浙江农业学报 ›› 2021, Vol. 33 ›› Issue (2): 223-229.DOI: 10.3969/j.issn.1004-1524.2021.02.05
收稿日期:2020-05-20
出版日期:2021-02-25
发布日期:2021-02-25
作者简介:彭先文,E-mail: pxwpal@163.com通讯作者:
彭先文
基金资助:
WU Junjing(
), QIAO Mu, ZHOU Jiawei, MEI Shuqi, PENG Xianwen*(
)
Received:2020-05-20
Online:2021-02-25
Published:2021-02-25
Contact:
PENG Xianwen
摘要:
长链非编码RNA(lncRNA)在免疫及病毒与宿主互作中发挥重要作用。本研究在猪PAM细胞中发现一种新的猪长链非编码RNA lnc-000649,其全序列长1 483 bp。利用荧光定量PCR技术检测了猪繁殖与呼吸综合征病毒(PRRSV)感染前后PAM细胞中lnc-000649的表达水平,发现其在PRRSV感染后表达显著(P<0.01)下调。为了进一步研究该lncRNA的功能,构建了猪lnc-000649超表达载体lnc-000649-pcDNA3.1,并转染PAM细胞,成功构建了lnc-000649超表达细胞模型。经PRRSV接种后发现,转染lnc-000649-pcDNA3.1组的PAM细胞内PRRSV RNA含量极显著(P<0.01)低于转染pcDNA3.1(+)空载体和未转染组,说明猪lnc-000649对PRRSV增殖具有抑制作用,但是其具体作用机制还有待进一步研究。
中图分类号:
吴俊静, 乔木, 周佳伟, 梅书棋, 彭先文. 猪长链非编码RNA lnc-000649在PRRSV感染增殖中的作用[J]. 浙江农业学报, 2021, 33(2): 223-229.
WU Junjing, QIAO Mu, ZHOU Jiawei, MEI Shuqi, PENG Xianwen. Function of porcine non-coding RNA lnc-000649 during PRRSV infection[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 223-229.
| 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 退火温度 Annealing temperature/℃ | 片段长度 Product length/bp |
|---|---|---|---|
| Lnc-000649 F | CGAGGAAGTGCTGATGTTG | 55 | 184 |
| Lnc-000649 R | TGGACCAGACGCTGAGAAT | ||
| β-actin F | CCAGGTCATCACCATCGG | 55 | 158 |
| β-actin R | CCGTGTTGGCGTAGAGGT | ||
| PRRSV F | CATTGCCAAACACCACTTTG | 55 | 238 |
| PRRSV R | CGCCAGTGTACATCACCATC |
表1 荧光定量PCR引物信息表
Table 1 Information of the qPCR primers
| 引物名称 Primer name | 引物序列 Primer sequence (5'-3') | 退火温度 Annealing temperature/℃ | 片段长度 Product length/bp |
|---|---|---|---|
| Lnc-000649 F | CGAGGAAGTGCTGATGTTG | 55 | 184 |
| Lnc-000649 R | TGGACCAGACGCTGAGAAT | ||
| β-actin F | CCAGGTCATCACCATCGG | 55 | 158 |
| β-actin R | CCGTGTTGGCGTAGAGGT | ||
| PRRSV F | CATTGCCAAACACCACTTTG | 55 | 238 |
| PRRSV R | CGCCAGTGTACATCACCATC |
图1 PRRSV感染PAM细胞后猪lnc-000649的表达量变化 **表示差异极显著(P<0.01)。下同。
Fig.1 Expression levels of lnc-000649 in PRRSV-infected and mock control PAM cells ** represented the significant difference(P<0.01). The same as below.
图2 PAM细胞中猪lnc-000649的全长序列片段的PCR扩增图 图中泳道M为DL2000 DNA marker;泳道1、2、3为猪lnc-000649的全长PCR扩增片段。
Fig.2 PCR amplification of the full-length fragment of porcine lnc-000649 in PAM cells Lane M was DL2000 DNA marker; Lane 1, 2, 3 were porcine lnc-000649 PCR product.
图3 猪lnc-000649超表达载体lnc-000649-pcDNA3.1双酶切鉴定结果 泳道M为1 kb DNA ladder;泳道1为双酶切前的环形lnc-000649-pcDNA3.1载体;泳道2为lnc-000649-pcDNA3.1载体经HindⅢ和XbaⅠ双酶切后,线性化的pcDNA3.1(+)空载体片段与猪lnc-000649序列片段。
Fig.3 Identification result of porcine lnc-000649 overexpression vector lnc-000649-pcDNA3.1 by double enzyme digestion Lane M was 1 kb DNA ladder; Lane 1 was the annular Lnc-000649-pcDNA3.1 vector before enzyme digestion; Lane 2 was the linearized empty pcDNA3.1(+) vector and porcine lnc-000649 digested by HindⅢ and XbaⅠ.
| [1] | 王晓杜, 镡忠斌, 王鲁彦, 等. 猪繁殖与呼吸综合征的抗病育种研究进展[J]. 浙江农业学报, 2014,26(5):1394-1398. |
| WANG X D, TAN Z B, WANG L Y, et al. Research progresses on the breeding of anti PRRS(porcine reproductive and respiratory syndrome) pigs[J]. Acta Agriculturae Zhejiangensis, 2014,26(5):1394-1398.(in Chinese with English abstract) | |
| [2] | ZHANG Q Z, YOO D. PRRS virus receptors and their role for pathogenesis[J]. Veterinary Microbiology, 2015,177(3/4):229-241. |
| [3] |
WHITWORTH K M, ROWLAND R R R, EWEN C L , et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nature Biotechnology, 2016,34(1):20.
DOI URL PMID |
| [4] |
CHEN J, WANG H, BAI J, et al. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163[J]. International Journal of Biological Sciences, 2019,15(2):481-492.
DOI URL PMID |
| [5] | LEMLER D J, BROCHU H, YANG F, et al. Elucidating the role of host long non-coding RNA during viral infection: challenges and paths forward[J]. Vaccine, 2017,5(4):37. |
| [6] |
VALADKHAN S, GUNAWARDANE L S. lncRNA-mediated regulation of the interferon response[J]. Virus Research, 2016,212:127-136.
DOI URL PMID |
| [7] |
LIU W W, DING C. Roles of LncRNAs in viral infections[J]. Frontiers in Cellular and Infection Microbiology, 2017,7:205.
DOI URL PMID |
| [8] |
WU J J, PENG X W, QIAO M, et al. Genome-wide analysis of long noncoding RNA and mRNA profiles in PRRSV-infected porcine alveolar macrophages[J]. Genomics, 2020,112(2):1879-1888.
DOI URL PMID |
| [9] | BECKEDORFF F C, AMARAL M S, DEOCESANOPEREIRA C, et al. Long non-coding RNAs and their implications in cancer epigenetics[J]. Bioscience Reports, 2013,33(4):667-675. |
| [10] |
BETANCUR J G. Pervasive lncRNA binding by epigenetic modifying complexes: the challenges ahead[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2016,1859(1):93-101.
DOI URL PMID |
| [11] |
MIRA-BONTENBAL H, GRIBNAU J. New xist-interacting proteins in X-chromosome inactivation[J]. Current Biology, 2016,26(8):R338-R342.
DOI URL PMID |
| [12] |
GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010,464(7291):1071.
DOI URL PMID |
| [13] |
MCHUGH C A, CHEN C K, CHOW A, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3[J]. Nature, 2015,521(7551):232.
DOI URL PMID |
| [14] |
SANTORO F, MAYER D, KLEMENT R M, et al. Imprinted Igf2r silencing depends on continuous Airn lncRNA expression and is not restricted to a developmental window[J]. Development, 2013,140(6):1184-1195.
DOI URL PMID |
| [15] |
CARPENTER S, AIELLO D, ATIANAND M K, et al. A long noncoding RNA mediates both activation and repression of immune response genes[J]. Science, 2013,341(6147):789-792.
DOI URL PMID |
| [16] |
WANG K C, CHANG H Y. Molecular mechanisms of long noncoding RNAs[J]. Molecular Cell, 2011,43(6):904-914.
DOI URL PMID |
| [17] |
OUYANG J, HU J Y, CHEN J L. lncRNAs regulate the innate immune response to viral infection[J]. Wiley Interdisciplinary Reviews: RNA, 2016,7(1):129-143.
DOI URL PMID |
| [18] |
ADRIAENS C, STANDAERT L, BARRA J, et al. P53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity[J]. Nature Medicine, 2016,22(8):861.
DOI URL PMID |
| [19] |
OUYANG J, ZHU X M, CHEN Y H, et al. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription[J]. Cell Host & Microbe, 2014,16(5):616-626.
DOI URL PMID |
| [20] |
RAPICAVOLI N A, QU K, ZHANG J J, et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics[J]. eLife, 2013,2:e00762.
DOI URL PMID |
| [21] |
XIONG Y L, YUAN J, ZHANG C J, et al. The STAT3-regulated long non-coding RNA Lethe promote the HCV replication[J]. Biomedicine & Pharmacotherapy, 2015,72:165-171.
DOI URL PMID |
| [22] | 陈曦. 通城猪和大白猪PRRSV感染前后外周免疫器官中差异表达LncRNA的鉴定与功能研究[D]. 武汉: 华中农业大学, 2019. |
| CHEN X. Identification and functional analysis of differentially expressed LncRNA in peripheral immune organs of Tongcheng and large white pigs before and after PRRSV infection[D]. Wuhan: Huazhong Agricultural University, 2019.(in Chinese with English abstract) | |
| [23] | 甘利鹏, 张婧, 孙普, 等. LncRNA TCONS00179042对Marc-145细胞中PRRSV复制的影响[J]. 中国兽医科学, 2018,48(5):537-544. |
| GAN L P, ZHANG J, SUN P, et al. Effect of LncRNA TCONS00179042 on the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells[J]. Chinese Veterinary Science, 2018,48(5):537-544.(in Chinese with English abstract) | |
| [24] | WEBB E A, ALMUTAIR A, KELBERMAN D, et al. ARNT2 mutation causes hypopituitarism, post-natal microcephaly, visual and renal anomalies[J]. Brain, 2013,136(10):3096-3105. |
| [25] | 刘爱玲, 潘杰, 庞运倩, 等. MDCK细胞ISG15基因的克隆表达及抗病毒活性分析[J]. 浙江农业学报, 2015,27(2):154-159. |
| LIU A L, PAN J, PANG Y Q, et al. Clone and expression of ISG15 gene from MDCK cell and analysis of its antiviral activity[J]. Acta Agriculturae Zhejiangensis, 2015,27(2):154-159.(in Chinese with English abstract) | |
| [26] |
LIU K, MA G N, LIU X Q, et al. Porcine reproductive and respiratory syndrome virus counteracts type I interferon-induced early antiviral state by interfering IRF7 activity[J]. Veterinary Microbiology, 2019,229:28-38.
DOI URL PMID |
| [27] | 张华伟, 李连峰, 周末, 等. 抗伪狂犬病病毒干扰素刺激基因的筛选及IFIT3抗病毒活性的鉴定[J]. 中国预防兽医学报, 2019,41(4):338-344. |
| ZHANG H W, LI L F, ZHOU M, et al. Screening of anti-pseudorabies virus interferon-stimulated genes and identification of anti-viral activity of IFIT3[J]. Chinese Journal of Preventive Veterinary Medicine, 2019,41(4):338-344.(in Chinese with English abstract) | |
| [28] | 李燕. 猪干扰素刺激基因ISG20的克隆、真核表达及其对PRRSV增殖的影响[D]. 武汉: 华中农业大学, 2010. |
| LI Y. Cloning, eukaryotic expression of porcine interferon-stimulated gene ISG20 and investigation of its anti viral effect on PRRSV proliferation[D]. Wuhan: Huazhong Agricultural University, 2010.(in Chinese with English abstract) | |
| [29] |
FANG J Y, WANG H Y, BAI J, et al. Monkey viperin restricts porcine reproductive and respiratory syndrome virus replication[J]. PLoS One, 2016,11(5):e0156513.
DOI URL PMID |
| [30] |
NIU P X, SHABIR N, KHATUN A, et al. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs[J]. Veterinary Microbiology, 2016,182:187-195.
DOI URL PMID |
| [31] |
LIU F, DU Y P, FENG W H. New perspective of host microRNAs in the control of PRRSV infection[J]. Veterinary Microbiology, 2017,209:48-56.
DOI URL PMID |
| [32] |
WANG L L, ZHOU L, HU D M, et al. Porcine reproductive and respiratory syndrome virus suppresses post-transcriptionally the protein expression of IFN-β by upregulating cellular microRNAs in porcine alveolar macrophages in vitro[J]. Experimental and Therapeutic Medicine, 2017,15(1):115-126.
DOI URL PMID |
| [33] |
LIU F, WANG H L, DU L, et al. MicroRNA-30c targets the interferon-alpha/beta receptor beta chain to promote type 2 PRRSV infection[J]. Journal of General Virology, 2018,99(12):1671-1680.
DOI URL |
| [34] |
ZHAO G W, HOU J Y, XU G X, et al. Cellular microRNA miR-10a-5p inhibits replication of porcine reproductive and respiratory syndrome virus by targeting the host factor signal recognition particle 14[J]. The Journal of General Virology, 2017,98(4):624-632.
DOI URL PMID |
| [1] | 张若楠, 门小明, 秦凯鹏, 王彬彬, 吴杰, 丁向彬, 徐子伟, 齐珂珂. 绿嘉黑猪的不同杂交组合生长性能、胴体品质、产肉性能和收益比较研究[J]. 浙江农业学报, 2025, 37(6): 1203-1211. |
| [2] | 孙仁杰, 徐慧玲, 孙思琪, 柴娟, 虞一聪, 谢荣辉, 李肖梁, 赵灵燕, 张传亮. 非洲猪瘟病毒基因Ⅰ型和Ⅱ型PCR-RFLP鉴别方法的建立[J]. 浙江农业学报, 2025, 37(5): 1017-1028. |
| [3] | 陆南洋, 赵婷蕾, 周瑛, 姚燕来, 李鹏昊, 洪春来, 朱为静, 洪磊东, 张涛, 朱凤香. 蝇蛆转化赤霉素发酵滤渣的工艺研究[J]. 浙江农业学报, 2025, 37(4): 901-908. |
| [4] | 张楚妮, 徐计东, 高钦, 单颖, 方维焕, 李肖梁. 丁酸抑制猪流行性腹泻病毒体外复制的分子机制[J]. 浙江农业学报, 2025, 37(3): 579-590. |
| [5] | 赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632. |
| [6] | 诸绿寒, 方堃, 吴晓丽, 姚青, 谢淑丽, 郑雷, 敖月, 陈黎洪, 赵珂, 魏俊, 张晋. 微波辅助过热蒸汽加热对猪肉糜理化特性和感官品质的影响[J]. 浙江农业学报, 2025, 37(3): 679-688. |
| [7] | 王彬彬, 齐珂珂, 门小明, 徐子伟. 基因组选择技术在猪肉质育种中的应用与展望[J]. 浙江农业学报, 2025, 37(3): 726-735. |
| [8] | 向进, 王春源, 吴燕, 谭元成, 杨酸, 张依裕. 柯乐猪CRISP3基因SNP鉴定及其对繁殖性状的影响[J]. 浙江农业学报, 2024, 36(6): 1270-1278. |
| [9] | 秦凯鹏, 门小明, 徐子伟. 猪肉鲜味物质及其形成机理研究进展[J]. 浙江农业学报, 2024, 36(3): 719-728. |
| [10] | 吴兴凤, 章啸君, 朱江, 余敏洁, 徐娥, 马灵燕, 肖英平. 腹泻仔猪肠道菌群结构特征及肠道炎症因子、腺苷酸环化酶和鸟苷酸环化酶mRNA表达变化研究[J]. 浙江农业学报, 2024, 36(11): 2465-2475. |
| [11] | 刘伟东, 周素茵, 徐爱俊, 叶俊华. 生猪虹膜快速定位算法研究[J]. 浙江农业学报, 2024, 36(11): 2617-2626. |
| [12] | 华涛, 常晨, 李倩文, 张道华, 唐波. 猪细小病毒1~7型全基因组遗传变异[J]. 浙江农业学报, 2024, 36(10): 2193-2203. |
| [13] | 潘梓博, 周昕, 徐杏, 刘凯歌, 吉洪湖, 路伏增, 叶春林, 周卫东. 基于激光-视觉融合的配怀猪舍内导航建图技术研究[J]. 浙江农业学报, 2024, 36(10): 2358-2367. |
| [14] | 李颀, 李煜哲. 弱光条件下猪舍清洗目标检测[J]. 浙江农业学报, 2023, 35(9): 2240-2249. |
| [15] | 潘亚杰, 常会庆, 宋盼盼. 规模化猪场粪便养分特征与堆肥过程中填料添加的影响[J]. 浙江农业学报, 2023, 35(7): 1690-1698. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||