学, 2020, 27(3): 346-354. |
WANG C, ZHANG L G, WU M M, et al. Important role of phagocytosis in the defense of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila infection[J]. Journal of Fishery Sciences of China, 2020, 27(3): 346-354. (in Chinese with English abstract) | |
[20] |
OKONECHNIKOV K, GOLOSOVA O, FURSOV M, et al. Unipro UGENE: a unified bioinformatics toolkit[J]. Bioinformatics, 2012, 28(8): 1166-1167.
DOI URL |
[21] | LU S N, WANG J Y, CHITSAZ F, et al. CDD/SPARCLE: the conserved domain database in 2020[J]. Nucleic Acids Research, 2019, 48(D1): D265-D268. |
[22] | 张普, 邵文靖, 杜克久, 等. 杜仲半胱氨酸蛋白酶抑制剂基因EuCPI的克隆及功能分析[J]. 林业科学, 2021, 57(3): 29-38. |
ZHANG P, SHAO W J, DU K J, et al. Cloning and functional analysis of cysteine proteinase inhibitor gene EuCPI from Eucommia ulmoides[J]. Scientia Silvae Sinicae, 2021, 57(3): 29-38. (in Chinese with English abstract) | |
[23] |
LUPAS A, VAN DYKE M, STOCK J. Predicting coiled coils from protein sequences[J]. Science, 1991, 252(5009): 1162-1164.
DOI URL |
[24] | WILKINS M R, GASTEIGER E, BAIROCH A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods in Molecular Biology (Clifton, N J ), 1999, 112: 531-552. |
[25] | WHELAN S, IRISARRI I, BURKI F. PREQUAL: detecting non-homologous characters in sets of unaligned homologous sequences[J]. Bioinformatics, 2018, 34(22): 3929-3930. |
[26] |
WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9): 1189-1191.
DOI URL |
[27] |
ALI R H, BOGUSZ M, WHELAN S. Identifying clusters of high confidence homologies in multiple sequence alignments[J]. Molecular Biology and Evolution, 2019, 36(10): 2340-2351.
DOI URL |
[28] |
NGUYEN L T, SCHMIDT H A, VON HAESELER A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015, 32(1): 268-274.
DOI URL |
[29] |
HOANG D T, CHERNOMOR O, VON HAESELER A, et al. UFBoot2: improving the ultrafast bootstrap approximation[J]. Molecular Biology and Evolution, 2018, 35(2): 518-522.
DOI URL |
[30] | 方献平, 朱丽敏, 刘凯, 等. 定量蛋白质组学揭示三角鲂和团头鲂响应嗜水气单胞菌侵染机制变化[J]. 浙江大学学报(农业与生命科学版), 2015, 41(5): 602-615. |
FANG X P, ZHU L M, LIU K, et al. Differential Aeromonas hydrophila resistance mechanisms of Megalobrama terminalis and Megalobrama amblycephala revealed by quantification proteomics[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2015, 41(5): 602-615. (in Chinese with English abstract) | |
[31] | 刘凯, 谢楠, 冯晓宇, 等. 基于RNA-seq技术对乌鳢和斑鳢肝脏的转录组分析[J]. 经济动物学报, 2015, 19(4): 213-219. |
LIU K, XIE N, FENG X Y, et al. Transcriptome analysis of livers in Channa argus and Channa maculatus based on RNA-seq technique[J]. Journal of Economic Animal, 2015, 19(4): 213-219. (in Chinese with English abstract) | |
[32] |
CAMACHO C, COULOURIS G, AVAGYAN V, et al. BLAST+: architecture and applications[J]. BMC Bioinformatics, 2009, 10: 421.
DOI URL |
[33] | KLEIN J, BONTROP R E, DAWKINS R L, et al. Nomenclature for the major histocompatibility complexes of different species: a proposal[J]. Immunogenetics, 1990, 31(4): 217-219. |
[34] |
SHUM B P, RAJALINGAM R, MAGOR K E, et al. A divergent non-classical class I gene conserved in salmonids[J]. Immunogenetics, 1999, 49(6): 479-490.
DOI URL |
[35] |
PINTO R D, RANDELLI E, BUONOCORE F, et al. Molecular cloning and characterization of sea bass (Dicentrarchus labrax, L.) MHC class I heavy chain and β2-microglobulin[J]. Developmental and Comparative Immunology, 2013, 39(3): 234-254.
DOI URL |
[36] | CAO Z J, HE M W, CHEN X J, et al. Identification, polymorphism and expression of MHC class Iα in golden pompano, Trachinotus ovatus[J]. Fish & Shellfish Immunology, 2017, 67: 55-65. |
[37] |
SOMMER S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation[J]. Frontiers in Zoology, 2005, 2: 16.
DOI URL |
[38] | APOSTOLOPOULOS V, YU M, MCKENZIE I F, et al. Structural implications for the design of molecular vaccines[J]. Current Opinion in Molecular Therapeutics, 2000, 2(1): 29-36. |
[39] |
SACHS A, MOORE E, KOSALOGLU-YALCIN Z, et al. Impact of cysteine residues on MHC binding predictions and recognition by tumor-reactive T cells[J]. Journal of Immunology, 2020, 205(2): 539-549.
DOI URL |
[40] |
NICHOLS R. Gene trees and species trees are not the same[J]. Trends in Ecology & Evolution, 2001, 16(7): 358-364.
DOI URL |
[41] | 黎一苇, 于黎, 张亚平. 系统发育研究中“长枝吸引”假象概述[J]. 遗传, 2007, 29(6): 659-667. |
LI Y W, YU L, ZHANG Y P. “Long-branch attraction” artifact in phylogenetic reconstruction[J]. Hereditas, 2007, 29(6): 659-667. (in Chinese with English abstract) | |
[42] |
STORZ J F. Causes of molecular convergence and parallelism in protein evolution[J]. Nature Reviews Genetics, 2016, 17(4): 239-250.
DOI URL |
[43] |
LEACHÉ A D, HARRIS R B, RANNALA B, et al. The influence of gene flow on species tree estimation: a simulation study[J]. Systematic Biology, 2013, 63(1): 17-30.
DOI URL |
[44] |
DEGNAN J H, ROSENBERG N A. Gene tree discordance, phylogenetic inference and the multi species coalescent[J]. Trends in Ecology & Evolution, 2009, 24(6): 332-340.
DOI URL |
[1] | 洪森荣, 向琼钰, 谢颖, 熊晨露, 徐晨慧, 徐璐珂, 陈荣华, 蔡红. 怀玉山三叶青烟草病毒增殖蛋白1基因克隆、亚细胞定位和组织表达分析[J]. 浙江农业学报, 2022, 34(6): 1193-1204. |
[2] | 樊有存, 张红岩, 杨旭升, 韩芊, 刘玉皎, 武学霞. 蚕豆耐盐相关基因VfHKT1;1的克隆、生物信息学分析及表达特性[J]. 浙江农业学报, 2022, 34(4): 756-765. |
[3] | 杨卫军, 董艳蕾, 吴秋芳, 张美玲, 韩丽滨, 张元臣. 棉蚜ATP合成酶基因AgoATPb的克隆与表达[J]. 浙江农业学报, 2022, 34(2): 329-336. |
[4] | 许金根, 靳二辉, 王重龙, 顾有方, 李庆岗. 猪CAST基因多态性与生物信息学分析[J]. 浙江农业学报, 2022, 34(1): 17-23. |
[5] | 赵秀平, 王双, 闫星伊, 段强, 张帅, 陈永胜, 李国瑞. 稻瘟病菌MGG-01005的表达纯化与生物信息学分析[J]. 浙江农业学报, 2021, 33(3): 470-478. |
[6] | 欧阳霞辉, 郑天宇, 徐文凯, 郑相相. 意大利蜜蜂amLDH基因的克隆与表达分析[J]. 浙江农业学报, 2021, 33(11): 2051-2058. |
[7] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[8] | 梁丽琴, 杨瑞, 郜刚. 马铃薯StUOXs基因家族的生物信息学分析[J]. 浙江农业学报, 2020, 32(9): 1523-1532. |
[9] | 刘凯, 冯晓宇, 马恒甲, 谢楠. 钱塘江三角鲂线粒体基因组测序及其结构特征分析[J]. 浙江农业学报, 2020, 32(9): 1591-1608. |
[10] | 吴佳, 陈朗, 姜涛, 黄国明, 李倬, 李耀东, 张丽, 刘丽霞. 奶牛CSF3基因遗传多态性筛查及其生物信息学分析[J]. 浙江农业学报, 2020, 32(6): 986-993. |
[11] | 王伟科, 宋吉玲, 陆娜, 袁卫东, 闫静, 陈观平. 秀珍菇原基形成相关基因PpFBD1的克隆与表达研究[J]. 浙江农业学报, 2020, 32(1): 93-97. |
[12] | 刘正奎, 吴瑗, 陈琳, 王磊, 牟泓烨, 祝徐航, 王晓杜. 猪流行性腹泻病毒Nsp5基因的原核表达及生物信息学分析[J]. 浙江农业学报, 2019, 31(4): 532-538. |
[13] | 董新星, 李明丽, 崔艺佳, 兰国湘, 王孝义, 严达伟. 撒坝猪MCUR1基因克隆、生物信息学分析及其组织表达量检测[J]. 浙江农业学报, 2019, 31(11): 1825-1833. |
[14] | 许青松, 赵佳, 魏运民, 韩蓉蓉, 刘卢生, 蒋曹德, 玉永雄. 紫花苜蓿MsOXO基因的克隆及表达分析[J]. 浙江农业学报, 2019, 31(1): 11-19. |
[15] | 杨舟, 吕可, 吕珊, 王俊杰, 张荻. 百子莲2个ARF基因与2个Aux/IAA基因的全长克隆与序列分析[J]. 浙江农业学报, 2019, 31(1): 86-97. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||