›› 2012, Vol. 24 ›› Issue (5): 0-930.
• 论文 •
姚立健,边起,雷良育,赵大旭
收稿日期:
修回日期:
出版日期:
发布日期:
YAO Li-jian;BIAN Qi;LEI Liang-yu;ZHAO Da-xu
Received:
Revised:
Online:
Published:
摘要: 文章介绍了一种基于BP神经网络的水果分级方法。采用数字图像处理的方法对图像进行预处理,选择水果表面颜色的均值和方差来表示水果的颜色特征,采用一个与水果目标具有同样二阶矩的椭圆来近似表示水果的形状,简化了果形描述的复杂程度。通过RP算法训练,可以得到一个具有9个隐层神经元的BP神经网络结构参数。试验表明:采用该模型对水果等级进行分级,平均正确率为92.5%,分级一个水果的时间为10.3 ms。说明采用BP神经网络技术可实现对水果等级的自动判定,该方法具有正确率高、实时性好的特点。
关键词: 水果分级, BP神经网络, 图像处理, 二阶矩
Abstract: This paper introduced one classification method for fruit grade based on BP neural network. Fruit images were preprocessed by using digital image processing method. The mean color value and variance of fruit surface were selected to express fruit color features. An ellipse that has the same normalized second central moments with the fruit region were adopted to approximately represent fruit shape. It simplified the complex degree of the shape description. The optimum structure parameters of the BP neural network which had 9 hidden layer neurons were determined by RP training algorithm. Results showed that average accuracy for fruit classification can reach 92.5% by using this model, and the executing time of microcomputer for grading of one apple is 10.3 ms. This method has the characteristics of high accuracy and good real-time performance.
Key words: fruit classification, BP neural network, image processing, second central moment
姚立健;边起;雷良育;赵大旭. 基于BP神经网络的水果分级研究[J]. , 2012, 24(5): 0-930.
YAO Li-jian;BIAN Qi;LEI Liang-yu;ZHAO Da-xu. Classification of fruit based on the BP neural network [J]. , 2012, 24(5): 0-930.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://www.zjnyxb.cn/CN/
http://www.zjnyxb.cn/CN/Y2012/V24/I5/0