浙江农业学报 ›› 2024, Vol. 36 ›› Issue (8): 1945-1956.DOI: 10.3969/j.issn.1004-1524.20231144
• 综述 • 上一篇
收稿日期:
2023-09-25
出版日期:
2024-08-25
发布日期:
2024-09-06
作者简介:
*刘鹏,E-mail: pengliu@yzu.edu.cn通讯作者:
刘鹏
基金资助:
Received:
2023-09-25
Online:
2024-08-25
Published:
2024-09-06
Contact:
LIU Peng
摘要:
顺式调控元件是具有调控功能的非编码DNA序列,确保植物在不同生长发育阶段和环境应答时相关基因正确的时空表达。目前,植物顺式调控元件的功能研究落后于动物,然而依托较完善的基因组注释信息和开放染色质技术,植物顺式调控元件研究取得了重要进展。文章综述了植物顺式调控元件的相关研究,发现活性顺式调控元件与染色质活性相关联,转录因子和顺式调控元件之间的相互作用决定了基因转录水平,高通量测序技术提供的不同分子层面的组学数据能高效鉴定到顺式调控元件,由转座子衍生的顺式调控元件调控农艺性状基因转录。精准鉴定和深入功能解析顺式调控元件是未来重要的研究方向。植物顺式调控元件的挖掘与功能解析有助于系统阐明农作物重要农艺性状基因的调控机制,更好助力于培育高产、优质、高抗、高效的优良新品种。
中图分类号:
张鑫, 刘鹏. 植物顺式调控元件研究进展[J]. 浙江农业学报, 2024, 36(8): 1945-1956.
ZHANG Xin, LIU Peng. Research progress of cis-regulatory elements in plants[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1945-1956.
图1 不同功能CRM的染色质特征示意图 A,活性增强子。组蛋白乙酰化修饰在CRE富集。CRE与TF、辅助因子相互作用,从而靶向目标基因的启动子以激活其转录。B,抑制状态CRM。由于Polycomb Group蛋白和H3K27me3修饰的存在,局部染色质结构致密,CRE不能与TF结合,从而导致靶基因的转录沉默。C,平衡态CRM。CRE位于开放染色质区,具有低水平组蛋白乙酰化修饰,Polycomb Group蛋白和H3K27me3修饰仍然存在,因此只有少数的CRE能够和TF结合。Cofactor,辅助因子;TF,转录因子;CRE,顺式调控元件;P,启动子;CDS,基因编码序列;TSS,转录起始位点;Polycomb Group,多梳家族蛋白。
Fig.1 Schematic representation of chromatin features of CRMs in different states A, Active enhancer. Histone acetylation modifications are enriched around CREs. TFs as well as cofactors interact with CREs, which target the gene’s promoter to activate its transcription. B, Repressed CRM. Due to the occupation of Polycomb Group proteins and H3K27me3 modification at CREs, where local chromatin structure is dense, CREs aren’t able to bind to TFs, resulting in transcriptional silencing of the target gene. C, Poised CRM. Although CREs are located in the open chromatin region with low levels of histone acetylation modification, Polycomb Group proteins and H3K27me3 modification still exist, so only a few CREs can bind to TFs. Cofactor, Auxiliary factor; TF, Transcription factor; CRE, Cis-regulatory element; P, Promoter; CDS, Gene coding sequence; TSS; Transcription start site; Polycomb Group, Polycomb Group protein.
图2 CRM的高通量鉴定方法示意简图 ATAC-seq,转座酶可及性测序;DNase-seq,脱氧核糖核酸酶I超敏位点测序;FAIRE-seq,甲醛辅助分离调控元件测序;ChIP-seq,染色质免疫共沉淀测序;ChIA-PET,配对末端标签测序分析染色质相互作用;Hi-ChIP,基于染色质免疫共沉淀的原位Hi-C。
Fig.2 Schematic diagram of high-throughput identification method for CRM ATAC-seq, Assay for transposase accessible chromatin sequencing; DNase-seq, DNase I sequencing; FAIRE-seq, Formaldehyde assisted isolation of regulatory element sequencing; ChIP-seq, Chromatin immunoprecipitation sequencing; ChIA-PET, Chromatin interaction analysis by paired-end tag sequencing; Hi-ChIP, In situ Hi-C followed by chromatin immunoprecipitation.
[1] | JIANG J M. The ‘dark matter’ in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin[J]. Current Opinion in Plant Biology, 2015, 24: 17-23. |
[2] | SCHMITZ R J, GROTEWOLD E, STAM M. Cis-regulatory sequences in plants: their importance, discovery, and future challenges[J]. The Plant Cell, 2022, 34(2): 718-741. |
[3] | ANDERSSON R, SANDELIN A. Determinants of enhancer and promoter activities of regulatory elements[J]. Nature Reviews Genetics, 2020, 21(2): 71-87. |
[4] | OKA R, ZICOLA J, WEBER B, et al. Genome-wide mapping of transcriptional enhancer candidates using DNA and chromatin features in maize[J]. Genome Biology, 2017, 18(1): 137. |
[5] | CRISP P A, MARAND A P, NOSHAY J M, et al. Stable unmethylated DNA demarcates expressed genes and their cis-regulatory space in plant genomes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23991-24000. |
[6] | FENLEY A T, ANANDAKRISHNAN R, KIDANE Y H, et al. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core[J]. Epigenetics & Chromatin, 2018, 11(1): 11. |
[7] | CREYGHTON M P, CHENG A W, WELSTEAD G G, et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(50): 21931-21936. |
[8] | BARRERA L O, LI Z R, SMITH A D, et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs[J]. Genome Research, 2008, 18(1): 46-59. |
[9] | SHLYUEVA D, STAMPFEL G, STARK A. Transcriptional enhancers: from properties to genome-wide predictions[J]. Nature Reviews Genetics, 2014, 15(4): 272-286. |
[10] | NGAN C Y, WONG C H, TJONG H, et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development[J]. Nature Genetics, 2020, 52(3): 264-272. |
[11] | KOENECKE N, JOHNSTON J, HE Q Y, et al. Drosophila poised enhancers are generated during tissue patterning with the help of repression[J]. Genome Research, 2017, 27(1): 64-74. |
[12] | RADA-IGLESIAS A, BAJPAI R, SWIGUT T, et al. A unique chromatin signature uncovers early developmental enhancers in humans[J]. Nature, 2011, 470(7333): 279-283. |
[13] | DU Z, LI H, WEI Q, et al. Genome-wide analysis of histone modifications: H3K4me2, H3K4me3, H3K9ac, and H3K27ac in Oryza sativa L. japonica[J]. Molecular Plant, 2013, 6(5): 1463-1472. |
[14] | ZHU B, ZHANG W L, ZHANG T, et al. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures[J]. The Plant Cell, 2015, 27(9): 2415-2426. |
[15] | NIEDERHUTH C E, BEWICK A J, JI L X, et al. Widespread natural variation of DNA methylation within angiosperms[J]. Genome Biology, 2016, 17(1): 194. |
[16] | ZHANG X Y, YAZAKI J, SUNDARESAN A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6): 1189-1201. |
[17] | O’MALLEY R C, HUANG S S C, SONG L, et al. Cistrome and epicistrome features shape the regulatory DNA landscape[J]. Cell, 2016, 165(5): 1280-1292. |
[18] | ORLANSKI S, LABI V, REIZEL Y, et al. Tissue-specific DNA demethylation is required for proper B-cell differentiation and function[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(18): 5018-5023. |
[19] | ZHONG S L, FEI Z J, CHEN Y R, et al. Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening[J]. Nature Biotechnology, 2013, 31(2): 154-159. |
[20] | YU A, LEPÈRE G, JAY F, et al. Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(6): 2389-2394. |
[21] | SARTORELLI V, LAUBERTH S M. Enhancer RNAs are an important regulatory layer of the epigenome[J]. Nature Structural & Molecular Biology, 2020, 27(6): 521-528. |
[22] | HOU Y, ZHANG R X, SUN X. Enhancer LncRNAs influence chromatin interactions in different ways[J]. Frontiers in Genetics, 2019, 10: 936. |
[23] | HAN Z Z, LI W. Enhancer RNA: what we know and what we can achieve[J]. Cell Proliferation, 2022, 55(4): e13202. |
[24] | LIANG J, ZHOU H F, GERDT C, et al. Epstein-Barr virus super-enhancer eRNAs are essential for MYC oncogene expression and lymphoblast proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14121-14126. |
[25] | PNUELI L, RUDNIZKY S, YOSEFZON Y, et al. RNA transcribed from a distal enhancer is required for activating the chromatin at the promoter of the gonadotropin α-subunit gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14): 4369-4374. |
[26] | HETZEL J, DUTTKE S H, BENNER C, et al. Nascent RNA sequencing reveals distinct features in plant transcription[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12316-12321. |
[27] | WU C H, YAMAGUCHI Y, BENJAMIN L R, et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila[J]. Genes & Development, 2003, 17(11): 1402-1414. |
[28] | GORBOVYTSKA V, KIM S K, KUYBU F, et al. Enhancer RNAs stimulate PolⅡ pause release by harnessing multivalent interactions to NELF[J]. Nature Communications, 2022, 13(1): 2429. |
[29] | SCHAUKOWITCH K, JOO J Y, LIU X H, et al. Enhancer RNA facilitates NELF release from immediate early genes[J]. Molecular Cell, 2014, 56(1): 29-42. |
[30] | THIEFFRY A, VIGH M L, BORNHOLDT J, et al. Characterization of Arabidopsis thaliana promoter bidirectionality and antisense RNAs by inactivation of nuclear RNA decay pathways[J]. The Plant Cell, 2020, 32(6): 1845-1867. |
[31] | LAMBERT S A, JOLMA A, CAMPITELLI L F, et al. The human transcription factors[J]. Cell, 2018, 172(4): 650-665. |
[32] | WEIRAUCH M T, YANG A, ALBU M, et al. Determination and inference of eukaryotic transcription factor sequence specificity[J]. Cell, 2014, 158(6): 1431-1443. |
[33] | ZHOU J B, TOH S H M, TAN T K, et al. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell lymphoma[J]. Molecular Cancer, 2023, 22(1): 69. |
[34] | LAI X L, STIGLIANI A, LUCAS J, et al. Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing[J]. Nucleic Acids Research, 2020, 48(17): 9637-9648. |
[35] | BRAND U, FLETCHER J C, HOBE M, et al. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity[J]. Science, 2000, 289(5479): 617-619. |
[36] | SCHOOF H, LENHARD M, HAECKER A, et al. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes[J]. Cell, 2000, 100(6): 635-644. |
[37] | LEIBFRIED A, TO J P C, BUSCH W, et al. WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators[J]. Nature, 2005, 438(7071): 1172-1175. |
[38] | IKEDA M, MITSUDA N, OHME-TAKAGI M. Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning[J]. The Plant Cell, 2009, 21(11): 3493-3505. |
[39] | LOHMANN J U, HONG R L, HOBE M, et al. A molecular link between stem cell regulation and floral patterning in Arabidopsis[J]. Cell, 2001, 105(6): 793-803. |
[40] | BAI L, MOROZOV A V. Gene regulation by nucleosome positioning[J]. Trends in Genetics, 2010, 26(11): 476-483. |
[41] | JIN R, KLASFELD S, ZHU Y, et al. LEAFY is a pioneer transcription factor and licenses cell reprogramming to floral fate[J]. Nature Communications, 2021, 12(1): 626. |
[42] | LEE C S, FRIEDMAN J R, FULMER J T, et al. The initiation of liver development is dependent on Foxa transcription factors[J]. Nature, 2005, 435(7044): 944-947. |
[43] | IWAFUCHI-DOI M, DONAHUE G, KAKUMANU A, et al. The pioneer transcription factor FoxA maintains an accessible nucleosome configuration at enhancers for tissue-specific gene activation[J]. Molecular Cell, 2016, 62(1): 79-91. |
[44] | ZHU H, WANG G H, QIAN J. Transcription factors as readers and effectors of DNA methylation[J]. Nature Reviews Genetics, 2016, 17(9): 551-565. |
[45] | TAO Z, SHEN L S, GU X F, et al. Embryonic epigenetic reprogramming by a pioneer transcription factor in plants[J]. Nature, 2017, 551(7678): 124-128. |
[46] | PAJORO A, MADRIGAL P, MUIÑO J M, et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biology, 2014, 15(3): R41. |
[47] | WU C Y, LI X J, YUAN W Y, et al. Development of enhancer trap lines for functional analysis of the rice genome[J]. The Plant Journal, 2003, 35(3): 418-427. |
[48] | MCGARRY R C, AYRE B G. A DNA element between At4g28630 and At4g28640 confers companion-cell specific expression following the sink-to-source transition in mature minor vein phloem[J]. Planta, 2008, 228(5): 839-849. |
[49] | STAM M, BELELE C, DORWEILER J E, et al. Differential chromatin structure within a tandem array 100 kb upstream of the maize b1 locus is associated with paramutation[J]. Genes & Development, 2002, 16(15): 1906-1918. |
[50] | ZHENG L L, MCMULLEN M D, BAUER E, et al. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays[J]. Journal of Experimental Botany, 2015, 66(13): 3917-3930. |
[51] | DU Y F, LIU L, PENG Y, et al. UNBRANCHED3 expression and inflorescence development is mediated by UNBRANCHED2 and the distal enhancer, KRN4, in maize[J]. PLoS Genetics, 2020, 16(4): e1008764. |
[52] | BELELE C L, SIDORENKO L, STAM M, et al. Specific tandem repeats are sufficient for paramutation-induced trans-generational silencing[J]. PLoS Genetics, 2013, 9(10): e1003773. |
[53] | STUDER A, ZHAO Q, ROSS-IBARRA J, et al. Identification of a functional transposon insertion in the maize domestication gene tb1[J]. Nature Genetics, 2011, 43(11): 1160-1163. |
[54] | LU Z F, HOFMEISTER B T, VOLLMERS C, et al. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes[J]. Nucleic Acids Research, 2017, 45(6): e41. |
[55] | MARAND A P, CHEN Z L, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11): 3041-3055. |
[56] | BUENROSTRO J D, WU B J, LITZENBURGER U M, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523(7561): 486-490. |
[57] | CUSANOVICH D A, DAZA R, ADEY A, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing[J]. Science, 2015, 348(6237): 910-914. |
[58] | DORRITY M W, ALEXANDRE C M, HAMM M O, et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution[J]. Nature Communications, 2021, 12(1): 3334. |
[59] | FARMER A, THIBIVILLIERS S, RYU K H, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Molecular Plant, 2021, 14(3): 372-383. |
[60] | HARING M, OFFERMANN S, DANKER T, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization[J]. Plant Methods, 2007, 3: 11. |
[61] | LU Z F, MARAND A P, RICCI W A, et al. The prevalence, evolution and chromatin signatures of plant regulatory elements[J]. Nature Plants, 2019, 5(12): 1250-1259. |
[62] | RICCI W A, LU Z F, JI L X, et al. Widespread long-range cis-regulatory elements in the maize genome[J]. Nature Plants, 2019, 5(12): 1237-1249. |
[63] | PENG Y, XIONG D, ZHAO L, et al. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize[J]. Nature Communications, 2019, 10(1): 2632. |
[64] | LOUWERS M, BADER R, HARING M, et al. Tissue-and expression level-specific chromatin looping at maize b1 epialleles[J]. The Plant Cell, 2009, 21(3): 832-842. |
[65] | LI E, LIU H, HUANG L L, et al. Long-range interactions between proximal and distal regulatory regions in maize[J]. Nature Communications, 2019, 10(1): 2633. |
[66] | ARNOLD C D, GERLACH D, STELZER C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq[J]. Science, 2013, 339(6123): 1074-1077. |
[67] | TIAN W, HUANG X, OUYANG X H. Genome-wide prediction of activating regulatory elements in rice by combining STARR-seq with FACS[J]. Plant Biotechnology Journal, 2022, 20(12): 2284-2297. |
[68] | JORES T, TONNIES J, DORRITY M W, et al. Identification of plant enhancers and their constituent elements by STARR-seq in tobacco leaves[J]. The Plant Cell, 2020, 32(7): 2120-2131. |
[69] | JORES T, TONNIES J, WRIGHTSMAN T, et al. Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters[J]. Nature Plants, 2021, 7(6): 842-855. |
[70] | SAEED S, USMAN B, SHIM S, et al. CRISPR/Cas-mediated editing of cis-regulatory elements for crop improvement[J]. Plant Science, 2022, 324: 111435. |
[71] | OSTERWALDER M, BAROZZI I, TISSIÈRES V, et al. Enhancer redundancy provides phenotypic robustness in mammalian development[J]. Nature, 2018, 554(7691): 239-243. |
[72] | HIRSCH C D, SPRINGER N M. Transposable element influences on gene expression in plants[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2017, 1860(1): 157-165. |
[73] | FAGNY M, KUIJJER M L, STAM M, et al. Identification of key tissue-specific, biological processes by integrating enhancer information in maize gene regulatory networks[J]. Frontiers in Genetics, 2020, 11: 606285. |
[74] | LYNCH V J, LECLERC R D, MAY G, et al. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals[J]. Nature Genetics, 2011, 43(11): 1154-1159. |
[75] | BATISTA R A, MORENO-ROMERO J, QIU Y C, et al. The MADS-box transcription factor PHERES1 controls imprinting in the endosperm by binding to domesticated transposons[J]. eLife, 2019, 8: e50541. |
[76] | ZHAO H N, ZHANG W L, CHEN L F, et al. Proliferation of regulatory DNA elements derived from transposable elements in the maize genome[J]. Plant Physiology, 2018, 176(4): 2789-2803. |
[77] | CHUONG E B, ELDE N C, FESCHOTTE C. Regulatory activities of transposable elements: from conflicts to benefits[J]. Nature Reviews Genetics, 2017, 18(2): 71-86. |
[78] | SALVI S, SPONZA G, MORGANTE M, et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11376-11381. |
[79] | FENG D, LIANG Z, WANG Y F, et al. Chromatin accessibility illuminates single-cell regulatory dynamics of rice root tips[J]. BMC Biology, 2022, 20(1): 274. |
[80] | ZHANG T Q, CHEN Y, LIU Y, et al. Single-cell transcriptome atlas and chromatin accessibility landscape reveal differentiation trajectories in the rice root[J]. Nature Communications, 2021, 12(1): 2053. |
[81] | WU H G, LI X, JIAN F C, et al. Highly sensitive single-cell chromatin accessibility assay and transcriptome coassay with METATAC[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2206450119. |
[82] | TU X Y, MARAND A P, SCHMITZ R J, et al. A combinatorial indexing strategy for low-cost epigenomic profiling of plant single cells[J]. Plant Communications, 2022, 3(4): 100308. |
[83] | OUYANG W Z, LUAN S P, XIANG X, et al. Profiling plant histone modification at single-cell resolution using snCUT&Tag[J]. Plant Biotechnology Journal, 2022, 20(3): 420-422. |
[84] | ZHOU S L, JIANG W, ZHAO Y, et al. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes[J]. Nature Plants, 2019, 5(8): 795-800. |
[85] | YOCCA A E, EDGER P P. Current status and future perspectives on the evolution of cis-regulatory elements in plants[J]. Current Opinion in Plant Biology, 2022, 65: 102139. |
[86] | WU X W, LIANG Y, GAO H B, et al. Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20[J]. Molecular Plant, 2021, 14(6): 997-1011. |
[1] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
[2] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. |
[3] | 张露荷, 王多锋, 张德, 张广忠, 赵通, 吕斌燕, 张洋军, 李毅. 枣树novel-miR16靶基因ZjTCP4鉴定及生物信息学分析[J]. 浙江农业学报, 2024, 36(3): 534-543. |
[4] | 陈尚昱, 宋雪薇, 齐振宇, 周艳虹, 喻景权, 夏晓剑. 植物侧枝发育的遗传基础及激素、代谢与环境调控[J]. 浙江农业学报, 2024, 36(3): 690-703. |
[5] | 刘光瑞, 宗渊, 李云, 曹东, 刘宝龙, 包雪梅, 李建民. 当归转录因子AsMYB44的克隆与功能研究[J]. 浙江农业学报, 2023, 35(6): 1253-1264. |
[6] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. |
[7] | 夏煜琪, 孙宇, 刘志鑫, 孙瑞青, 杨楠, 蒲金基, 张贺. 杧果转录因子BES1s家族全基因组鉴定及生物信息学分析[J]. 浙江农业学报, 2022, 34(5): 984-994. |
[8] | 邓哲宇, 王乙婷, 王颖洁, 胡菜, 吴宇慧, 赵宗仪, 左其生, 张亚妮. 鸡gga-miR-31-5p 启动子真核表达载体的构建及其转录因子结合位点预测[J]. 浙江农业学报, 2022, 34(4): 713-719. |
[9] | 李小兰, 张瑞, 郝兰兰, 王鸿. 桃NAC家族基因生物信息学分析及其响应低温胁迫的表达特征[J]. 浙江农业学报, 2022, 34(4): 766-780. |
[10] | 贾利强, 赵秋芳, 陈曙, 丁波. 玉米转录因子bZIP G亚家族基因的表达模式[J]. 浙江农业学报, 2022, 34(2): 221-231. |
[11] | 何佳琦, 翟莹, 张军, 邱爽, 李铭杨, 赵艳, 张梅娟, 马天意. 大豆转录因子GmDof1.5的克隆与非生物胁迫诱导表达[J]. 浙江农业学报, 2021, 33(1): 1-7. |
[12] | 邱文怡, 王诗雨, 李晓芳, 徐恒, 张华, 朱英, 王良超. MYB转录因子参与植物非生物胁迫响应与植物激素应答的研究进展[J]. 浙江农业学报, 2020, 32(7): 1317-1328. |
[13] | 张古文, 沈立, 郑华章, 刘娜, 冯志娟, 龚亚明. 锌指蛋白转录因子Di19参与调控大豆干旱响应的研究进展[J]. 浙江农业学报, 2020, 32(2): 373-382. |
[14] | 李君霞, 王春义, 丁宇涛, 代书桃, 朱灿灿, 宋迎辉, 秦娜, 陈宇翔. MYB转录因子在植物耐盐基因工程中的应用进展[J]. 浙江农业学报, 2020, 32(10): 1910-1920. |
[15] | 刘慧洁, 徐恒, 邱文怡, 李晓芳, 张华, 朱英, 李春寿, 王良超. 转录因子在植物生长发育及非生物逆境响应的作用[J]. 浙江农业学报, 2019, 31(7): 1205-1214. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||