浙江农业学报 ›› 2025, Vol. 37 ›› Issue (6): 1344-1352.DOI: 10.3969/j.issn.1004-1524.20240719
收稿日期:
2024-08-07
出版日期:
2025-06-25
发布日期:
2025-07-08
作者简介:
王忠(1969—),男,山东荣成人,实验师,主要从事生物化学与分子生物学研究。E-mail:741770985@qq.com
通讯作者:
*侯晓敏,E-mail:tsfhxm@hotmail.com
基金资助:
WANG Zhong(), YANG Hongbing, YANG Fan, CHEN Yifan, HOU Xiaomin*(
)
Received:
2024-08-07
Online:
2025-06-25
Published:
2025-07-08
摘要:
为提高细胞膜透性检测的可重复性和可比性,并在此基础上量化细胞膜透性,通过研究小麦叶片细胞膜透性,成功研发出能够量化研究细胞膜透性的新方法——细胞膜透性Δ电导率量化检测法(简称Δ电导率法)。Δ电导率法将细胞膜透性的单位定义为:1 g完整的细胞膜在特定压力下于1 L纯水中浸泡1 h,细胞外渗溶液的电导率值。计算公式:P=[(σe-σi)×V]/(m×R×t),其中,P代表细胞膜透性(单位为μS·cm-1·L-1·g-1·h-1),σe和σi分别代表选定的期末时点与初始时点的电导率值,V代表溶液体积,m代表样品干重,R代表细胞膜完整率,t代表所用时间。通过与现有的2种常用方法(抽气法和浸泡法)进行比较,结果表明,3种方法在定性研究上结论一致且可靠性相当,Δ电导率法的可重复性明显优于抽气法和浸泡法,证明Δ电导率法能够准确可靠地量化细胞膜透性。Δ电导率法为量化细胞膜透性奠定了基础,使细胞膜透性有可能成为标志性生物指标。
中图分类号:
王忠, 杨洪兵, 杨帆, 陈亦凡, 侯晓敏. 细胞膜透性Δ电导率量化检测法研究初探[J]. 浙江农业学报, 2025, 37(6): 1344-1352.
WANG Zhong, YANG Hongbing, YANG Fan, CHEN Yifan, HOU Xiaomin. Preliminary exploration of the Δ conductivity quantification method for cell membrane permeability[J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1344-1352.
图1 小麦叶片取样示意图 A,2叶1心期麦苗;B,叶片中段。
Fig.1 Schematic diagram of wheat leaf sampling A, Wheat seedlings at the two-leaf-with-one-heart stage; B, Mid-section of leaf.
图3 自制电导率检测系统 A,自制电导率检测系统实物图;B,自制电导率检测系统结构图。1,真空泵;2,KF转接气管接头;3,配电箱;4,电源;5,止回阀;6,放气阀;7,数字电接点压力表(控制真空泵运行);8,100 L真空罐;9,气管接头;10,多通路气管分接头;11,悬挂孔;12不锈钢管箍(固定真空管于木板上);13,尼龙扎带(固定真空管于木板上);14,样品管(5 mL离心管钻若干Φ 1 mm孔改装);15,Φ 1 mm镀锌铁丝(缠绕固定于样品管上);16,5 mL离心管盖(剪切钻孔改装);17,双气管球阀;18,加厚O型橡胶密封圈;19,真空管阀门;20,雷磁DDSJ-318电导率仪,21,雷磁DJS-1D电导电极;22,雷磁T-818-6温度电极;23,电脑;24,USB数据线(电导率仪连接电脑);25硅胶管(Φ 6 mm×12 mm);26,数字电接点压力表线缆;27,真空管(层析柱改装);28,磁铁。
Fig.3 Self-made conductivity detection system A, Physical image of a self-made conductivity detection system; B, Structural diagram of a self-made conductivity detection system. 1, Vacuum pump; 2, KF adapter for air tubing connection; 3, Distribution box; 4, Power supply; 5, Check valve; 6, Vent valve; 7, Digital electrical contact pressure gauge (for vacuum pump control); 8, 100 L Vacuum tank; 9, Air tube connector; 10, Multi-path air tube splitter; 11, Hanging hole; 12, Stainless steel clamp (for securing vacuum tubes to wooden boards); 13, Nylon cable tie (for securing vacuum tubes to wooden boards); 14, Modified sample tube (5 mL centrifuge tube with multiple Φ 1 mm holes drilled); 15, Φ 1 mm Zinc-coated steel wire (wound and secured around the sample tube); 16, Modified 5 mL centrifuge tube cap (sheared, drilled, and adapted); 17, Ball valve with dual gas tube connections; 18, Thickened O-ring rubber seal; 19, Vacuum tube valve; 20, Leici DDSJ-318 conductivity meter; 21, Leici DJS-1D conductivity electrode; 22, Leici T-818-6 temperature electrode; 23, Computer; 24, USB data cable (for connecting conductivity meter to computer); 25, Silicone tube (Φ 6 mm×12 mm); 26, Cable for digital electrical contact pressure gauge; 27, Vacuum tube (modified for chromatography column); 28, Magnet.
图4 细胞膜完整率统计过程示例 A,扫描图;B,ImageJ总面积图;C,ImageJ染色面积图。
Fig.4 Example of the statistical process for intact rate of cell membrane A, Scan image; B, ImageJ-generated total area graph; C,ImageJ-generated stained area graph.
方法 Method | 分组名称 Group name | CMP | CMPmean | P |
---|---|---|---|---|
抽气法 | 0.6gF | 18.007 9±1.898 9 | 17.381 9±1.283 0 | 0.466 5 |
Air extraction method | 0.5gF | 17.514 6±0.993 4 | ||
0.4gF | 16.623 1±0.716 7 | |||
0.6gS | 13.146 1±0.323 0 | 13.546 1±0.925 8 | 0.001 0 | |
0.5gS | 14.699 5±0.151 2 | |||
0.4gS | 12.792 8±0.463 1 | |||
浸泡法 | 0.6gF | 15.078 2±0.999 3 | 16.701 5±1.659 0 | 0.001 5 |
Soaking method | 0.5gF | 18.640 5±0.418 3 | ||
0.4gF | 16.385 7±0.306 4 | |||
0.6gS | 10.522 8±0.233 9 | 13.936 0±2.788 0 | 0.000 1 | |
0.5gS | 16.740 1±0.334 9 | |||
0.4gS | 14.545 3±1.048 4 | |||
Δ电导率法 | 0.6gF | 2.610 1±0.249 1 | 2.615 7±0.149 8 | 0.566 8 |
Δ conductivity method | 0.5gF | 2.690 2±0.064 0 | ||
0.4gF | 2.546 8±0.090 5 | |||
0.6gS | 2.105 9±0.100 7 | 2.086 0±0.163 7 | 0.873 8 | |
0.5gS | 2.111 7±0.300 3 | |||
0.4gS | 2.040 3±0.046 3 |
表1 三种方法测定的细胞膜透性单因素ANOVA检测统计表
Table 1 The statistical table of single-factor ANOVA test for cell membrane permeability measured by three methods
方法 Method | 分组名称 Group name | CMP | CMPmean | P |
---|---|---|---|---|
抽气法 | 0.6gF | 18.007 9±1.898 9 | 17.381 9±1.283 0 | 0.466 5 |
Air extraction method | 0.5gF | 17.514 6±0.993 4 | ||
0.4gF | 16.623 1±0.716 7 | |||
0.6gS | 13.146 1±0.323 0 | 13.546 1±0.925 8 | 0.001 0 | |
0.5gS | 14.699 5±0.151 2 | |||
0.4gS | 12.792 8±0.463 1 | |||
浸泡法 | 0.6gF | 15.078 2±0.999 3 | 16.701 5±1.659 0 | 0.001 5 |
Soaking method | 0.5gF | 18.640 5±0.418 3 | ||
0.4gF | 16.385 7±0.306 4 | |||
0.6gS | 10.522 8±0.233 9 | 13.936 0±2.788 0 | 0.000 1 | |
0.5gS | 16.740 1±0.334 9 | |||
0.4gS | 14.545 3±1.048 4 | |||
Δ电导率法 | 0.6gF | 2.610 1±0.249 1 | 2.615 7±0.149 8 | 0.566 8 |
Δ conductivity method | 0.5gF | 2.690 2±0.064 0 | ||
0.4gF | 2.546 8±0.090 5 | |||
0.6gS | 2.105 9±0.100 7 | 2.086 0±0.163 7 | 0.873 8 | |
0.5gS | 2.111 7±0.300 3 | |||
0.4gS | 2.040 3±0.046 3 |
方法 Method | 个案数 Number of cases | F/S平均值 Average of F/S ratio | P |
---|---|---|---|
抽气法Air extraction method | 27 | 1.287 5±0.114 0 | 0.235 3 |
浸泡法 Soaking method | 27 | 1.225 8±0.162 8 | |
Δ电导率法 Δ conductivity method | 27 | 1.260 4±0.113 9 |
表2 三种方法生物重复层面的单因素ANOVA分析统计表
Table 2 Statistical table of one-way ANOVA analysis for biological replication levels using three different methods
方法 Method | 个案数 Number of cases | F/S平均值 Average of F/S ratio | P |
---|---|---|---|
抽气法Air extraction method | 27 | 1.287 5±0.114 0 | 0.235 3 |
浸泡法 Soaking method | 27 | 1.225 8±0.162 8 | |
Δ电导率法 Δ conductivity method | 27 | 1.260 4±0.113 9 |
方法 Method | 分组名称 Group name | 个案数 Number of cases | F/S平均值 Average of F/S ratio | P |
---|---|---|---|---|
抽气法Air extraction method | 0.6g | 9 | 1.370 4±0.128 4 | 0.001 1 |
0.5g | 9 | 1.191 6±0.059 5 | ||
0.4g | 9 | 1.300 5±0.062 9 | ||
浸泡法Soaking method | 0.6g | 9 | 1.433 4±0.086 7 | <0.000 1 |
0.5g | 9 | 1.113 8±0.029 1 | ||
0.4g | 9 | 1.130 3±0.070 2 | ||
Δ电导率法 | 0.6g | 9 | 1.241 3±0.115 1 | 0.625 3 |
Δ conductivity method | 0.5g | 9 | 1.291 0±0.158 8 | |
0.4g | 9 | 1.248 7±0.045 5 |
表3 三种方法技术重复层面单因素ANOVA分析统计表
Table 3 Statistical table of one-way ANOVA analysis for technique replication level using three methods
方法 Method | 分组名称 Group name | 个案数 Number of cases | F/S平均值 Average of F/S ratio | P |
---|---|---|---|---|
抽气法Air extraction method | 0.6g | 9 | 1.370 4±0.128 4 | 0.001 1 |
0.5g | 9 | 1.191 6±0.059 5 | ||
0.4g | 9 | 1.300 5±0.062 9 | ||
浸泡法Soaking method | 0.6g | 9 | 1.433 4±0.086 7 | <0.000 1 |
0.5g | 9 | 1.113 8±0.029 1 | ||
0.4g | 9 | 1.130 3±0.070 2 | ||
Δ电导率法 | 0.6g | 9 | 1.241 3±0.115 1 | 0.625 3 |
Δ conductivity method | 0.5g | 9 | 1.291 0±0.158 8 | |
0.4g | 9 | 1.248 7±0.045 5 |
[1] | 曾玲珍, 邓礼艳, 林育钊, 等. 壳聚糖处理对采后脐橙活性氧代谢和细胞膜透性的影响[J]. 中国食品学报, 2023, 23(5): 291-300. |
ZENG L Z, DENG L Y, LIN Y Z, et al. Effects of chitosan treatment on reactive oxygen species metabolism and cell membrane permeability in postharvest navel orange fruit[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(5): 291-300. (in Chinese with English abstract) | |
[2] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 208-209. |
[3] | 施会, 严雯雯, 尹代浩, 等. 盐胁迫下中国沙棘生理指标变化及水通道蛋白基因的表达模式[J]. 福建农业学报, 2023, 38(12): 1414-1419. |
SHI H, YAN W W, YIN D H, et al. Physiology and expression of PIP of Hippophae rhamnoides under salt stress[J]. Fujian Journal of Agricultural Sciences, 2023, 38(12): 1414-1419. (in Chinese with English abstract) | |
[4] | YANG G R, NIU B, ZONG Z H, et al. Microbicidal effect of negative air ion against Penicillium citrinum and quality control of Chinese bayberry[J]. Food Control, 2024, 162: 110476. |
[5] | 徐新娟, 李勇超. 2种植物相对电导率测定方法比较[J]. 江苏农业科学, 2014, 42(7): 311-312. |
XU X J, LI Y C. Comparison of two methods for measuring relative conductivity of plants[J]. Jiangsu Agricultural Sciences, 2014, 42(7): 311-312. (in Chinese) | |
[6] | 陈爱葵, 韩瑞宏, 李东洋, 等. 植物叶片相对电导率测定方法比较研究[J]. 广东教育学院学报, 2010, 30(5): 88-91. |
CHEN A K, HAN R H, LI D Y, et al. A comparison of two methods for electrical conductivity about plant leaves[J]. Journal of Guangdong Education Institute, 2010, 30(5): 88-91. (in Chinese with English abstract) | |
[7] | 杨猛, 魏玲, 庄文锋, 等. 低温胁迫对玉米幼苗电导率和叶绿素荧光参数的影响[J]. 玉米科学, 2012, 20(1): 90-94. |
YANG M, WEI L, ZHUANG W F, et al. Effects of low-temperature stress on electric conductivity and fluorescence parameters of maize seedling[J]. Journal of Maize Sciences, 2012, 20(1): 90-94. (in Chinese with English abstract) | |
[8] | 张烨. 低温胁迫下稀土铈和水杨酸对玉米幼苗生理特性的影响[D]. 哈尔滨: 东北农业大学, 2020. |
ZHANG Y. Effects of rare earth cerium and salicylic acid on physiological characteristics of maize seedlings under low temperature stress[D]. Harbin: Northeast Agricultural University, 2020. (in Chinese with English abstract) | |
[9] | SHAN Z Y, LUO X L, WEI M G, et al. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz)[J]. Scientific Reports, 2018, 8(1): 17982. |
[10] | YANG Y J, HUANG C S, GE Z G, et al. Exogenous Glycine betaine reduces drought damage by mediating osmotic adjustment and enhancing antioxidant defense in Phoebe hunanensis[J]. Phyton, 2022, 91(1): 129-148. |
[11] | WANG F, LIANG D Y, PEI X N, et al. Study on the physiological indices of Pinus sibirica and Pinus koraiensis seedlings under cold stress[J]. Journal of Forestry Research, 2019, 30(4): 1255-1265. |
[12] | DAR M H, RAZVI S M, SINGH N, et al. Arbuscular mycorrhizal fungi for salinity stress: anti-stress role and mechanisms[J]. Pedosphere, 2023, 33(1): 212-224. |
[13] | MAO P L, LIN Q Z, PANG Y X, et al. Eco-physiological response mechanism of Tamarix chinensis to soil water changes in coastal wetlands of the Yellow River Delta[J]. Frontiers in Marine Science, 2023, 10: 1231928. |
[14] | 付丽, 曲健禄, 武海斌, 等. 抗戊唑醇苹果轮纹病菌株的渗透压敏感性及其膜透性研究[J]. 山东农业大学学报(自然科学版), 2018, 49(1): 9-13. |
FU L, QU J L, WU H B, et al. Study on the osmolarity sensitivity and membrane permeability of tebuconazole-resistant strains of Botryosphaeria dothidea[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2018, 49(1): 9-13. (in Chinese with English abstract) | |
[15] | SKUBA ŁA K, STYBURSKI J, CHOWANIEC K. Combined effect of fungicide, herbicide and plant elicitor used in apple orchards on non-target epiphytic moss Hypnum cupressiforme[J]. Environmental Pollution, 2024, 342: 123133. |
[16] | KOUKOUNARAS A, SIOMOS A S, GERASOPOULOS D, et al. Active modified atmosphere package induced a new physiological disorder of minimally processed romaine lettuce leaves[J]. Food Packaging and Shelf Life, 2019, 22: 100411. |
[17] | WANG X M, HUANG X, ZHANG F J, et al. Characterization of chitosan/zein composite film combined with tea polyphenol and its application on postharvest quality improvement of mushroom (Lyophyllum decastes Sing.)[J]. Food Packaging and Shelf Life, 2022, 33: 100869. |
[18] | ZHANG T, ZHANG Q, PAN Y, et al. Changes of polyamines and CBFs expressions of two Hami melon (Cucumis melo L.) cultivars during low temperature storage[J]. Scientia Horticulturae, 2017, 224: 8-16. |
[19] | GONG C Y, ZHOU Y X, ZHOU Q, et al. Novel flavonoid derivatives containing 1, 2, 4-triazolo[4, 3-a]pyridine as potential antifungal agents: design, synthesis, and biological evaluation[J]. Journal of Saudi Chemical Society, 2024, 28(2): 101797. |
[20] | 李栋, 项坤, 常苗, 等. 抗MRSA植物药组方MZL-1的药效作用及分子机制[J]. 生物学杂志, 2022, 39(5): 45-51. |
LI D, XIANG K, CHANG M, et al. Inhibitory effect and molecular mechanism of medicinal plants formula MZL-1 against MRSA[J]. Journal of Biology, 2022, 39(5): 45-51. (in Chinese with English abstract) | |
[21] | YANG S Z, HE M, LI D M, et al. Antifungal activity of 40 plant essential oil components against Diaporthe fusicola from postharvest kiwifruits and their possible action mode[J]. Industrial Crops and Products, 2023, 194: 116102. |
[22] | YU Z L, WEI Y X, FU C C, et al. Antimicrobial activity of gamma-poly (glutamic acid), a preservative coating for cherries[J]. Colloids and Surfaces B: Biointerfaces, 2023, 225: 113272. |
[23] | 吴强盛. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2018: 138-139. |
[24] | SHEN L, YANG S X, ZHAO E P, et al. StoMYB41 positively regulates the Solanum torvum response to Verticillium dahliae in an ABA dependent manner[J]. International Journal of Biological Macromolecules, 2024, 263: 130072. |
[25] | 李小方, 张志良. 植物生理学实验指导[M]. 5版. 北京: 高等教育出版社, 2016: 220-221. |
[26] | 张海娟, 芦光新, 范月君, 等. 不同染色方法对两种禾本科牧草菌根侵染率的影响[J]. 草地学报, 2021, 29(12): 2838-2844. |
ZHANG H J, LU G X, FAN Y J, et al. Effect of different dying methods on the mycorrhizal infection rate of two gramineous forages[J]. Acta Agrestia Sinica, 2021, 29(12): 2838-2844. (in Chinese with English abstract) | |
[27] | LUKIC J, STANISAVLJEVIC N, VUKOTIC G, et al. Lactobacillus salivarius BGHO1 and Lactobacillus reuteri BGGO6-55 modify nutritive profile of Artemia franciscana nauplii in a strain ratio, dose and application timing-dependent manner[J]. Animal Feed Science and Technology, 2020, 259: 114356. |
[28] | 李玲, 何国振. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2021: 154-156. |
[29] | 胡婷婷, 张淑杰, 康玉凡. 真空包装结合低温处理对绿豆芽采后生理和品质的影响[J]. 保鲜与加工, 2020, 20(2): 7-15. |
HU T T, ZHANG S J, KANG Y F. Effects of vacuum-packaging combined with low temperature treatments on postharvest physiology and quality of mung bean (Vigna radiate) sprouts[J]. Storage and Process, 2020, 20(2): 7-15. (in Chinese with English abstract) | |
[30] | 卞坡, 吴健, 戴桂馥, 等. 活体植物组织的真空存活研究[J]. 郑州大学学报(自然科学版), 2000, 32(3): 28-31. |
BIAN P, WU J, DAI G F, et al. On survival of live plant tissue in vacuum[J]. Journal of Zhengzhuou University(Natural Science Edition), 2000, 32(3): 28-31. (in Chinese with English abstract) | |
[31] | 李磊, 杨雨晗, 王双, 等. 细胞活性检测方法之比较[J]. 生物学杂志, 2011, 28(1): 87-90. |
LI L, YANG Y H, WANG S, et al. Comparison of cellular activity detection methods[J]. Journal of Biology, 2011, 28(1): 87-90. (in Chinese with English abstract) |
[1] | 李大华, 孔舒, 李栋, 于晓. 基于改进SSD模型的柑橘叶片病害轻量化检测模型[J]. 浙江农业学报, 2024, 36(3): 662-670. |
[2] | 张鹏翀, 韩巧玲, 席本野, 郑秋燕, 赵玥. 基于改进的PSPNet网络的毛白杨根系自动分割量化系统[J]. 浙江农业学报, 2024, 36(2): 424-431. |
[3] | 范为培, 于晓明, 沈凤龙, 王亮, 王星. 基于改进GhostNet V2的轻量化熊蜂图像分类模型[J]. 浙江农业学报, 2024, 36(12): 2832-2845. |
[4] | 郑锡良, 梁森苗, 俞浙萍, 任海英, 孙鹂, 林瑞, 张淑文, 戚行江. 杨梅树体健康状态的量化指标评价[J]. 浙江农业学报, 2022, 34(9): 1945-1954. |
[5] | 邵宜添. 信息对称促进农药减量化:理论模型、典型案例与监管策略选择[J]. 浙江农业学报, 2022, 34(6): 1326-1336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||