浙江农业学报 ›› 2024, Vol. 36 ›› Issue (10): 2426-2436.DOI: 10.3969/j.issn.1004-1524.20231343
• 综述 • 上一篇
皮艺萌1,2(), 鲁艳辉2, 吕仲贤2, 许益鹏1,*(
), 徐红星2,*(
)
收稿日期:
2023-11-28
出版日期:
2024-10-25
发布日期:
2024-10-30
作者简介:
皮艺萌(1999—),女,河南洛阳人,硕士研究生,研究方向为粮食作物虫害与杂草防控。E-mail:pym1526@163.com
通讯作者:
*许益鹏,E-mail:xyp@cjlu.edu.cn;徐红星,E-mail:hzxuhongxing@163.com
基金资助:
PI Yimeng1,2(), LU Yanhui2, LYU Zhongxian2, XU Yipeng1,*(
), XU Hongxing2,*(
)
Received:
2023-11-28
Online:
2024-10-25
Published:
2024-10-30
摘要:
杂草、害虫与天敌均是农业生态系统中的重要生物组成部分。目前农田杂草的防控主要依赖于化学除草剂,但长期不合理地使用除草剂严重影响了农田杂草、害虫和天敌三者之间的生态平衡关系。近年来,保护农田杂草的多样性,使其在维持农田生态平衡中发挥重要作用的观念引起人们广泛关注。文章从农田中常见杂草种类及除草剂的使用情况,农田杂草与害虫、天敌的关系,施用除草剂对害虫和天敌的影响,以及农田杂草在生物防治中的应用4个方面综述了农田杂草及除草剂施用对害虫发生与天敌影响的研究进展,旨在更加安全合理地利用农田杂草的生态功能,为天敌的保护与利用提供栖境,为农田害虫的绿色防控提供新思路。
中图分类号:
皮艺萌, 鲁艳辉, 吕仲贤, 许益鹏, 徐红星. 农田杂草在害虫防治中的作用[J]. 浙江农业学报, 2024, 36(10): 2426-2436.
PI Yimeng, LU Yanhui, LYU Zhongxian, XU Yipeng, XU Hongxing. The role of farmland weeds in pest control[J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2426-2436.
HRAC 分组 HRAC group | 传统HRAC分组 Legacy HRAC group | 作用位点 Site of action | 代表性 除草剂 Representive herbicide | 抗除草剂双 子叶植物 Herbicide- resistant dicots | 抗除草剂单 子叶植物 Herbicide- resistant monocots | 总数 Total | |
---|---|---|---|---|---|---|---|
2 | B | 乙酰乳酸合成酶抑制剂 | 氯磺隆Chlorsulfuron | 105 | 67 | 172 | |
Inhibition of acetolactate synthase | |||||||
5 | C1 C2 | 光系统Ⅱ抑制剂PSII inhibitors-serine 264 binders | 绿麦隆Chlorotoluron | 53 | 34 | 87 | |
9 | G | 烯醇式丙酮酸莽草酸磷酸合成酶抑制剂 | 草甘膦Glyphosate | 28 | 30 | 58 | |
Inhibition of enolpyruvyl shikimate phosphate synthase | |||||||
1 | A | 乙酰辅酶A羧化酶抑制剂 | 稀禾定Sethoxydim | 0 | 51 | 51 | |
Inhibition of acetyl CoA carboxylase | |||||||
4 | O | 激素合成Auxin mimics | 2,4-滴 2,4-D | 34 | 8 | 42 | |
22 | D | 光系统I电子传递抑制剂PS I electron diversion | 百草枯Paraquat | 22 | 10 | 32 | |
14 | E | 原卟啉原氧化酶抑制剂 | 乙氧氟草Oxyfluorfen | 11 | 4 | 15 | |
Inhibition of protoporphyrinogen oxidase | |||||||
15 | K3 N | 细胞分裂(极长链脂肪酸)抑制剂 | 丁草锁Butachlor | 2 | 11 | 13 | |
Very long-chain fatty acid synthesis inhibitors | |||||||
3 | K1 | 抑制微管装配Inhibition of microtubule assembly | 氟乐灵Trifluralin | 2 | 10 | 12 | |
34 | F3 | 番茄红素环化酶抑制剂Inhibition of lycopene cyclase | 氨三唑Amitrole | 1 | 5 | 6 | |
10 | H | 谷氨酰胺合成酶抑制剂 | 草铵膦 | 1 | 5 | 6 | |
Inhibition of glutamine synthetase | Glufosinate ammonium | ||||||
6 | C3 | 光系统Ⅱ抑制剂PSII inhibitors-histidine 215 binders | 溴苯腈Bromoxynil | 4 | 1 | 5 | |
12 | F1 | 八氢番茄红素脱氢酶抑制剂 | 吡氟酰草Diflufenican | 4 | 1 | 5 | |
Phytoene desaturase inhibitors | |||||||
27 | F2 | 对-羟苯基丙酮酸双氧化酶抑制剂 | 异噁唑草Isoxaflutole | 4 | 0 | 4 | |
Inhibition of hydroxyphenyl pyruvate dioxygenase | |||||||
29 | L | 纤维素合成抑制剂Inhibition of cellulose synthesis | 敌草腈Dichlobenil | 0 | 4 | 4 | |
13 | F4 | 脱氧木酮糖磷酸合酶抑制剂 | 异噁草酮Clomazone | 0 | 3 | 3 | |
Inhibition of microtubule assembly | |||||||
0 | Z | 抗微管有丝分裂破坏剂 | 草氟安 | 0 | 3 | 3 | |
Antimicrotubule mitotic disrupter | Flamprop-methyl | ||||||
23 | K2 | 微管组织抑制剂Inhibition of microtubule organization | 苯胺灵Propham | 0 | 1 | 1 | |
0 | Z | 核酸抑制剂Nucleic acid inhibitors | 甲基砷酸钠 | 1 | 0 | 1 | |
Sodium methylarsonate | |||||||
0 | Z | 未知靶标Unknown | 桥氧酞钠Endothall | 0 | 1 | 1 | |
0 | Z | 细胞伸长抑制剂Cell elongation inhibitors | 燕麦枯Difenzoquat | 0 | 1 | 1 |
表1 除草剂类型、作用位点及抗除草剂的杂草种类汇总
Table 1 Summary of herbicide, site of action and herbicide-resistant weeds
HRAC 分组 HRAC group | 传统HRAC分组 Legacy HRAC group | 作用位点 Site of action | 代表性 除草剂 Representive herbicide | 抗除草剂双 子叶植物 Herbicide- resistant dicots | 抗除草剂单 子叶植物 Herbicide- resistant monocots | 总数 Total | |
---|---|---|---|---|---|---|---|
2 | B | 乙酰乳酸合成酶抑制剂 | 氯磺隆Chlorsulfuron | 105 | 67 | 172 | |
Inhibition of acetolactate synthase | |||||||
5 | C1 C2 | 光系统Ⅱ抑制剂PSII inhibitors-serine 264 binders | 绿麦隆Chlorotoluron | 53 | 34 | 87 | |
9 | G | 烯醇式丙酮酸莽草酸磷酸合成酶抑制剂 | 草甘膦Glyphosate | 28 | 30 | 58 | |
Inhibition of enolpyruvyl shikimate phosphate synthase | |||||||
1 | A | 乙酰辅酶A羧化酶抑制剂 | 稀禾定Sethoxydim | 0 | 51 | 51 | |
Inhibition of acetyl CoA carboxylase | |||||||
4 | O | 激素合成Auxin mimics | 2,4-滴 2,4-D | 34 | 8 | 42 | |
22 | D | 光系统I电子传递抑制剂PS I electron diversion | 百草枯Paraquat | 22 | 10 | 32 | |
14 | E | 原卟啉原氧化酶抑制剂 | 乙氧氟草Oxyfluorfen | 11 | 4 | 15 | |
Inhibition of protoporphyrinogen oxidase | |||||||
15 | K3 N | 细胞分裂(极长链脂肪酸)抑制剂 | 丁草锁Butachlor | 2 | 11 | 13 | |
Very long-chain fatty acid synthesis inhibitors | |||||||
3 | K1 | 抑制微管装配Inhibition of microtubule assembly | 氟乐灵Trifluralin | 2 | 10 | 12 | |
34 | F3 | 番茄红素环化酶抑制剂Inhibition of lycopene cyclase | 氨三唑Amitrole | 1 | 5 | 6 | |
10 | H | 谷氨酰胺合成酶抑制剂 | 草铵膦 | 1 | 5 | 6 | |
Inhibition of glutamine synthetase | Glufosinate ammonium | ||||||
6 | C3 | 光系统Ⅱ抑制剂PSII inhibitors-histidine 215 binders | 溴苯腈Bromoxynil | 4 | 1 | 5 | |
12 | F1 | 八氢番茄红素脱氢酶抑制剂 | 吡氟酰草Diflufenican | 4 | 1 | 5 | |
Phytoene desaturase inhibitors | |||||||
27 | F2 | 对-羟苯基丙酮酸双氧化酶抑制剂 | 异噁唑草Isoxaflutole | 4 | 0 | 4 | |
Inhibition of hydroxyphenyl pyruvate dioxygenase | |||||||
29 | L | 纤维素合成抑制剂Inhibition of cellulose synthesis | 敌草腈Dichlobenil | 0 | 4 | 4 | |
13 | F4 | 脱氧木酮糖磷酸合酶抑制剂 | 异噁草酮Clomazone | 0 | 3 | 3 | |
Inhibition of microtubule assembly | |||||||
0 | Z | 抗微管有丝分裂破坏剂 | 草氟安 | 0 | 3 | 3 | |
Antimicrotubule mitotic disrupter | Flamprop-methyl | ||||||
23 | K2 | 微管组织抑制剂Inhibition of microtubule organization | 苯胺灵Propham | 0 | 1 | 1 | |
0 | Z | 核酸抑制剂Nucleic acid inhibitors | 甲基砷酸钠 | 1 | 0 | 1 | |
Sodium methylarsonate | |||||||
0 | Z | 未知靶标Unknown | 桥氧酞钠Endothall | 0 | 1 | 1 | |
0 | Z | 细胞伸长抑制剂Cell elongation inhibitors | 燕麦枯Difenzoquat | 0 | 1 | 1 |
[1] | 何水华, 刘伟, 王怡, 等. 水稻绿色生产技术研究进展[J]. 中国种业, 2023(6): 25-26. |
HE S H, LIU W, WANG Y, et al. Research progress in green production technology of rice[J]. China Seed Industry, 2023(6): 25-26. (in Chinese with English abstract) | |
[2] | 严如玉, 甘国渝, 赵希梅, 等. 我国水稻优势产区生产格局及施肥现状研究[J]. 中国稻米, 2023, 29(3): 1-8. |
YAN R Y, GAN G Y, ZHAO X M, et al. Study on the production pattern and fertilization status of rice dominant production areas in China[J]. China Rice, 2023, 29(3): 1-8. (in Chinese with English abstract) | |
[3] | SEGRE H, SEGOLI M, CARMEL Y, et al. Experimental evidence of multiple ecosystem services and disservices provided by ecological intensification in Mediterranean agro-ecosystems[J]. Journal of Applied Ecology, 2020, 57(10): 2041-2053. |
[4] | FINKE D L, SNYDER W E. Conserving the benefits of predator biodiversity[J]. Biological Conservation, 2010, 143(10): 2260-2269. |
[5] | GAINES T A, DUKE S O, MORRAN S, et al. Mechanisms of evolved herbicide resistance[J]. The Journal of Biological Chemistry, 2020, 295(30): 10307-10330. |
[6] | 强胜. 我国杂草学研究现状及其发展策略[J]. 植物保护, 2010, 36(4): 1-5. |
QIANG S. Current status and development strategy for weed science in China[J]. Plant Protection, 2010, 36(4): 1-5. (in Chinese with English abstract) | |
[7] | 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84. |
LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years[J]. Plant Protection, 2018, 44(5): 77-84. (in Chinese with English abstract) | |
[8] | 李涛, 袁国徽, 钱振官, 等. 浙沪小麦田杂草调查及优势杂草化学防除技术研究[J]. 植物保护, 2022, 48(3): 321-328. |
LI T, YUAN G H, QIAN Z G, et al. Weed occurrence and chemical control techniques of major weeds in wheat fields in Zhejiang and Shanghai[J]. Plant Protection, 2022, 48(3): 321-328. (in Chinese with English abstract) | |
[9] | 马小艳, 马艳, 彭军, 等. 我国棉田杂草研究现状与发展趋势[J]. 棉花学报, 2010, 22(4): 372-380. |
MA X Y, MA Y, PENG J, et al. Current situation and developing tendency of the weed researches in cotton field of China[J]. Cotton Science, 2010, 22(4): 372-380. (in Chinese with English abstract) | |
[10] | COLBACH N, GARDARIN A, MOREAU D. The response of weed and crop species to shading: which parameters explain weed impacts on crop production?[J]. Field Crops Research, 2019, 238: 45-55. |
[11] | 冉海燕, 黄兴成, 兰献敏, 等. 长期不同施肥处理对黄壤性水稻田杂草生物多样性的影响[J]. 杂草学报, 2022, 40(4): 7-14. |
RAN H Y, HUANG X C, LAN X M, et al. Effect of different long-term fertilization treatments on the biodiversity of weeds in yellow soil rice fields[J]. Journal of Weed Science, 2022, 40(4): 7-14. (in Chinese with English abstract) | |
[12] | 饶镭, 邹子玉, 刘浪, 等. 50%双环磺草酮悬浮剂及其混剂对移栽稻田杂草的防效和安全性[J]. 植物保护, 2022, 48(3): 312-320. |
RAO L, ZOU Z Y, LIU L, et al. The control effect and safety of benzobicyclon 50% SC and its mixture on the weeds in transplanted rice fields[J]. Plant Protection, 2022, 48(3): 312-320. (in Chinese with English abstract) | |
[13] | YU F H, JIN Z Y, GUO S E, et al. Research on weed identification method in rice fields based on UAV remote sensing[J]. Frontiers in Plant Science, 2022, 13: 1037760. |
[14] | MISHRA J S, KUMAR R, MONDAL S, et al. Tillage and crop establishment effects on weeds and productivity of a rice-wheat-mungbean rotation[J]. Field Crops Research, 2022, 284: 108577. |
[15] | DONG F, LI Y P, CHEN X Y, et al. Analysis of the Fusarium graminearum species complex from gramineous weeds near wheat fields in Jiangsu Province, China[J]. Plant Disease, 2021, 105(10): 3269-3275. |
[16] | KHAN A M, MOBLI A, WERTH J A, et al. Germination and seed persistence of Amaranthus retroflexus and Amaranthus viridis: two emerging weeds in Australian cotton and other summer crops[J]. PLoS One, 2022, 17(2): e0263798. |
[17] | HEYDARI A, AHMADI A, SARKARI S, et al. Study of the role of common weeds in survival of Verticillium dahliae the causal agent of cotton wilt disease[J]. Pakistan Journal of Biological Sciences, 2007, 10(21): 3910-3914. |
[18] | FERRERO R, LIMA M, DAVIS A S, et al. Weed diversity affects soybean and maize yield in a long term experiment in Michigan, USA[J]. Frontiers in Plant Science, 2017, 8: 236. |
[19] | HAQ S M, LONE F A, KUMAR M, et al. Phenology and diversity of weeds in the agriculture and horticulture cropping systems of Indian western Himalayas: understanding implications for agro-ecosystems[J]. Plants, 2023, 12(6): 1222. |
[20] | 张泽溥. 我国农田杂草治理技术的发展[J]. 植物保护, 2004, 30(2): 28-33. |
ZHANG Z P. Advances in cropland weed management in China[J]. Plant Protection, 2004, 30(2): 28-33. (in Chinese with English abstract) | |
[21] | CASSIDY R, JORDAN P, FARROW L, et al. Reducing MCPA herbicide pollution at catchment scale using an agri-environmental scheme[J]. The Science of the Total Environment, 2022, 838(Pt 2): 156080. |
[22] | TAKANO H K, DAYAN F E. Glufosinate-ammonium: a review of the current state of knowledge[J]. Pest Management Science, 2020, 76(12): 3911-3925. |
[23] | HURT S S, SMITH J M, HAYES A W. Nitrofen: a review and perspective[J]. Toxicology, 1983, 29(1/2): 1-37. |
[24] | 石晓旭, 陈亦, 黄嵘. 我国化学除草剂使用现状及对策[J]. 现代农业科技, 2016(19): 133-134. |
SHI X X, CHEN Y, HUANG R. Present situation and countermeasures of chemical herbicides in China[J]. Modern Agricultural Science and Technology, 2016(19): 133-134. (in Chinese) | |
[25] | HEAP I M. The international herbicide-resistant weed database[EB/OL]. (2023-10-01) [2023-10-01]. http://www.weedscience.org/. |
[26] | CASTILLO CARRILLO C I, FU Z, JENSEN A S, et al. Arthropod pests and predators associated with bittersweet nightshade, a noncrop host of the potato psyllid (Hemiptera: Triozidae)[J]. Environmental Entomology, 2016, 45(4): 873-882. |
[27] | 鲍安, 杨心怡, 苏宏华, 等. Hap1型棉蚜在5种春季杂草上的生长发育情况[J]. 植物保护, 2023, 49(1): 187-192. |
BAO A, YANG X Y, SU H H, et al. Growth and development of Hap1 type Aphis gossypii on five spring weeds[J]. Plant Protection, 2023, 49(1): 187-192. (in Chinese with English abstract) | |
[28] | BABU A R, REISIG D D, WALGENBACH J F, et al. Influence of weed manipulation in field borders on brown stink bug (Hemiptera: Pentatomidae) densities and damage in field corn[J]. Environmental Entomology, 2019, 48(2): 444-453. |
[29] | 程兆榜, 何敦春, 陈全战, 等. 单季稻小麦轮作区灰飞虱发生规律[J]. 应用昆虫学报, 2013, 50(3): 706-717. |
CHENG Z B, HE D C, CHEN Q Z, et al. Factors affecting the occurrence of Laodelphax striatellus in a single rice-wheat rotation[J]. Chinese Journal of Applied Entomology, 2013, 50(3): 706-717. (in Chinese with English abstract) | |
[30] | 王柳风, 傅淑, 肖亮, 等. 南昌地区灰飞虱的生活史、繁殖和越冬生物学特性[J]. 昆虫学报, 2013, 56(12): 1430-1439. |
WANG L F, FU S, XIAO L, et al. Life history, reproduction and overwintering biology of the small brown planthopper, Laodelphax striatellus(Hemiptera: Delphacidae), in Nanchang, Jiangxi, East China[J]. Acta Entomologica Sinica, 2013, 56(12): 1430-1439. (in Chinese with English abstract) | |
[31] | ATAPOUR M, MOHARRAMIPOUR S. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis(Lepidoptera: Pyralidae)[J]. Environmental Entomology, 2009, 38(1): 260-265. |
[32] | 张云慧, 张智, 刘杰, 等. 草地贪夜蛾对田间禾本科杂草的产卵和取食选择性[J]. 植物保护, 2021, 47(1): 117-122. |
ZHANG Y H, ZHANG Z, LIU J, et al. Oviposition and feeding preference of Spodoptera frugiperda to gramineous weeds[J]. Plant Protection, 2021, 47(1): 117-122. (in Chinese with English abstract) | |
[33] | 房敏, 姚领, 唐庆峰, 等. 草地贪夜蛾对主要杂草的取食适应性[J]. 植物保护学报, 2020, 47(5): 1055-1061. |
FANG M, YAO L, TANG Q F, et al. Feeding adaptability of fall armyworm Spodoptera frugiperda to several weeds[J]. Journal of Plant Protection, 2020, 47(5): 1055-1061. (in Chinese with English abstract) | |
[34] | 苏湘宁, 李传瑛, 许益镌, 等. 草地贪夜蛾对5种寄主植物和6种杂草的取食选择性和适应性[J]. 环境昆虫学报, 2022, 44(2): 263-272. |
SU X N, LI C Y, XU Y J, et al. Feeding preference and adaptability of fall armyworm Spodoptera frugiperda on five species of host plants and six weeds[J]. Journal of Environmental Entomology, 2022, 44(2): 263-272. (in Chinese with English abstract) | |
[35] | PÁEZ JEREZ P G, HILL J G, PEREIRA E J G, et al. The role of genetically engineered soybean and Amaranthus weeds on biological and reproductive parameters of Spodoptera cosmioides(Lepidoptera: Noctuidae)[J]. Pest Management Science, 2022, 78(6): 2502-2511. |
[36] | CARTER-WIENTJES C H, RUSSIN J S, BOETHEL D J, et al. Feeding and maturation by soybean looper (Lepidoptera: Noctuidae) larvae on soybean affected by weed, fungus, and nematode pests[J]. Journal of Economic Entomology, 2004, 97(1): 14-20. |
[37] | 李传明, 韩光杰, 杨亚军, 等. 稻纵卷叶螟对不同植物的产卵趋性与取食选择[J]. 中国水稻科学, 2017, 31(3): 315-319. |
LI C M, HAN G J, YANG Y J, et al. Oviposition and feeding preference of Cnaphalocrocis medinalis (Guenée) for four different plants[J]. Chinese Journal of Rice Science, 2017, 31(3): 315-319. (in Chinese with English abstract) | |
[38] | 郑许松, 田俊策, 杨亚军, 等. 禾本科杂草作为防治稻纵卷叶螟的功能性植物的可行性[J]. 中国农业科学, 2017, 50(21): 4129-4137. |
ZHENG X S, TIAN J C, YANG Y J, et al. The feasibility of using graminaceous weeds as a functional plant for controlling rice leaffolder(Cnaphalocrocis medinalis)[J]. Scientia Agricultura Sinica, 2017, 50(21): 4129-4137. (in Chinese with English abstract) | |
[39] | RAINIO M J, MARGUS A, TIKKA S, et al. The effects of short-term glyphosate-based herbicide exposure on insect gene expression profiles[J]. Journal of Insect Physiology, 2023, 146: 104503. |
[40] | AHN Y J, KIM Y J, YOO J K. Toxicity of the herbicide glufosinate-ammonium to predatory insects and mites of Tetranychus urticae(Acari: Tetranychidae) under laboratory conditions[J]. Journal of Economic Entomology, 2001, 94(1): 157-161. |
[41] | KJAER C, HEIMBACH U. Relationships between sulfonylurea herbicide treatment of host plants and the performance of herbivorous insects[J]. Pest Management Science, 2001, 57(12): 1161-1166. |
[42] | OKA I N, PIMENTEL D. Herbicide (2, 4-d) increases insect and pathogen pests on corn[J]. Science, 1976, 193(4249): 239-240. |
[43] | XIN Z J, YU Z N, ERB M, et al. The broad-leaf herbicide 2, 4-dichlorophenoxyacetic acid turns rice into a living trap for a major insect pest and a parasitic wasp[J]. The New Phytologist, 2012, 194(2): 498-510. |
[44] | 黄芊, 凌炎, 蒋显斌, 等. 转Bar基因水稻及草铵膦对褐飞虱取食和产卵行为的影响[J]. 南方农业学报, 2013, 44(7): 1110-1114. |
HUANG Q, LING Y, JIANG X B, et al. Impacts of transgenic rice with Bar gene and glufosinate on feeding and oviposition behavior of brown planthopper, Nilaparvata lugens(Stl)[J]. Journal of Southern Agriculture, 2013, 44(7): 1110-1114. (in Chinese with English abstract) | |
[45] | HICKS H L, COMONT D, COUTTS S R, et al. The factors driving evolved herbicide resistance at a national scale[J]. Nature Ecology & Evolution, 2018, 2(3): 529-536. |
[46] | LEITE N A, REDAELLI L R, DE ASSIS L S, et al. The role of glyphosate-resistant weeds and starvation on biological, reproductive, and preference parameters of Chrysodeixis includens(Lepidoptera: Noctuidae)[J]. Bulletin of Entomological Research, 2023, 113(2): 220-229. |
[47] | SUN Z X, WANG R M, DU Y F, et al. Olfactory perception of herbicide butachlor by GOBP2 elicits ecdysone biosynthesis and detoxification enzyme responsible for chlorpyrifos tolerance in Spodoptera litura[J]. Environmental Pollution, 2021, 285: 117409. |
[48] | SUN Z X, XU C C, CHEN S, et al. Exposure to herbicides prime P450-mediated detoxification of Helicoverpa armigera against insecticide and fungal toxin[J]. Insects, 2019, 10(1): 28. |
[49] | ALBAJES R, LUMBIERRES B, PONS X. Responsiveness of arthropod herbivores and their natural enemies to modified weed management in corn[J]. Environmental Entomology, 2009, 38(3): 944-954. |
[50] | 杜一新, 雷沈英, 梁碧元. 稻田周边杂草的防除方法和作物布局对捕食性天敌发生的影响[J]. 中国植保导刊, 2004, 24(3): 27-28. |
DU Y X, LEI S Y, LIANG B Y. Effects of weed control methods and crop layout on the occurrence of predatory natural enemies around rice fields[J]. China Plant Protection, 2004, 24(3): 27-28. (in Chinese) | |
[51] | 万年峰, 季香云, 蒋杰贤, 等. 田埂留草控制稻飞虱效果及对捕食性天敌多样性影响[J]. 应用昆虫学报, 2012, 49(6): 1604-1609. |
WAN N F, JI X Y, JIANG J X, et al. Effect of retaining grass on rice field ridges on rice planthoppers and the diversity of natural enemies of rice pests in rice fields[J]. Chinese Journal of Applied Entomology, 2012, 49(6): 1604-1609. (in Chinese with English abstract) | |
[52] | 罗延亮, 李雪玲, 李辉, 等. 苦豆子条带对棉田捕食性天敌发生的影响[J]. 新疆农业科学, 2019, 56(1): 74-83. |
LUO Y L, LI X L, LI H, et al. Effects of Sophora strips on the population occurrence of predators in cotton fields[J]. Xinjiang Agricultural Sciences, 2019, 56(1): 74-83. (in Chinese with English abstract) | |
[53] | DIVELY G P, LESLIE A W, HOOKS C R R. Evaluating wildflowers for use in conservation grass buffers to augment natural enemies in neighboring cornfields[J]. Ecological Engineering, 2020, 144: 105703. |
[54] | ALBERT L, FRANCK P, GILLES Y, et al. Impact of agroecological infrastructures on the dynamics of Dysaphis plantaginea(Hemiptera: Aphididae) and its natural enemies in apple orchards in northwestern France[J]. Environmental Entomology, 2017, 46(3): 528-537. |
[55] | MADDEN M K, WIDICK I V, BLUBAUGH C K. Weeds impose unique outcomes for pests, natural enemies, and yield in two vegetable crops[J]. Environmental Entomology, 2021, 50(2): 330-336. |
[56] | SÁNCHEZ-BAYO F. Indirect effect of pesticides on insects and other arthropods[J]. Toxics, 2021, 9(8): 177. |
[57] | GABRIELLA M, TAMAR K, IDAN S, et al. Effect of weed management on the parasitoid community in Mediterranean vineyards[J]. Biology, 2020, 10(1): 7. |
[58] | 魏杰, 陈蓓蓓, 王波娜, 等. 6种除草剂对七星瓢虫的急性毒性与风险评价[J]. 生物化工, 2020, 6(5): 25-28. |
WEI J, CHEN B B, WANG B N, et al. The acute toxicity and risk assessment of six herbicides to Coccinella septempunctata[J]. Biological Chemical Engineering, 2020, 6(5): 25-28. (in Chinese with English abstract) | |
[59] | SCHMIDT-JEFFRIS R A, CUTULLE M A. Non-target effects of herbicides on Tetranychus urticae and its predator, Phytoseiulus persimilis: implications for biological control[J]. Pest Management Science, 2019, 75(12): 3226-3234. |
[60] | BERGERON P, SCHMIDT-JEFFRIS R. Herbicides harm key orchard predatory mites[J]. Insects, 2023, 14(5): 480. |
[61] | REIS T C, SOARES M A, SANTOS J B D, et al. Atrazine and nicosulfuron affect the reproductive fitness of the predator Podisus nigrispinus(Hemiptera: Pentatomidae)[J]. Anais Da Academia Brasileira De Ciencias, 2018, 90(4): 3625-3633. |
[62] | LACAVA M, GARCÍA L F, VIERA C, et al. The pest-specific effects of glyphosate on functional response of a wolf spider[J]. Chemosphere, 2021, 262: 127785. |
[63] | SCHMIDT-JEFFRIS R A, MORETTI E A, BERGERON P E, et al. Nontarget impacts of herbicides on spiders in orchards[J]. Journal of Economic Entomology, 2022, 115(1): 65-73. |
[64] | BEHREND J E, RYPSTRA A L. Contact with a glyphosate-based herbicide has long-term effects on the activity and foraging of an agrobiont wolf spider[J]. Chemosphere, 2018, 194: 714-721. |
[65] | GURR G M, WRATTEN S D, LANDIS D A, et al. Habitat management to suppress pest populations: progress and prospects[J]. Annual Review of Entomology, 2017, 62: 91-109. |
[66] | ARDANUY A, FIGUERAS M, MATAS M, et al. Banker plants and landscape composition influence colonisation precocity of tomato greenhouses by mirid predators[J]. Journal of Pest Science, 2022, 95(1): 447-459. |
[67] | 李姝, 王杰, 黄宁兴, 等. 捕食性天敌储蓄植物系统研究进展与展望[J]. 中国农业科学, 2020, 53(19): 3975-3987. |
LI S, WANG J, HUANG N X, et al. Research progress and prospect on banker plant systems of predators for biological control[J]. Scientia Agricultura Sinica, 2020, 53(19): 3975-3987. (in Chinese with English abstract) | |
[68] | HUANG N X, ENKEGAARD A, OSBORNE L S, et al. The banker plant method in biological control[J]. Critical Reviews in Plant Sciences, 2011, 30(3): 259-278. |
[69] | ZHANG R F, JI D Z, ZHANG Q Q, et al. Evaluation of eleven plant species as potential banker plants to support predatory Orius sauteri in tea plant systems[J]. Insects, 2021, 12(2): 162. |
[70] | SANCHEZ J A, GILLESPIE D R, MCGREGOR R R. The effects of mullein plants (Verbascum Thapsus) On The Population Dynamics Of Dicyphus Hesperus(Heteroptera: Miridae) in tomato greenhouses[J]. Biological Control, 2003, 28(3): 313-319. |
[71] | BIONDI A, ZAPPALÀ L, DI MAURO A, et al. Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis?[J]. BioControl, 2016, 61(1): 79-90. |
[72] | RATTANAPUN W. Banker plant system using Hysteroneura setariae(Thomas) (Hemiptera: Aphididae) as a non-pest prey to build up the lady beetle populations[J]. Journal of Asia-Pacific Entomology, 2017, 20(2): 437-440. |
[73] | 郑许松, 田俊策, 钟列权, 等. “秕谷草-伪褐飞虱-中华淡翅盲蝽” 载体植物系统的可行性[J]. 应用生态学报, 2017, 28(3): 941-946. |
ZHENG X S, TIAN J C, ZHONG L Q, et al. A banker plant system of ‘Leesia sayanuka-Nlilaparvata muiri-Tytthus chinensis’ to control rice planthoppers[J]. Chinese Journal of Applied Ecology, 2017, 28(3): 941-946. (in Chinese with English abstract) | |
[74] | PAROLIN P, BRESCH C, DESNEUX N, et al. Secondary plants used in biological control: a review[J]. International Journal of Pest Management, 2012, 58(2): 91-100. |
[75] | GURR G M, LIU J, READ D M Y, et al. Parasitoids of Asian rice planthopper (Hemiptera: Delphacidae) pests and prospects for enhancing biological control by ecological engineering[J]. Annals of Applied Biology, 2011, 158(2): 149-176. |
[76] | RUSSELL M. A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species[J]. Biological Control, 2015, 82: 96-103. |
[77] | NAFZIGER T D Jr, FADAMIRO H Y. Suitability of some farmscaping plants as nectar sources for the parasitoid wasp, Microplitis croceipes(Hymenoptera: Braconidae): effects on longevity and body nutrients[J]. Biological Control, 2011, 56(3): 225-229. |
[78] | CHEN Y T, MAO J, REYNOLDS O L, et al. Alyssum(Lobularia maritima) selectively attracts and enhances the performance of Cotesia vestalis, a parasitoid of Plutella xylostella[J]. Scientific Reports, 2020, 10(1): 6447. |
[79] | LU J H, LIU S S, SHELTON A M. Laboratory evaluations of a wild crucifer Barbarea vulgaris as a management tool for the diamondback moth Plutella xylostella(Lepidoptera: Plutellidae)[J]. Bulletin of Entomological Research, 2004, 94(6): 509-516. |
[80] | 吕建华, 刘树生. 诱虫作物在害虫治理中的应用[J]. 植物保护, 2008, 34(2): 1-6. |
LYU J H, LIU S S. Advances in application of trap cropping to IPM[J]. Plant Protection, 2008, 34(2): 1-6. (in Chinese with English abstract) | |
[81] | 林克剑, 吴孔明, 张永军, 等. 利用诱集寄主苘麻防治B型烟粉虱的研究[J]. 中国农业科学, 2006, 39(7): 1379-1386. |
LIN K J, WU K M, ZHANG Y J, et al. Evaluation of piemarker Abutilon theophrasti medic as a trap plant in the integrated management of Bemisia tabaci(biotype B) in cotton and soybean crops[J]. Scientia Agricultura Sinica, 2006, 39(7): 1379-1386. (in Chinese with English abstract) | |
[82] | KHAN Z R, CHILISWA P, AMPONG-NYARKO K, et al. Utilisation of wild gramineous plants for management of cereal stemborers in Africa[J]. International Journal of Tropical Insect Science, 1997, 17(1): 143-150. |
[83] | 鲁艳辉, 高广春, 郑许松, 等. 诱集植物香根草对二化螟幼虫致死的作用机制[J]. 中国农业科学, 2017, 50(3): 486-495. |
LU Y H, GAO G C, ZHENG X S, et al. The lethal mechanism of trap plant Vetiveria zizanioides against the larvae of Chilo suppressalis[J]. Scientia Agricultura Sinica, 2017, 50(3): 486-495. (in Chinese with English abstract) | |
[84] | 鲁艳辉, 郑许松, 吕仲贤. 水稻螟虫诱杀植物香根草的发现与应用[J]. 应用昆虫学报, 2018, 55(6): 1111-1117. |
LU Y H, ZHENG X S, LYU Z X. The potential of vetiver grass as a biological control for the rice stem borers Chilo suppressalis and Sesamia inferens[J]. Chinese Journal of Applied Entomology, 2018, 55(6): 1111-1117. (in Chinese with English abstract) |
[1] | 黄乾龙, 王楚桃, 何永歆, 欧阳杰, 朱子超, 管玉圣, 蒋刚, 熊英, 李贤勇. 直播方式对重庆地区稻田杂草群落组成和生态位的影响[J]. 浙江农业学报, 2024, 36(2): 383-390. |
[2] | 廖平强, 陈国奇, 刘光明, 蒋岩, 赵灿, 王维领, 霍中洋. 不同密度异型莎草和水苋菜对水稻产量及稻米加工、外观品质的影响[J]. 浙江农业学报, 2022, 34(11): 2348-2357. |
[3] | 朱海霞,马永强,程亮,郭青云*. 极细链格孢菌HZ\|1对阔叶杂草的致病性及对作物的安全性评价[J]. 浙江农业学报, 2016, 28(6): 1037-. |
[4] | 王华弟;朱金良;俞晓平;杨廉伟;汪恩国;张国鸣;王国迪 . 农田杂草灰飞虱的空间格局与抽样技术[J]. , 2007, 19(4): 0-296. |
[5] | 邱光;吴建荣;娄远来;朱更新;沈素文;李建伟;杨培 . 速除防除直播稻田杂草的应用技术研究[J]. , 2006, 18(5): 0-391. |
[6] | 李妙寿;金飞燕;孙乐平;李忠豪. 温州农区水稻旱育秧田杂草发生与防除研究[J]. , 2001, 13(06): 0-364. |
[7] | 吴长兴;王强;赵学平;戴芬;楼晓明 . 杭州市草坪杂草调查初报[J]. , 2000, 12(06): 0-362. |
[8] | 李妙寿;金飞燕. 温州农区早稻抛秧田的杂草发生特点与化学除草技术研究[J]. , 2000, 12(06): 0-356. |
[9] | 周小军;何锦豪;马赵江. 韩乐天防除水稻直播田杂草试验[J]. , 2000, 12(06): 0-351. |
[10] | 赵学平;王强;吴长兴;戴芬;吴俐勤;徐浩;张人君. 拜田净防除稻田杂草应用技术研究[J]. , 2000, 12(06): 0-348. |
[11] | 王强;赵学平;吴长兴;戴芬;吴俐勤;徐浩;张人君;蔡国梁;翁雄壮 . 农美利防除水稻直播田杂草的应用技术研究[J]. , 2000, 12(06): 0-344. |
[12] | 何锦豪;周小军;孙裕建;马赵江;包焕正. 金华农区早稻直播田杂草的发生及防除[J]. , 2000, 12(06): 0-334. |
[13] | 张人君;何锦豪;郑晋元;李妙寿;茅富亭;陈传权;魏福香. 浙江省麦田和油菜田杂草发生种类及危害[J]. , 2000, 12(06): 0-316. |
[14] | 李妙寿;蔡鼎华;元茂瑶;孙乐平;李忠豪. 温州农区稻田杂草群落及其演替[J]. , 2000, 12(06): 0-330. |
[15] | 王强;何锦豪;李妙寿;戴余有;施德;叶贵标. 浙江省水稻田杂草发生种类及危害[J]. , 2000, 12(06): 0-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||