[1] |
SANG Y L, CHENG Z J, ZHANG X S. Plant stem cells and de novo organogenesis[J]. New Phytologist, 2018, 218(4): 1334-1339.
DOI
URL
|
[2] |
IKEUCHI M, FAVERO D S, SAKAMOTO Y, et al. Molecular mechanisms of plant regeneration[J]. Annual Review of Plant Biology, 2019, 70: 377-406.
DOI
PMID
|
[3] |
AFLAKI F, GUTZAT R, MOZGOVÁ I. Chromatin during plant regeneration: opening towards root identity?[J]. Current Opinion in Plant Biology, 2022, 69: 102265.
DOI
URL
|
[4] |
ALTPETER F, SPRINGER N M, BARTLEY L E, et al. Advancing crop transformation in the era of genome editing[J]. The Plant Cell, 2016, 28(7): 1510-1520.
DOI
PMID
|
[5] |
SUGIMOTO K, TEMMAN H, KADOKURA S, et al. To regenerate or not to regenerate: factors that drive plant regeneration[J]. Current Opinion in Plant Biology, 2019, 47: 138-150.
DOI
PMID
|
[6] |
TIE W W, ZHOU F, WANG L, et al. Reasons for lower transformation efficiency in indica rice using Agrobacterium tumefaciens-mediated transformation: lessons from transformation assays and genome-wide expression profiling[J]. Plant Molecular Biology, 2012, 78(1): 1-18.
DOI
URL
|
[7] |
王诗雨, 蒋莹莹, 徐恒, 等. 从水稻再生的研究进展看籼稻遗传转化的未来[J]. 植物生理学报, 2021, 57(11): 2069-2076.
|
|
WANG S Y, JIANG Y Y, XU H, et al. The future of genetic transformation of indica rice: perspectives from the research progress of rice regeneration[J]. Plant Physiology Journal, 2021, 57(11): 2069-2076. (in Chinese with English abstract)
|
[8] |
SKOOG F, MILLER C O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro[J]. Symposia of the Society for Experimental Biology, 1957, 11: 118-130.
PMID
|
[9] |
IKEUCHI M, SUGIMOTO K, IWASE A. Plant callus: mechanisms of induction and repression[J]. The Plant Cell, 2013, 25(9): 3159-3173.
DOI
PMID
|
[10] |
LI Y H, HAN S, QI Y H. Advances in structure and function of auxin response factor in plants[J]. Journal of Integrative Plant Biology, 2023, 65(3): 617-632.
DOI
|
[11] |
FAN M Z, XU C Y, XU K, et al. Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration[J]. Cell Research, 2012, 22(7): 1169-1180.
DOI
|
[12] |
INZÉ D, DE VEYLDER L. Cell cycle regulation in plant development[J]. Annual Review of Genetics, 2006, 40: 77-105.
PMID
|
[13] |
HWANG I, SHEEN J, MÜLLER B. Cytokinin signaling networks[J]. Annual Review of Plant Biology, 2012, 63: 353-380.
DOI
PMID
|
[14] |
RIOU-KHAMLICHI C, HUNTLEY R, JACQMARD A, et al. Cytokinin activation of Arabidopsis cell division through a D-type cyclin[J]. Science, 1999, 283(5407): 1541-1544.
DOI
URL
|
[15] |
SAKAI H, HONMA T, AOYAMA T, et al. ARR1, a transcription factor for genes immediately responsive to cytokinins[J]. Science, 2001, 294(5546): 1519-1521.
PMID
|
[16] |
ZHANG G F, ZHAO F, CHEN L Q, et al. Jasmonate-mediated wound signalling promotes plant regeneration[J]. Nature Plants, 2019, 5(5): 491-497.
DOI
PMID
|
[17] |
IKEUCHI M, RYMEN B, SUGIMOTO K. How do plants transduce wound signals to induce tissue repair and organ regeneration?[J]. Current Opinion in Plant Biology, 2020, 57: 72-77.
DOI
PMID
|
[18] |
ZHOU W K, LOZANO-TORRES J L, BLILOU I, et al. A jasmonate signaling network activates root stem cells and promotes regeneration[J]. Cell, 2019, 177(4): 942-956.e14.
DOI
PMID
|
[19] |
HEYMAN J, COOLS T, VANDENBUSSCHE F, et al. ERF115 controls root quiescent center cell division and stem cell replenishment[J]. Science, 2013, 342(6160): 860-863.
DOI
PMID
|
[20] |
FONSECA S, CHICO J M, SOLANO R. The jasmonate pathway: the ligand, the receptor and the core signalling module[J]. Current Opinion in Plant Biology, 2009, 12(5): 539-547.
DOI
PMID
|
[21] |
CAI Q, YUAN Z, CHEN M J, et al. Jasmonic acid regulates spikelet development in rice[J]. Nature Communications, 2014, 5(1): 1-13.
|
[22] |
UJI Y, TANIGUCHI S, TAMAOKI D, et al. Overexpression of OsMYC2 results in the up-regulation of early JA-rresponsive genes and bacterial blight resistance in rice[J]. Plant & Cell Physiology, 2016, 57(9): 1814-1827.
|
[23] |
KONG Y Z, WANG G, CHEN X, et al. OsPHR2 modulates phosphate starvation-induced OsMYC2 signalling and resistance to Xanthomonas oryzae pv. oryzae[J]. Plant, Cell & Environment, 2021, 44(10): 3432-3444.
|
[24] |
HU J L, HUANG J, XU H S, et al. Rice stripe virus suppresses jasmonic acid-mediated resistance by hijacking brassinosteroid signaling pathway in rice[J]. PLoS Pathogens, 2020, 16(8): e1008801.
DOI
URL
|
[25] |
TAN X X, ZHANG H H, YANG Z H, et al. NF-YA transcription factors suppress jasmonic acid-mediated antiviral defense and facilitate viral infection in rice[J]. PLoS Pathogens, 2022, 18(5): e1010548.
DOI
URL
|
[26] |
QIU J H, XIE J H, CHEN Y, et al. Warm temperature compromises JA-regulated basal resistance to enhance Magnaporthe oryzae infection in rice[J]. Molecular Plant, 2022, 15(4): 723-739.
DOI
URL
|
[27] |
UJI Y, AKIMITSU K, GOMI K. Identification of OsMYC2-regulated senescence-associated genes in rice[J]. Planta, 2017, 245(6): 1241-1246.
DOI
PMID
|
[28] |
SHE K C, KUSANO H, KOIZUMI K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. The Plant Cell, 2010, 22(10): 3280-3294.
DOI
URL
|
[29] |
MATOSEVICH R, COHEN I, GIL-YAROM N, et al. Local auxin biosynthesis is required for root regeneration after wounding[J]. Nature Plants, 2020, 6(8): 1020-1030.
DOI
PMID
|
[30] |
SHARONI A M, NURUZZAMAN M, SATOH K, et al. Gene structures, classification and expression models of the AP2/EREBP transcription factor family in rice[J]. Plant and Cell Physiology, 2011, 52(2): 344-360.
DOI
PMID
|
[31] |
JIN Y, PAN W Y, ZHENG X F, et al. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues[J]. Plant Molecular Biology, 2018, 98(1/2): 51-65.
DOI
|
[32] |
KHANDAY I, SKINNER D, YANG B, et al. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds[J]. Nature, 2019, 565(7737): 91-95.
DOI
|
[33] |
ZUO J R, NIU Q W, FRUGIS G, et al. The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis[J]. The Plant Journal: for Cell and Molecular Biology, 2002, 30(3): 349-359.
DOI
URL
|
[34] |
KONG X P, LU S C, TIAN H Y, et al. WOX5 is shining in the root stem cell niche[J]. Trends in Plant Science, 2015, 20(10): 601-603.
DOI
PMID
|
[35] |
KAWAI T, SHIBATA K, AKAHOSHI R, et al. WUSCHEL-related homeobox family genes in rice control lateral root primordium size[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(1): e2101846119.
|
[36] |
XIA T Y, CHEN H Q, DONG S J, et al. OsWUS promotes tiller bud growth by establishing weak apical dominance in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 104(6): 1635-1647.
DOI
PMID
|
[37] |
LOWE K, WU E, WANG N, et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation[J]. The Plant Cell, 2016, 28(9): 1998-2015.
DOI
URL
|