浙江农业学报 ›› 2024, Vol. 36 ›› Issue (3): 690-703.DOI: 10.3969/j.issn.1004-1524.20231066
陈尚昱1(), 宋雪薇1, 齐振宇2, 周艳虹1, 喻景权1, 夏晓剑1,*()
收稿日期:
2023-09-05
出版日期:
2024-03-25
发布日期:
2024-04-09
作者简介:
陈尚昱(1998—),男,江苏盐城人,学士,研究方向为蔬菜生长发育调控。E-mail:12116062@zju.edu.cn
通讯作者:
*夏晓剑,E-mail:基金资助:
CHEN Shangyu1(), SONG Xuewei1, QI Zhenyu2, ZHOU Yanhong1, YU Jingquan1, XIA Xiaojian1,*()
Received:
2023-09-05
Online:
2024-03-25
Published:
2024-04-09
摘要:
植株形态的多样性有利于植物适应环境,而侧枝发育是株型的决定因素之一。侧枝发育与产品器官形成密切相关,也会影响光合产物的分配,以及产量和品质。侧枝的形成包括腋生分生组织起始、侧芽的活化和侧芽持续生长等不同阶段。这些过程受到遗传、激素、代谢和环境等方面的共同调控。文章总结了腋生分生组织形成及侧芽活化过程中的关键转录因子及其作用机制,不同植物激素的功能、信号途径和相互作用,以及糖信号和光环境如何通过激素信号网络调控侧枝发育,并对生物钟和表观遗传修饰在侧枝发育中的作用,以及利用基因编辑和环境控制等调控作物株型进行了展望。
中图分类号:
陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703.
CHEN Shangyu, SONG Xuewei, QI Zhenyu, ZHOU Yanhong, YU Jingquan, XIA Xiaojian. The genetic basis of plant shoot branching and the hormonal, metabolic and environmental regulation[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 690-703.
[1] | 王冰, 李家洋, 王永红. 生长素调控植物株型形成的研究进展[J]. 植物学通报, 2006, 41(5): 443-458. |
WANG B, LI J Y, WANG Y H. Advances in understanding the roles of auxin involved in modulating plant architecture[J]. Chinese Bulletin of Botany, 2006, 41(5): 443-458. (in Chinese with English abstract) | |
[2] | WANG B, SMITH S M, LI J Y. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. |
[3] | CHANG T G, ZHAO H L, WANG N, et al. A three-dimensional canopy photosynthesis model in rice with a complete description of the canopy architecture, leaf physiology, and mechanical properties[J]. Journal of Experimental Botany, 2019, 70(9): 2479-2490. |
[4] | GUO W, CHEN L M, HERRERA-ESTRELLA L, et al. Altering plant architecture to improve performance and resistance[J]. Trends in Plant Science, 2020, 25(11): 1154-1170. |
[5] | XIAO F, LI W W, XIAO M H, et al. A novel light interception trait of a hybrid rice ideotype indicative of leaf to panicle ratio[J]. Field Crops Research, 2021, 274: 108338. |
[6] | DONALD C M. The breeding of crop ideotypes[J]. Euphytica, 1968, 17(3): 385-403. |
[7] | PENG J R, RICHARDS D E, HARTLEY N M, et al. ‘Green revolution’ genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400: 256-261. |
[8] | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al. A mutant gibberellin-synthesis gene in rice[J]. Nature, 2002, 416(6882): 701-702. |
[9] | HEDDEN P. The genes of the Green Revolution[J]. Trends in Genetics: TIG, 2003, 19(1): 5-9. |
[10] | WANG Y H, LI J Y. Branching in rice[J]. Current Opinion in Plant Biology, 2011, 14(1): 94-99. |
[11] | 张迎迎, 刘雅慧, 戴陶宇, 等. 番茄株型分子机理研究及育种中的应用[J/OL]. 分子植物育种, 2023: 1-8. (2023-07-04) [2023-09-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20230703.1056.004.html. |
ZHANG Y Y, LIU Y H, DAI T Y, et al. Mechanistic studies of plant architecture and their applications in tomato breeding[J/OL]. Molecular Plant Breeding, 2023: 1-8. (2023-07-04) [2023-09-05]. https://kns.cnki.net/kcms/detail/46.1068.s.20230703.1056.004.html. (in Chinese with English abstract) | |
[12] | GARBEZ M, GALOPIN G, SIGOGNE M, et al. Assessing the visual aspect of rotating virtual rose bushes by a labeled sorting task[J]. Food Quality and Preference, 2015, 40: 287-295. |
[13] | BARBIER F F, DUN E A, KERR S C, et al. An update on the signals controlling shoot branching[J]. Trends in Plant Science, 2019, 24(3): 220-236. |
[14] | COOKE J E K, ERIKSSON M E, JUNTTILA O. The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms[J]. Plant, Cell & Environment, 2012, 35(10): 1707-1728. |
[15] | MEIER A R, SAUNDERS M R, MICHLER C H. Epicormic buds in trees: a review of bud establishment, development and dormancy release[J]. Tree Physiology, 2012, 32(5): 565-584. |
[16] | BEAUVIEUX R, WENDEN B, DIRLEWANGER E. Bud dormancy in perennial fruit tree species: a pivotal role for oxidative cues[J]. Frontiers in Plant Science, 2018, 9: 657. |
[17] | YANG Q S, GAO Y H, WU X Y, et al. Bud endodormancy in deciduous fruit trees: advances and prospects[J]. Horticulture Research, 2021, 8: 139. |
[18] | ŽÁDNÍKOVÁ P, SIMON R. How boundaries control plant development[J]. Current Opinion in Plant Biology, 2014, 17: 116-125. |
[19] | WANG Q, HASSON A, ROSSMANN S, et al. Divide et impera: boundaries shape the plant body and initiate new meristems[J]. The New Phytologist, 2016, 209(2): 485-498. |
[20] | SCHUMACHER K, SCHMITT T, ROSSBERG M, et al. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(1): 290-295. |
[21] | GREB T, CLARENZ O, SCHAFER E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes & Development, 2003, 17(9): 1175-1187. |
[22] | LI X Y, QIAN Q, FU Z M, et al. Control of tillering in rice[J]. Nature, 2003, 422: 618-621. |
[23] | BUSCH B L, SCHMITZ G, ROSSMANN S, et al. Shoot branching and leaf dissection in tomato are regulated by homologous gene modules[J]. The Plant Cell, 2011, 23(10): 3595-3609. |
[24] | TIAN C H, ZHANG X N, HE J, et al. An organ boundary-enriched gene regulatory network uncovers regulatory hierarchies underlying axillary meristem initiation[J]. Molecular Systems Biology, 2014, 10(10): 755. |
[25] | ROSSMANN S, KOHLEN W, HASSON A, et al. Lateral suppressor and Goblet act in hierarchical order to regulate ectopic meristem formation at the base of tomato leaflets[J]. The Plant Journal: for Cell and Molecular Biology, 2015, 81(6): 837-848. |
[26] | RAMAN S, GREB T, PEAUCELLE A, et al. Interplay of mir164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(1): 65-76. |
[27] | KELLER T, ABBOTT J, MORITZ T, et al. Arabidopsis REGULATOR OF AXILLARY MERISTEMS1 controls a leaf axil stem cell niche and modulates vegetative development[J]. The Plant Cell, 2006, 18(3): 598-611. |
[28] | MÜLLER D, SCHMITZ G, THERES K. Blind homologous R2R3 myb genes control the pattern of lateral meristem initiation in Arabidopsis[J]. The Plant Cell, 2006, 18(3): 586-597. |
[29] | SCHMITZ G, TILLMANN E, CARRIERO F, et al. The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(2): 1064-1069. |
[30] | GUO D S, ZHANG J Z, WANG X L, et al. The WRKY transcription factor WRKY71/EXB1 controls shoot branching by transcriptionally regulating RAX genes in Arabidopsis[J]. The Plant Cell, 2015, 27(11): 3112-3127. |
[31] | CHAHTANE H, VACHON G, LE MASSON M, et al. A variant of LEAFY reveals its capacity to stimulate meristem development by inducing RAX1[J]. The Plant Journal: for Cell and Molecular Biology, 2013, 74(4): 678-689. |
[32] | LEE D K, GEISLER M, SPRINGER P S. Lateral organ fusion1 and lateral organ fusion2 function in lateral organ separation and axillary meristem formation in Arabidopsis[J]. Development, 2009, 136(14): 2423-2432. |
[33] | XU C, WANG Y H, YU Y C, et al. Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering[J]. Nature Communications, 2012, 3: 750. |
[34] | LIAO Z G, YU H, DUAN J B, et al. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice[J]. Nature Communications, 2019, 10: 2738. |
[35] | LIN Q B, ZHANG Z, WU F Q, et al. The APC/CTE E3 ubiquitin ligase complex mediates the antagonistic regulation of root growth and tillering by ABA and GA[J]. The Plant Cell, 2020, 32(6): 1973-1987. |
[36] | MAYER K F, SCHOOF H, HAECKER A, et al. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem[J]. Cell, 1998, 95(6): 805-815. |
[37] | SCHOOF H, LENHARD M, HAECKER A, et al. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6): 635-644. |
[38] | LONG J A, MOAN E I, MEDFORD J I, et al. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis[J]. Nature, 1996, 379: 66-69. |
[39] | SATO Y, HONG S K, TAGIRI A, et al. A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during early embryogenesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 8117-8122. |
[40] | YANAI O, SHANI E, DOLEZAL K, et al. Arabidopsis KNOXI proteins activate cytokinin biosynthesis[J]. Current Biology: CB, 2005, 15(17): 1566-1571. |
[41] | JASINSKI S, PIAZZA P, CRAFT J, et al. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities[J]. Current Biology: CB, 2005, 15(17): 1560-1565. |
[42] | SHI B H, ZHANG C, TIAN C H, et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis[J]. PLoS Genetics, 2016, 12(7): e1006168. |
[43] | WANG J, TIAN C H, ZHANG C, et al. Cytokinin signaling activates WUSCHEL expression during axillary meristem initiation[J]. The Plant Cell, 2017, 29(6): 1373-1387. |
[44] | SU Y H, ZHOU C, LI Y J, et al. Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(36): 22561-22571. |
[45] | OTSUGA D, DEGUZMAN B, PRIGGE M J, et al. REVOLUTA regulates meristem initiation at lateral positions[J]. The Plant Journal: for Cell and Molecular Biology, 2001, 25(2): 223-236. |
[46] | HIBARA K I, TAKADA S, TASAKA M. CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation[J]. The Plant Journal: for Cell and Molecular Biology, 2003, 36(5): 687-696. |
[47] | ZHANG C, WANG J, WENKEL S, et al. Spatiotemporal control of axillary meristem formation by interacting transcriptional regulators[J]. Development, 2018, 145(24): dev158352. |
[48] | CAO X W, WANG J, XIONG Y Y, et al. A self-activation loop maintains meristematic cell fate for branching[J]. Current Biology: CB, 2020, 30(10): 1893-1904.e4. |
[49] | EJAZ M, BENCIVENGA S, TAVARES R, et al. arabidopsis thaliana homeobox gene 1 controls plant architecture by locally restricting environmental responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(17): e2018615118. |
[50] | 马克学, 席兴字. Polycomb group(PcG)蛋白复合体[J]. 遗传, 2009, 31(10): 977-981. |
MA K X, Ⅺ X Z. Polycomb group protein complexes[J]. Hereditas, 2009, 31(10): 977-981. (in Chinese with English abstract) | |
[51] | MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469: 343-349. |
[52] | SCHUBERT D, PRIMAVESI L, BISHOPP A, et al. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27[J]. The EMBO Journal, 2006, 25(19): 4638-4649. |
[53] | LIU X G, KIM Y J, MÜLLER R, et al. AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins[J]. The Plant Cell, 2011, 23(10): 3654-3670. |
[54] | KAYA H, SHIBAHARA K I, TAOKA K I, et al. FASCIATA genes for chromatin assembly factor-1 in Arabidopsis maintain the cellular organization of apical meristems[J]. Cell, 2001, 104(1): 131-142. |
[55] | MA Y F, MIOTK A, SUTIKOVIC Z, et al. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis[J]. Nature Communications, 2019, 10 : 5093. |
[56] | HEISLER M G, HAMANT O, KRUPINSKI P, et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport[J]. PLoS Biology, 2010, 8(10): e1000516. |
[57] | WANG Y, WANG J, SHI B H, et al. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis[J]. The Plant Cell, 2014, 26(5): 2055-2067. |
[58] | WANG Q, KOHLEN W, ROSSMANN S, et al. Auxin depletion from the leaf axil conditions competence for axillary meristem formation in Arabidopsis and tomato[J]. The Plant Cell, 2014, 26(5): 2068-2079. |
[59] | MENG W J, CHENG Z J, SANG Y L, et al. Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL[J]. The Plant Cell, 2017, 29(6): 1357-1372. |
[60] | ZHANG Q Q, WANG J G, WANG L Y, et al. Gibberellin repression of axillary bud formation in Arabidopsis by modulation of DELLA-SPL9 complex activity[J]. Journal of Integrative Plant Biology, 2020, 62(4): 421-432. |
[61] | GENDRON J M, LIU J S, FAN M, et al. Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 21152-21157. |
[62] | BELL E M, LIN W C, HUSBANDS A Y, et al. Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51): 21146-21151. |
[63] | DOEBLEY J, STEC A, WENDEL J, et al. Genetic and morphological analysis of a maize-teosinte F2 population: implications for the origin of maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(24): 9888-9892. |
[64] | CHEN L, LUO J Y, JIN M L, et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea[J]. Nature Genetics, 2022, 54: 1736-1745. |
[65] | STUDER A, ZHAO Q, ROSS-IBARRA J, et al. Identification of a functional transposon insertion in the maize domestication gene Tb1[J]. Nature Genetics, 2011, 43: 1160-1163. |
[66] | MARTÍN-TRILLO M, CUBAS P. TCP genes: a family snapshot ten years later[J]. Trends in Plant Science, 2010, 15(1): 31-39. |
[67] | NICOLAS M, CUBAS P. TCP factors: new kids on the signaling block[J]. Current Opinion in Plant Biology, 2016, 33: 33-41. |
[68] | AGUILAR-MARTÍNEZ J A, POZA-CARRIÓN C, CUBAS P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds[J]. The Plant Cell, 2007, 19(2): 458-472. |
[69] | TAKEDA T, SUWA Y, SUZUKI M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2003, 33(3): 513-520. |
[70] | MARTÍN-TRILLO M, GRANDÍO E G, SERRA F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching[J]. The Plant Journal: for Cell and Molecular Biology, 2011, 67(4): 701-714. |
[71] | BRAUN N, DE SAINT GERMAIN A, PILLOT J P, et al. The pea TCP transcription factor PsBRC1 acts downstream of Strigolactones to control shoot branching[J]. Plant Physiology, 2012, 158(1): 225-238. |
[72] | WANG L, WANG B, YU H, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis[J]. Nature, 2020, 583: 277-281. |
[73] | DUN E A, DE SAINT GERMAIN A, RAMEAU C, et al. Antagonistic action of strigolactone and cytokinin in bud outgrowth control[J]. Plant Physiology, 2012, 158(1): 487-498. |
[74] | XIA X J, DONG H, YIN Y L, et al. Brassinosteroid signaling integrates multiple pathways to release apical dominance in tomato[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(11): e2004384118. |
[75] | PRICE J, LAXMI A, ST MARTIN S K, et al. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2128-2150. |
[76] | BARBIER F, PÉRON T, LECERF M, et al. Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida[J]. Journal of Experimental Botany, 2015, 66(9): 2569-2582. |
[77] | GONZÁLEZ-GRANDÍO E, POZA-CARRIÓN C, SORZANO C O S, et al. BRANCHED1 promotes axillary bud dormancy in response to shade in Arabidopsis[J]. The Plant Cell, 2013, 25(3): 834-850. |
[78] | YANG Y, NICOLAS M, ZHANG J Z, et al. The TIE1 transcriptional repressor controls shoot branching by directly repressing BRANCHED1 in Arabidopsis[J]. PLoS Genetics, 2018, 14(3): e1007296. |
[79] | YAO C, FINLAYSON S A. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth[J]. Plant Physiology, 2015, 169(1): 611-626. |
[80] | GONZÁLEZ-GRANDÍO E, PAJORO A, FRANCO-ZORRILLA J M, et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): E245-E254. |
[81] | DONG Z B, XIAO Y G, GOVINDARAJULU R, et al. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression[J]. Nature Communications, 2019, 10: 3810. |
[82] | DONG H, WANG J C, SONG X W, et al. HY5 functions as a systemic signal by integrating BRC1-dependent hormone signaling in tomato bud outgrowth[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(16): e2301879120. |
[83] | SHEN J J, ZHANG Y Q, GE D F, et al. CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(34): 17105-17114. |
[84] | NIWA M, DAIMON Y, KUROTANI K I, et al. BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis[J]. The Plant Cell, 2013, 25(4): 1228-1242. |
[85] | BARBIER F F, DUN E A, BEVERIDGE C A. Apical dominance[J]. Current Biology, 2017, 27(17): R864-R865. |
[86] | ADAMOWSKI M, FRIML J. PIN-dependent auxin transport: action, regulation, and evolution[J]. The Plant Cell, 2015, 27(1): 20-32. |
[87] | BENNETT T, HINES G, LEYSER O. Canalization: what the flux?[J]. Trends in Genetics, 2014, 30(2): 41-48. |
[88] | PRUSINKIEWICZ P, CRAWFORD S, SMITH R S, et al. Control of bud activation by an auxin transport switch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17431-17436. |
[89] | CHABIKWA T G, BREWER P B, BEVERIDGE C A. Initial bud outgrowth occurs independent of auxin flow from out of buds[J]. Plant Physiology, 2019, 179(1): 55-65. |
[90] | DOMAGALSKA M A, LEYSER O. Signal integration in the control of shoot branching[J]. Nature Reviews Molecular Cell Biology, 2011, 12: 211-221. |
[91] | LEYSER O. The control of shoot branching: an example of plant information processing[J]. Plant, Cell & Environment, 2009, 32(6): 694-703. |
[92] | CAO D, CHABIKWA T, BARBIER F, et al. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth[J]. Plant Physiology, 2023, 192(2): 1420-1434. |
[93] | LI L, SHEEN J. Dynamic and diverse sugar signaling[J]. Current Opinion in Plant Biology, 2016, 33: 116-125. |
[94] | MASON M G, ROSS J J, BABST B A, et al. Sugar demand, not auxin, is the initial regulator of apical dominance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 6092-6097. |
[95] | BEVERIDGE CA, RAMEAU C, WIJERATHNA-YAPA A. Lessons from a century of apical dominance research[J]. Journal of Experimental Botany, 2023, 74(14) : 3903-3922. |
[96] | BERTHELOOT J, BARBIER F, BOUDON F, et al. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth[J]. The New Phytologist, 2020, 225(2): 866-879. |
[97] | SALAM B B, BARBIER F, DANIELI R, et al. Sucrose promotes stem branching through cytokinin[J]. Plant Physiology, 2021, 185(4): 1708-1721. |
[98] | MARTÍN-FONTECHA E S, TARANCÓN C, CUBAS P. To grow or not to grow, a power-saving program induced in dormant buds[J]. Current Opinion in Plant Biology, 2018, 41: 102-109. |
[99] | ZHANG Y H, PRIMAVESI L F, JHURREEA D, et al. Inhibition of SNF1-related protein kinase1 activity and regulation of metabolic pathways by trehalose-6-phosphate[J]. Plant Physiology, 2009, 149(4): 1860-1871. |
[100] | HWANG G, KIM S, CHO J Y, et al. Trehalose-6-phosphate signaling regulates thermoresponsive hypocotyl growth in Arabidopsis thaliana[J]. EMBO Reports, 2019, 20(10): e47828. |
[101] | FICHTNER F, BARBIER F F, FEIL R, et al. Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.)[J]. The Plant Journal: for Cell and Molecular Biology, 2017, 92(4): 611-623. |
[102] | FICHTNER F, BARBIER F F, ANNUNZIATA M G, et al. Regulation of shoot branching in Arabidopsis by trehalose 6-phosphate[J]. The New Phytologist, 2021, 229(4): 2135-2151. |
[103] | SATOH-NAGASAWA N, NAGASAWA N, MALCOMBER S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature, 2006, 441: 227-230. |
[104] | LI X J, CAI W G, LIU Y L, et al. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(10): 2765-2770. |
[105] | XIONG F J, ZHANG R, MENG Z G, et al. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis[J]. The New Phytologist, 2017, 213(1): 233-249. |
[106] | AL-BABILI S, BOUWMEESTER H J. Strigolactones, a novel carotenoid-derived plant hormone[J]. Annual Review of Plant Biology, 2015, 66: 161-186. |
[107] | MASHIGUCHI K, SETO Y, YAMAGUCHI S. Strigolactone biosynthesis, transport and perception[J]. The Plant Journal: for Cell and Molecular Biology, 2021, 105(2): 335-350. |
[108] | LIGEROT Y, DE SAINT GERMAIN A, WALDIE T, et al. The pea branching RMS2 gene encodes the PsAFB4/5 auxin receptor and is involved in an auxin-strigolactone regulation loop[J]. PLoS Genetics, 2017, 13(12): e1007089. |
[109] | HAYWARD A, STIRNBERG P, BEVERIDGE C, et al. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiology, 2009, 151(1): 400-412. |
[110] | ZHOU Y H, GE S B, JIN L J, et al. A novel CO2-responsive systemic signaling pathway controlling plant mycorrhizal symbiosis[J]. The New Phytologist, 2019, 224(1): 106-116. |
[111] | BOOKER J, SIEBERER T, WRIGHT W, et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone[J]. Developmental Cell, 2005, 8(3): 443-449. |
[112] | KRETZSCHMAR T, KOHLEN W, SASSE J, et al. A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching[J]. Nature, 2012, 483: 341-344. |
[113] | VISENTIN I, VITALI M, FERRERO M, et al. Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato[J]. The New Phytologist, 2016, 212(4): 954-963. |
[114] | JIANG L, LIU X, XIONG G S, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504: 401-405. |
[115] | SONG X G, LU Z F, YU H, et al. IPA1 functions as a downstream transcription factor repressed by D53 in strigolactone signaling in rice[J]. Cell Research, 2017, 27(9): 1128-1141. |
[116] | WEI H B, LUO M T, DENG J, et al. SPL16 and SPL23 mediate photoperiodic control of seasonal growth in Populus trees[J]. New Phytologist, 2023, 241(4) : 1646-1661. |
[117] | WANG H, WANG H Y. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits[J]. Molecular Plant, 2015, 8(5): 677-688. |
[118] | JIAO Y Q, WANG Y H, XUE D W, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42: 541-544. |
[119] | LUO L, LI W Q, MIURA K, et al. Control of tiller growth of rice by OsSPL14 and Strigolactones, which work in two independent pathways[J]. Plant & Cell Physiology, 2012, 53(10): 1793-1801. |
[120] | HU J, SUN S Y, WANG X L. Regulation of shoot branching by strigolactones and brassinosteroids: conserved and specific functions of Arabidopsis BES1 and rice BZR1[J]. Molecular Plant, 2020, 13(6): 808-810. |
[121] | WANG Y, SUN S Y, ZHU W J, et al. Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching[J]. Developmental Cell, 2013, 27(6): 681-688. |
[122] | PATIL S B, BARBIER F F, ZHAO J F, et al. Sucrose promotes D53 accumulation and tillering in rice[J]. The New Phytologist, 2022, 234(1): 122-136. |
[123] | WERNER T, SCHMÜLLING T. Cytokinin action in plant development[J]. Current Opinion in Plant Biology, 2009, 12(5): 527-538. |
[124] | HWANG I, SHEEN J, MÜLLER B. Cytokinin signaling networks[J]. Annual Review of Plant Biology, 2012, 63: 353-380. |
[125] | TANAKA M, TAKEI K, KOJIMA M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(6): 1028-1036. |
[126] | EVIATAR-RIBAK T, SHALIT-KANEH A, CHAPPELL-MAOR L, et al. A cytokinin-activating enzyme promotes tuber formation in tomato[J]. Current Biology: CB, 2013, 23(12): 1057-1064. |
[127] | WALDIE T, LEYSER O. Cytokinin targets auxin transport to promote shoot branching[J]. Plant Physiology, 2018, 177(2): 803-818. |
[128] | KERR S C, PATIL S B, DE SAINT GERMAIN A, et al. Integration of the SMXL/D53 strigolactone signalling repressors in the model of shoot branching regulation in Pisum sativum[J]. The Plant Journal, 2021, 107(6): 1756-1770. |
[129] | LÓPEZ-RÁEZ J A, CHARNIKHOVA T, GÓMEZ-ROLDÁN V, et al. Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation[J]. The New Phytologist, 2008, 178(4): 863-874. |
[130] | FOO E, YONEYAMA K, HUGILL C J, et al. Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency[J]. Molecular Plant, 2013, 6(1): 76-87. |
[131] | UMEHARA M, HANADA A, MAGOME H, et al. Contribution of strigolactones to the inhibition of tiller bud outgrowth under phosphate deficiency in rice[J]. Plant & Cell Physiology, 2010, 51(7): 1118-1126. |
[132] | DE JONG M, GEORGE G, ONGARO V, et al. Auxin and strigolactone signaling are required for modulation of Arabidopsis shoot branching by nitrogen supply[J]. Plant Physiology, 2014, 166(1): 384-395. |
[133] | TAKEI K, UEDA N, AOKI K, et al. AtIPT3 is a key determinant of nitrate-dependent cytokinin biosynthesis in Arabidopsis[J]. Plant & Cell Physiology, 2004, 45(8): 1053-1062. |
[134] | TAKEI K, SAKAKIBARA H, TANIGUCHI M, et al. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator[J]. Plant & Cell Physiology, 2001, 42(1): 85-93. |
[135] | KAMADA-NOBUSADA T, MAKITA N, KOJIMA M, et al. Nitrogen-dependent regulation of de novo cytokinin biosynthesis in rice: the role of glutamine metabolism as an additional signal[J]. Plant & Cell Physiology, 2013, 54(11): 1881-1893. |
[136] | QUINT M, DELKER C, FRANKLIN K A, et al. Molecular and genetic control of plant thermomorphogenesis[J]. Nature Plants, 2016, 2: 15190. |
[137] | SINGH R K, MAURYA J P, AZEEZ A, et al. A genetic network mediating the control of bud break in hybrid aspen[J]. Nature Communications, 2018, 9: 4173. |
[138] | MAURYA J P, MISKOLCZI P C, MISHRA S, et al. A genetic framework for regulation and seasonal adaptation of shoot architecture in hybrid aspen[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(21): 11523-11530. |
[139] | CHEN L P, ZHAO Y, XU S J, et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. The New Phytologist, 2018, 218(1): 219-231. |
[140] | GIRAULT T, ABIDI F, SIGOGNE M, et al. Sugars are under light control during bud burst in Rosa sp[J]. Plant, Cell & Environment, 2010, 33(8): 1339-1350. |
[141] | KEBROM T H, BRUTNELL T P, FINLAYSON S A. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways[J]. Plant, Cell & Environment, 2010, 33(1): 48-58. |
[142] | GIRAULT T, BERGOUGNOUX V, COMBES D, et al. Light controls shoot meristem organogenic activity and leaf primordia growth during bud burst in Rosa sp[J]. Plant, Cell & Environment, 2008, 31(11): 1534-1544. |
[143] | ROMAN H, GIRAULT T, BARBIER F, et al. Cytokinins are initial targets of light in the control of bud outgrowth[J]. Plant Physiology, 2016, 172(1): 489-509. |
[144] | PFEIFFER A, JANOCHA D, DONG Y H, et al. Integration of light and metabolic signals for stem cell activation at the shoot apical meristem[J]. eLife, 2016, 5: e17023. |
[145] | CASAL J J. Photoreceptor signaling networks in plant responses to shade[J]. Annual Review of Plant Biology, 2013, 64: 403-427. |
[146] | KRISHNA REDDY S, FINLAYSON S A. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling[J]. Plant Physiology, 2014, 164(3): 1542-1550. |
[147] | HOLALU S V, FINLAYSON S A. The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes[J]. Journal of Experimental Botany, 2017, 68(5): 943-952. |
[148] | HOLALU S V, REDDY S K, BLACKMAN B K, et al. Phytochrome interacting factors 4 and 5 regulate axillary branching via bud abscisic acid and stem auxin signalling[J]. Plant, Cell & Environment, 2020, 43(9): 2224-2238. |
[149] | XIE Y R, LIU Y, MA M D, et al. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching[J]. Nature Communications, 2020, 11: 1955. |
[150] | YE R Q, WANG M Y, DU H, et al. Glucose-driven TOR-FIE-PRC2 signalling controls plant development[J]. Nature, 2022, 609: 986-993. |
[151] | STEED G, RAMIREZ D C, HANNAH M A, et al. Chronoculture, harnessing the circadian clock to improve crop yield and sustainability[J]. Science, 2021, 372(6541): eabc9141. |
[152] | WANG F, HAN T W, SONG Q X, et al. The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing[J]. The Plant Cell, 2020, 32(10): 3124-3138. |
[153] | CUI L, ZHENG F Y, WANG J F, et al. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato[J]. Plant Biotechnology Journal, 2020, 18(8): 1670-1682. |
[1] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[2] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[3] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[4] | 夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994. |
[5] | 邓哲宇, 王乙婷, 王颖洁, 胡菜, 吴宇慧, 赵宗仪, 左其生, 张亚妮. 鸡gga-miR-31-5p 启动子真核表达载体的构建及其转录因子结合位点预测[J]. 浙江农业学报, 2022, 34(4): 713-719. |
[6] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[7] | 李虹桥, 赖莹, 母娜, 严红梅, 汤维群, 蒋小灵, 高雯, 吴永成. 密度对不同株高油菜冠层结构与群体光合能力的影响[J]. 浙江农业学报, 2022, 34(3): 419-427. |
[8] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[9] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[10] | 岳建华, 董艳, 李文杨, 李蒙, 张琰. pH对百子莲体胚诱导期生理特性的影响[J]. 浙江农业学报, 2020, 32(8): 1405-1414. |
[11] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[12] | 张古文, 沈立, 郑华章, 刘娜, 冯志娟, 龚亚明. 锌指蛋白转录因子Di19参与调控大豆干旱响应的研究进展[J]. 浙江农业学报, 2020, 32(2): 373-382. |
[13] | 王峰, 叶静, 高敬文, 王强, 俞巧钢, 何新华, 马军伟. 外源增钾缓解铵胁迫下小麦根系受抑[J]. 浙江农业学报, 2020, 32(11): 1923-1933. |
[14] | 李君霞, 王春义, 丁宇涛, 代书桃, 朱灿灿, 宋迎辉, 秦娜, 陈宇翔. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020, 32(10): 1910-1920. |
[15] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||