浙江农业学报 ›› 2023, Vol. 35 ›› Issue (10): 2299-2310.DOI: 10.3969/j.issn.1004-1524.20221467
刘方程a,b(), 王峰a,b, 毕冬琳a,b, 杨东亮a,b, 杨晓莉a,b, 柏家林a,b, 李琼毅a,b,*(
)
收稿日期:
2022-10-25
出版日期:
2023-10-25
发布日期:
2023-10-31
作者简介:
刘方程(1997—),男,甘肃兰州人,硕士研究生,从事病毒天然免疫机制研究。E-mail:956636176@qq.com
通讯作者:
*李琼毅,E-mail:基金资助:
LIU Fangchenga,b(), WANG Fenga,b, BI Donglina,b, YANG Donglianga,b, YANG Xiaolia,b, BAI Jialina,b, LI Qiongyia,b,*(
)
Received:
2022-10-25
Online:
2023-10-25
Published:
2023-10-31
摘要:
兔出血症是由兔出血症病毒(Rabbit haemorrhagic disease virus, RHDV)引起的一种兔急性、高度致死性传染病,成年兔死亡率超过90%,但2周龄幼兔不发病。基于幼年兔与成年兔对RHDV的易感性差异,采用串联质谱标记(tadem mass tags, TMT)蛋白质组学技术对幼年兔(2周龄)和成年兔(6月龄)肝中的蛋白质进行检测和定量分析,从幼年兔和成年兔肝中定量获得4 353个蛋白质,筛选出821个差异蛋白质;相较于幼年兔,成年兔肝中294个蛋白质显著上调,527个蛋白质显著下调。GO功能富集分析结果显示,生物学过程主要富集到145个小分子代谢蛋白质、111个与氧化还原过程相关的蛋白质和478个参与代谢过程的蛋白质,细胞组分主要富集到528个细胞外成分蛋白质、139个线粒体蛋白质和366个细胞质蛋白质等,分子功能主要富集到342个催化活性蛋白质、93个氧化还原活性蛋白质和50个辅酶结合蛋白质等。821个差异蛋白质在KEGG Pathway数据库中共注释到47条KEGG信号通路,主要涉及代谢途径、糖代谢、氧化磷酸化作用和剪切小体等通路。幼年兔和成年兔肝中差异蛋白质互作网络分析发现,MRPS15的关联度最高,且差异蛋白质胆固醇酰基转移酶1(ACAT1)在互作网络中具有更多相互作用关系。从蛋白质水平探讨幼年兔和成年兔的感染差异机制,筛选并分析幼年兔和成年兔肝中的差异蛋白质,筛选出的差异蛋白质有望成为RHDV体外扩增细胞系构建的突破点,为构建适宜RHDV体外扩增的细胞系提供新的研究思路。
中图分类号:
刘方程, 王峰, 毕冬琳, 杨东亮, 杨晓莉, 柏家林, 李琼毅. 不同月龄新西兰兔肝中差异蛋白质鉴定与验证[J]. 浙江农业学报, 2023, 35(10): 2299-2310.
LIU Fangcheng, WANG Feng, BI Donglin, YANG Dongliang, YANG Xiaoli, BAI Jialin, LI Qiongyi. Identification and validation of differential proteins in liver of New Zealand rabbits at different months of age[J]. Acta Agriculturae Zhejiangensis, 2023, 35(10): 2299-2310.
图1 差异蛋白质的筛选与鉴定 A,差异蛋白火山图;B,差异蛋白聚类热图。
Fig.1 Screening and identification of differential proteins A, Volcano plot of differential proteins; B, Clustering heat map of differential proteins.
蛋白质ID Protein ID | 蛋白质名称 Protein name | 表达情况 Expression |
---|---|---|
Q8MI17 | 醇脱氢酶Aldehyde dehydrogenase 1 family member A1 | 上调Up-regulation |
G1SS18 | 角蛋白8Keratin 8 | 上调Up-regulation |
G1SIJ2 | 胆固醇酰基转移酶1 Acetyl-CoA acetyltransferase 1 | 下调Down-regulation |
G1U758 | 角蛋白18 Keratin 18 | 上调Up-regulation |
G1TT06 | 组蛋白结合蛋白1 Selenium binding protein 1 | 上调Up-regulation |
G1SRF7 | 热休克蛋白9 Heat shock protein family A member 9 | 下调Down-regulation |
G1SKT4 | ATP合成酶、H+转运、线粒体F1复合体、α亚单位1 | 下调Down-regulation |
ATP synthase, H+transporting, mitochondrial F1 complex, alpha subunit 1 | ||
A0A5F9CMG2 | 3-羟基-3-甲基戊二酰-CoA合成酶2 3-Hydroxy-3-methylglutaryl-CoA synthase 2 | 下调Down-regulation |
G1SXX5 | 羟基酰基-CoA脱氢酶三功能多酶复合体亚基α | 下调Down-regulation |
Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha | ||
G1SJS1 | 组蛋白2簇H2be Histone 2 cluster H2be | 下调Down-regulation |
A0A5F9C4D8 | UDP葡萄糖焦磷酸化酶2 UDP-glucose pyrophosphorylase 2 | 上调Up-regulation |
G1T1U7 | 亚甲基四氢叶酸脱氢酶 | 上调Up-regulation |
Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 | ||
U3KMH9 | 苹果酸脱氢酶2 Malate dehydrogenase 2 | 下调Down-regulation |
P21195 | 脯氨酰4-羟化酶亚基beta Prolyl 4-hydroxylase subunit beta | 下调Down-regulation |
O18750 | 热休克蛋白90 beta家族成员1 Heat shock protein 90 beta family member 1 | 下调Down-regulation |
G1T2A7 | 谷胱甘肽S转移酶α1 Glutathione S-transferase alpha I | 上调Up-regulation |
G1T295 | 环氧化物水解酶1 Epoxide hydrolase 1 | 上调Up-regulation |
G1U723 | 前列腺素-E(2) 9还原酶样Prostaglandin-E(2) 9-reductase-like | 上调Up-regulation |
A0A5F9C5G3 | 丝氨酸羟甲基转移酶1 Serine hydroxymethyltransferase 1 | 上调Up-regulation |
G1SNJ7 | 丙氨酸-乙醛酸氨基转移酶2 Alanine-glyoxylate aminotransferase 2 | 下调Down-regulation |
表1 未感染的成年兔肝中部分差异蛋白质
Table 1 Partial differential proteins in liver of uninfected adult rabbit
蛋白质ID Protein ID | 蛋白质名称 Protein name | 表达情况 Expression |
---|---|---|
Q8MI17 | 醇脱氢酶Aldehyde dehydrogenase 1 family member A1 | 上调Up-regulation |
G1SS18 | 角蛋白8Keratin 8 | 上调Up-regulation |
G1SIJ2 | 胆固醇酰基转移酶1 Acetyl-CoA acetyltransferase 1 | 下调Down-regulation |
G1U758 | 角蛋白18 Keratin 18 | 上调Up-regulation |
G1TT06 | 组蛋白结合蛋白1 Selenium binding protein 1 | 上调Up-regulation |
G1SRF7 | 热休克蛋白9 Heat shock protein family A member 9 | 下调Down-regulation |
G1SKT4 | ATP合成酶、H+转运、线粒体F1复合体、α亚单位1 | 下调Down-regulation |
ATP synthase, H+transporting, mitochondrial F1 complex, alpha subunit 1 | ||
A0A5F9CMG2 | 3-羟基-3-甲基戊二酰-CoA合成酶2 3-Hydroxy-3-methylglutaryl-CoA synthase 2 | 下调Down-regulation |
G1SXX5 | 羟基酰基-CoA脱氢酶三功能多酶复合体亚基α | 下调Down-regulation |
Hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha | ||
G1SJS1 | 组蛋白2簇H2be Histone 2 cluster H2be | 下调Down-regulation |
A0A5F9C4D8 | UDP葡萄糖焦磷酸化酶2 UDP-glucose pyrophosphorylase 2 | 上调Up-regulation |
G1T1U7 | 亚甲基四氢叶酸脱氢酶 | 上调Up-regulation |
Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1 | ||
U3KMH9 | 苹果酸脱氢酶2 Malate dehydrogenase 2 | 下调Down-regulation |
P21195 | 脯氨酰4-羟化酶亚基beta Prolyl 4-hydroxylase subunit beta | 下调Down-regulation |
O18750 | 热休克蛋白90 beta家族成员1 Heat shock protein 90 beta family member 1 | 下调Down-regulation |
G1T2A7 | 谷胱甘肽S转移酶α1 Glutathione S-transferase alpha I | 上调Up-regulation |
G1T295 | 环氧化物水解酶1 Epoxide hydrolase 1 | 上调Up-regulation |
G1U723 | 前列腺素-E(2) 9还原酶样Prostaglandin-E(2) 9-reductase-like | 上调Up-regulation |
A0A5F9C5G3 | 丝氨酸羟甲基转移酶1 Serine hydroxymethyltransferase 1 | 上调Up-regulation |
G1SNJ7 | 丙氨酸-乙醛酸氨基转移酶2 Alanine-glyoxylate aminotransferase 2 | 下调Down-regulation |
图2 差异蛋白质GO富集分析结果 A,差异蛋白质GO富集分析分类直方图;B,差异蛋白质GO富集分析分类气泡图。BP,生物学过程;CC,细胞组分;MF,分子功能。
Fig.2 The results of GO enrichment analysis of differential proteins A, Classification histogram of differential proteins by GO enrichment analysis; B, Classification bubble diagram of differential proteins by GO enrichment analysis. BP, Biological process; CC, Cellular component; MF, Molecular function.
通路名称 Pathway name | ID | 差异蛋白数量 Number of differential proteins |
---|---|---|
代谢途径Metabolic pathways | ocu01100 | 179 |
糖代谢Carbon metabolism | ocu01200 | 30 |
氧化磷酸化Oxidative phosphorylation | ocu00190 | 29 |
帕金森氏症Parkinson disease | ocu05012 | 29 |
剪切小体Spliceosome | ocu03040 | 26 |
阿兹海默病Alzheimer disease | ocu05010 | 30 |
丙酸代谢Propanoate metabolism | ocu00640 | 12 |
乙氧基化物和二甲酸酯代谢通路Glyoxylate and dicarboxylate metabolism | ocu00630 | 11 |
类固醇生物合成Steroid biosynthesis | ocu00100 | 8 |
丁酸盐代谢通路Butanoate metabolism | ocu00650 | 9 |
表2 KEGG通路注释中差异蛋白质数量排名前10的通路
Table 2 The top 10 pathways in the number of differential proteins in KEGG pathway annotation
通路名称 Pathway name | ID | 差异蛋白数量 Number of differential proteins |
---|---|---|
代谢途径Metabolic pathways | ocu01100 | 179 |
糖代谢Carbon metabolism | ocu01200 | 30 |
氧化磷酸化Oxidative phosphorylation | ocu00190 | 29 |
帕金森氏症Parkinson disease | ocu05012 | 29 |
剪切小体Spliceosome | ocu03040 | 26 |
阿兹海默病Alzheimer disease | ocu05010 | 30 |
丙酸代谢Propanoate metabolism | ocu00640 | 12 |
乙氧基化物和二甲酸酯代谢通路Glyoxylate and dicarboxylate metabolism | ocu00630 | 11 |
类固醇生物合成Steroid biosynthesis | ocu00100 | 8 |
丁酸盐代谢通路Butanoate metabolism | ocu00650 | 9 |
图3 差异蛋白质的PPI网格结构图和互作连接度直方图 A,差异蛋白质互作网络图;B,差异蛋白质互作连接度直方图。
Fig.3 Protein-protein interaction networks diagram and connectivity histogram of differential proteins A, Interaction network diagram of differential proteins; B, Connectivity histogram of differential proteins.
图4 成年兔和幼年兔肝、5周龄幼兔肾组织细胞系(RK-13)的差异蛋白表达水平 ALDH1A1,醇脱氢酶;KRT8,角蛋白8;KRT18,角蛋白18;ACAT1,胆固醇酰基转移酶1;SLBP,组蛋白结合蛋白1;HSPA9,热休克蛋白9;Adult,成年兔;Young,幼年兔。*、**、***分别表示在P<0.05、P<0.01和P<0.001水平差异显著。
Fig.4 Differential protein expression levels in livers of adult and young rabbits, and kidney cell lines (RK-13) of 5-week-old rabbits ALDH1A1, Aldehyde dehydrogenase 1A1; KRT8, Keratin 8; KRT18, Keratin 18; ACAT1, Cholesterol acyltransferase 1; SLBP, Histone binding protein 1; HSPA9, Heat shock protein family A member 9; Adult, Adult rabbit; Young, Young rabbit. *, ** and *** meant significa differences at the levels of P<0.05, P<0.01 and P<0.001, respectively.
[1] | LIU S J, XUE H P, PU B Q, et al. A new viral disease in rabbit[J]. Animal Husbandry and Veterinary Medicine, 1984, 16(6): 253-255. |
[2] | LE GALL G, BOILLETOT E, ARNAULD C, et al. Molecular epidemiology of rabbit haemorrhagic disease virus outbreaks in France during 1988 to 1995[J]. Journal of General Virology, 1998, 79(1): 11-16. |
[3] | ALDA F, GAITERO T, SUÁREZ M, et al. Evolutionary history and molecular epidemiology of rabbit haemorrhagic disease virus in the Iberian Peninsula and Western Europe[J]. BMC Evolutionary Biology, 2010, 10(1): 1-10. |
[4] | ABRANTES J, LOPES A M, DALTON K P, et al. New variant of rabbit hemorrhagic disease virus, Portugal, 2012—2013[J]. Emerging Infectious Diseases, 2013, 19(11): 1900-1902. |
[5] | ABRANTES J, LOPES A M, DALTON K P, et al. Detection of RHDVa on the Iberian Peninsula: isolation of an RHDVa strain from a Spanish rabbitry[J]. Archives of Virology, 2014, 159(2): 321-326. |
[6] | WESTCOTT D G, FROSSARD J P, EVEREST D, et al. Incursion of RHDV2-like variant in great Britain[J]. Veterinary Record, 2014, 174(13): 333. |
[7] | VALÍČEK L, ŠMÍD B, RODÁK L, et al. Electron and immunoelectron microscopy of rabbit haemorrhagic disease virus (RHDV)[J]. Archives of Virology, 1990, 112(3/4): 271-275. |
[8] | ZHU J, WANG X X, QI R B, et al. Hemoglobin subunit beta interacts with the capsid, RdRp and VPg proteins, and antagonizes the replication of rabbit hemorrhagic disease virus[J]. Veterinary Microbiology, 2021, 259: 109143. |
[9] | MEYERS G, WIRBLICH C, THIEL H J. Genomic and subgenomic RNAs of rabbit hemorrhagic disease virus are both protein-linked and packaged into particles[J]. Virology, 1991, 184(2): 677-686. |
[10] | DROILLARD C, LEMAITRE E, AMELOT M, et al. Rabbit haemorrhagic disease virus Lagovirus europaeus/GI.1d strain: genome sequencing, in vivo virus replication kinetics, and viral dose effect[J]. BMC Veterinary Research, 2021, 17(1): 257. |
[11] | MORISSE J P, LE GALL G, BOILLETOT E. Hépatites d’origine virale des léporidés: introduction et hypothèses étiologiques[J]. Revue Scientifique et Technique De L’OIE, 1991, 10(2): 269-310. |
[12] | MIKAMI O, PARK J H, KIMURA T, et al. Hepatic lesions in young rabbits experimentally infected with rabbit haemorrhagic disease virus[J]. Research in Veterinary Science, 1999, 66(3): 237-242. |
[13] | PRIETO J M, FERNANDEZ F, ALVAREZ V, et al. Immunohistochemical localisation of rabbit haemorrhagic disease virus VP-60 antigen in early infection of young and adult rabbits[J]. Research in Veterinary Science, 2000, 68(2): 181-187. |
[14] | MARQUES R M, COSTA-E-SILVA A, ÁGUAS A P, et al. Early inflammatory response of young rabbits attending natural resistance to calicivirus (RHDV) infection[J]. Veterinary Immunology and Immunopathology, 2012, 150(3/4): 181-188. |
[15] | MARQUES R M, TEIXEIRA L, ÁGUAS A P, et al. Immunosuppression abrogates resistance of young rabbits to rabbit haemorrhagic disease (RHD)[J]. Veterinary Research, 2014, 45(1): 1-6. |
[16] | NEAVE M, HALL R, HUANG N N, et al. Robust innate immunity of young rabbits mediates resistance to rabbit hemorrhagic disease caused by lagovirus europaeus GI.1 but not GI.2[J]. Viruses, 2018, 10(9): 512. |
[17] | GREGG D A, HOUSE C, BERNINGER M. Viral haemorrhagic disease of rabbits in Mexico: epidemiology and viral characterization[J]. Revue Scientifique et Technique De L’OIE, 1991, 10(2): 435-451. |
[18] | MITRO S, KRAUSS H. Rabbit hemorrhagic disease: a review with special reference to its epizootiology[J]. European Journal of Epidemiology, 1993, 9(1): 70-78. |
[19] | SOLEDAD MARÍN M, MARTÍN ALONSO J, PÉREZ ORDOYO GARCÍA L I, et al. Immunogenic properties of rabbit haemorrhagic disease virus structural protein VP60 expressed by a recombinant baculovirus: an efficient vaccine[J]. Virus Research, 1995, 39(2/3): 119-128. |
[20] | ABRANTES J, DROILLARD C, LOPES A M, et al. Recombination at the emergence of the pathogenic rabbit haemorrhagic disease virus Lagovirus europaeus/GI.2[J]. Scientific Reports, 2020, 10: 14502. |
[21] | MONTI C, ZILOCCHI M, COLUGNAT I, et al. Proteomics turns functional[J]. Journal of Proteomics, 2019, 198: 36-44. |
[22] | ROSS P L, HUANG Y N, MARCHESE J N, et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents[J]. Molecular & Cellular Proteomics: MCP, 2004, 3(12): 1154-1169. |
[23] | YE J Z, WU Y Q, LI M R, et al. Keratin 8 mutations were associated with susceptibility to chronic hepatitis B and related progression[J]. SSRN Electronic Journal, 2020, 221(3):464-473. |
[24] | LINDER M, POGGE VON STRANDMANN E. The role of extracellular HSP70 in the function of tumor-associated immune cells[J]. Cancers, 2021, 13(18): 4721. |
[25] | TROMBETTA E S, MELLMAN I. Cell biology of antigen processing in vitro and in vivo[J]. Annual Review of Immunology, 2005, 23: 975-1028. |
[26] | LIU Q T, HUANG X M, ZHAO D M, et al. Identification of heat shock protein A9 as a Tembusu virus binding protein on DF-1 cells[J]. Virus Research, 2017, 227: 110-114. |
[27] | PECORARO A, PAGANO M, RUSSO G, et al. Ribosome biogenesis and cancer: overview on ribosomal proteins[J]. International Journal of Molecular Sciences, 2021, 22(11): 5496. |
[28] | LI S J, KUANG M, CHEN L Y, et al. The mitochondrial protein ERAL1 suppresses RNA virus infection by facilitating RIG-I-like receptor signaling[J]. Cell Reports, 2021, 34(3): 108631. |
[29] | FEROZ S, MUHAMMAD N, RATNAYAKE J, et al. Keratin-based materials for biomedical applications[J]. Bioactive Materials, 2020, 5(3): 496-509. |
[30] | 李文静, 李健蕊, 黄梦昊, 等. 细胞角蛋白8对丙型肝炎病毒复制的影响[J]. 药学学报, 2016, 51(6): 913-918. |
LI W J, LI J R, HUANG M H, et al. The influence of intracellular keratin 8 on hepatitis C virus replication[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 913-918. (in Chinese with English abstract) | |
[31] | GOUDARZI A. The recent insights into the function of ACAT1: a possible anti-cancer therapeutic target[J]. Life Sciences, 2019, 232: 116592. |
[32] | POKHREL L, KIM Y, NGUYEN T D T, et al. Synthesis and anti-norovirus activity of pyranobenzopyrone compounds[J]. Bioorganic & Medicinal Chemistry Letters, 2012, 22(10): 3480-3484. |
[33] | BRADFORD B R, JIN C Y. Stem-loop binding protein and metal carcinogenesis[J]. Seminars in Cancer Biology, 2021, 76: 38-44. |
[34] | LI M, TUCKER L D, ASARA J M, et al. Stem-loop binding protein is a multifaceted cellular regulator of HIV-1 replication[J]. Journal of Clinical Investigation, 2016, 126(8): 3117-3129. |
[35] | ALBRIGHT E R, MORRISON K, RANGANATHAN P, et al. Human cytomegalovirus lytic infection inhibits replication-dependent histone synthesis and requires stem loop binding protein function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(14): e2122174119. |
[1] | 刘芳芳, 陈红林, 刘峰, 许晓军, 黄福勇, 楼宝, 钱豪杰. 雌雄红螯螯虾染色体核型比较分析[J]. 浙江农业学报, 2023, 35(9): 2079-2089. |
[2] | 熊昕宜, 许泽玉, 何念佳, 何俊博, 陈正礼, 黄超, 刘文涛, 罗启慧. 大豆异黄酮干预肥胖大鼠肝氧化应激及炎症反应[J]. 浙江农业学报, 2022, 34(5): 942-948. |
[3] | 沈卫锋, 郭琦, 刘莉, 牛宝龙, 翁宏飚, 楼宝. 虾肝肠胞虫(Enterocytozoon hepatopenaei)SWP2基因的克隆、表达及其在虾类病害检测中的应用[J]. 浙江农业学报, 2021, 33(6): 993-1000. |
[4] | 杜金梁, 曹丽萍, 贾睿, 顾郑琰, 何勤, 徐跑, JENEYGalina, 马玉忠, 殷国俊. 甘草总黄酮对高脂条件下罗非鱼肝损伤的保护作用[J]. 浙江农业学报, 2021, 33(10): 1826-1835. |
[5] | 朱颍琨, 肖劲邦, 钱柏霖, 姜思汛, 尤留超, 张钺, 刘红, 马莉, 曹随忠, 余树民, 沈留红. 泌乳初期奶牛相关脂肪因子及生理生化指标与脂肪肝的相关性[J]. 浙江农业学报, 2019, 31(5): 722-729. |
[6] | 王承东, 高琪, 李德生, 张和民, 邓林华, 吴虹林, 陈正礼. 一例原发性肝癌大熊猫的病理学观察[J]. 浙江农业学报, 2018, 30(8): 1336-1340. |
[7] | 韩春杨, 杨明川, 杨孜生, 冯伉梨, 刘翠艳. 黄精多糖的提取及其对CCl4致大鼠肝损伤的保护作用[J]. 浙江农业学报, 2018, 30(4): 537-547. |
[8] | 杨宗英, 张一柳, 胡鲲, 杨先乐, 刘力硕, 张凤翔, 蔡红桂. 溴氰菊酯对中华绒螯蟹肝胰腺氧化胁迫效应和组织结构的影响[J]. 浙江农业学报, 2017, 29(8): 1261-1270. |
[9] | 李杨,高祝,荣茜,杨晓敏,张睿,李英伦*. “复方柴芩颗粒”防治鸭黄曲霉毒素B1慢性中毒的作用机理 [J]. 浙江农业学报, 2015, 27(8): 1337-. |
[10] | 刘英娟1,杜金梁2,3,贾睿1,2,曹丽萍2,3,王佳豪1,殷国俊1,2,3,*. 枸杞多糖对四氯化碳致建鲤急性肝损伤的保护作用[J]. 浙江农业学报, 2015, 27(1): 37-. |
[11] | 邓碧华1,王凯民2,卢宇1,张金秋1,吕芳1,何家惠1,侯继波1,*. 一株江苏新型鸭肝炎病毒的鉴定[J]. 浙江农业学报, 2014, 26(6): 1431-. |
[12] | 钱妤;孙存鑫;刘文斌*;李向飞;王丽娜;朱杰. 饲粮生物素水平对团头鲂幼鱼肠道消化酶活性、胴体组成及肝脏抗氧化能力的影响[J]. , 2014, 26(2): 0-309314. |
[13] | 周凡;林玲;何丰;*;丁雪燕;薛辉利;徐勇斌. 恩诺沙星注射对中华鳖肝脏Ⅰ相、Ⅱ相酶活性的影响[J]. , 2013, 25(6): 0-1233. |
[14] | 陈其煌. 高效液相色谱—串联质谱法测定猪肝中可乐定和赛庚啶[J]. , 2013, 25(3): 0-629. |
[15] | 边文杰;徐燕;李少南*;朱国念. 毒死蜱与鱼肝微粒体P450的相互作用[J]. , 2011, 23(4): 0-781. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||