浙江农业学报 ›› 2021, Vol. 33 ›› Issue (12): 2254-2263.DOI: 10.3969/j.issn.1004-1524.2021.12.05
收稿日期:
2020-09-01
出版日期:
2021-12-25
发布日期:
2022-01-10
通讯作者:
杨化强
作者简介:
* 杨化强,E-mail: yangh@scau.edu.cn基金资助:
ZHANG Mao1(), ZHAO Xin2, CAI Gengyuan2, YANG Huaqiang2,*(
)
Received:
2020-09-01
Online:
2021-12-25
Published:
2022-01-10
Contact:
YANG Huaqiang
摘要:
精原干细胞(spermatogonial stem cells,SSCs)是雄性哺乳动物精子发生及具有生育能力的保障。精原干细胞的体外培养不仅为精子发生的研究提供材料,还有助于开发新的家畜保种方法和动物遗传修饰。为了探索猪精原干细胞体外培养体系的建立方法,本研究采用胶原酶Ⅳ-胰酶两步酶法对3~7日龄大白仔猪睾丸进行消化得到单细胞悬液,利用不同时间程序的差速贴壁对精原干细胞进行纯化,选择大白仔猪睾丸支持细胞作为饲养层,添加不同细胞因子研究精原干细胞的增殖情况以期得到最佳的培养体系。结果显示,通过差速贴壁得到的UCHL-1阳性生殖细胞比例最高为18.59%±0.94%;不同细胞因子组合添加试验发现精原干细胞添加20 ng·mL-1 GDNF、10 ng·mL-1 IGF和20 ng·mL-1 bFGF的增殖效果最佳;以支持细胞作为饲养层、在DMEM/F12中添加1%FBS以及上述细胞因子组合对精原干细胞进行培养15 d后可见大量的精原干细胞集落,通过免疫荧光、AKP染色、荧光定量PCR等试验证明精原干细胞进行了大量增殖。本研究初步建立了猪精原干细胞的体外培养体系,可通过体外培养大量增殖精原干细胞,为后续精原干细胞的研究奠定基础。
中图分类号:
张茂, 赵鑫, 蔡更元, 杨化强. 精原干细胞体外培养体系的建立[J]. 浙江农业学报, 2021, 33(12): 2254-2263.
ZHANG Mao, ZHAO Xin, CAI Gengyuan, YANG Huaqiang. Establishment of in vitro culture system of pig spermatogonial stem cells[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2254-2263.
基因 Gene | 引物 Primer (5'→3') | 产物 Product/bp | Tm/ ℃ |
---|---|---|---|
GAPDH | F:AGGGCTGCTTTTAACTCTGGCAA | 180 | 56 |
R:GATGGTGATGGCCTTTCCATTG | |||
UCHL-1 | F:TCCGGAAGACAGAGCAAAATGC | 150 | 56 |
R:AGTTCATAGAGGTGGCCATCCA | |||
Thy-1 | F:GTGCTCTTGGGCACTGTGGG | 178 | 57 |
R:TCTTGCTGGAGATGCTGGGC | |||
Gfra-1 | F:GAACGGAGGCGGCAGACCAT | 242 | 57 |
R:AAGCCCAGAGTAGGCGAGGAG | |||
C-kit | F:GATGCCTTCAAGGATTTGGA | 181 | 53 |
R:ATGGAATCTGAGGCCTTCCT | |||
Oct4 | F:CGCGAAGCTGGACAAGGAGA | 151 | 56 |
R:CAAAGTGAGCCCCACATCGG | |||
Nanog | F:AACCAAACCTGGAACAGCCAGAC | 152 | 56 |
R:GTTTCCAAGACGGCCTCCAAAT | |||
Dazl | F:ACAGTGGCCTGCTGGGGAAC | 153 | 56 |
R:TGTGGGCCATTTCCAGAGGA |
表1 引物设计
Table 1 Primers design
基因 Gene | 引物 Primer (5'→3') | 产物 Product/bp | Tm/ ℃ |
---|---|---|---|
GAPDH | F:AGGGCTGCTTTTAACTCTGGCAA | 180 | 56 |
R:GATGGTGATGGCCTTTCCATTG | |||
UCHL-1 | F:TCCGGAAGACAGAGCAAAATGC | 150 | 56 |
R:AGTTCATAGAGGTGGCCATCCA | |||
Thy-1 | F:GTGCTCTTGGGCACTGTGGG | 178 | 57 |
R:TCTTGCTGGAGATGCTGGGC | |||
Gfra-1 | F:GAACGGAGGCGGCAGACCAT | 242 | 57 |
R:AAGCCCAGAGTAGGCGAGGAG | |||
C-kit | F:GATGCCTTCAAGGATTTGGA | 181 | 53 |
R:ATGGAATCTGAGGCCTTCCT | |||
Oct4 | F:CGCGAAGCTGGACAAGGAGA | 151 | 56 |
R:CAAAGTGAGCCCCACATCGG | |||
Nanog | F:AACCAAACCTGGAACAGCCAGAC | 152 | 56 |
R:GTTTCCAAGACGGCCTCCAAAT | |||
Dazl | F:ACAGTGGCCTGCTGGGGAAC | 153 | 56 |
R:TGTGGGCCATTTCCAGAGGA |
图1 纯化后精原干细胞的检测 A,免疫荧光检测(200×),a1-a3,方法A纯化后免疫荧光;b1-b3,方法B纯化后免疫荧光;c1-c3,方法C纯化后免疫荧光。B,AKP 染色,红色箭头为AKP染色阳性细胞(400×)。C,定量PCR分析,**表示差异极显著。
Fig. 1 Detection of purified SSCs A, Immunofluorescence detection (200×), a1-a3, Immunofluorescence after purification by method A; b1-b3, Immunofluorescence after purification by method B; c1-c3, Immunofluorescence after purification by method C. B, AKP staining, the red arrow indicates AKP staining positive cells (400×). C, Quantitative PCR analysis, ** represented the difference was significant at P<0.01.
图2 不同浓度丝裂霉素C对支持细胞的影响(上)和不同细胞因子组合添加对精原干细胞增殖的影响(下) 柱上没有相同小写字母的表示差异显著(P<0.05)。
Fig. 2 Effect of different concentrations of mitomycin C on Sertoli cells (up) and effect of different cytokine combinations on proliferation of spermatogonial stem cells (down) Bars marked without the same letters indicated that the difference was significant at P<0.05.
图3 SSCs的体外培养 A,接种的精原干细胞(200×);B,培养6 d的精原干细胞(200×);C,培养15 d的精原干细胞(100×);D,培养15 d的精原干细胞集落(200×)。
Fig. 3 In vitro culture of SSCs A, Inoculated spermatogonial stem cells (200×); B, Spermatogonial stem cells cultured for 6 days(200×); C, Spermatogonial stem cells cultured for 15 days(100×); D,Spermatogonial stem cell colonies cultured for 15 days(200×).
图4 增殖精原干细胞的检测 A,UCHL-1免疫荧光(200×),a1,常光,a2,UCHL-1染色。B,AKP染色(200×)。C,定量PCR检测,**表示差异极显著。D,RT-PCR检测,M,DL2000;泳道1~7分别为GAPDH、UCHL-1、Gfra-1、C-kit、Thy-1、Oct-4、Nanog基因。
Fig. 4 Detection of proliferating SSCs A, Immunofluorescence of UCHL-1 (200×), a1, white light, a2, UCHL-1 antibody staining. B, AKP staining (200×). C, Quantitative PCR detection, ** meaned the difference is extremely significant. D, RT-PCR detection, M, DL2000; lanes 1-7 are GAPDH, UCHL-1, Gfra-1, C-kit, Thy-1, Oct-4, Nanog genes, respectively.
[1] |
SATO T, KATAGIRI K, YOKONISHI T, et al. In vitro production of fertile sperm from murine spermatogonial stem cell lines[J]. Nature Communications, 2011, 2: 472.
DOI URL |
[2] | 范翠花, 兰风华, 张朵. 非灵长类动物精原干细胞及其多潜能性的研究进展[J]. 解放军医学杂志, 2016, 41(2): 168-174. |
FAN C H, LAN F H, ZHANG D. Research development of spermatogonial stem cell and their pluripotency in non-primate mammals[J]. Medical Journal of Chinese PLA, 2016, 41(2): 168-174.(in Chinese with English abstract) | |
[3] |
SATO T, KATAGIRI K, GOHBARA A, et al. In vitro production of functional sperm in cultured neonatal mouse testes[J]. Nature, 2011, 471(7339): 504-507.
DOI URL |
[4] |
ZHENG Y, ZHANG Y Q, QU R F, et al. Spermatogonial stem cells from domestic animals: progress and prospects[J]. Reproduction (Cambridge, England), 2014, 147(3): R65-R74.
DOI URL |
[5] | 徐远飞, 侯彬, 周继昌. 精原干细胞分离、鉴定、培养及其应用进展[J]. 生命科学, 2017, 29(5): 443-449. |
XU Y F, HOU B, ZHOU J C. Advances in isolation, identification and culture of spermatogonial stem cells and their applications[J]. Chinese Bulletin of Life Sciences, 2017, 29(5): 443-449.(in Chinese with English abstract) | |
[6] | 朱文倩, 姜禹, 蔡宁宁, 等. 精原干细胞技术研究进展[J]. 中国细胞生物学学报, 2020, 42(2): 342-347. |
ZHU W Q, JIANG Y, CAI N N, et al. Advances in the research of spermatogonial stem cell techniques[J]. Chinese Journal of Cell Biology, 2020, 42(2): 342-347.(in Chinese with English abstract) | |
[7] |
ZHENG Y, TIAN X E, ZHANG Y Q, et al. In vitro propagation of male germline stem cells from piglets[J]. Journal of Assisted Reproduction and Genetics, 2013, 30(7): 945-952.
DOI URL |
[8] |
IZADYAR F, SPIERENBERG G T, CREEMERS L B, et al. Isolation and purification of type A spermatogonia from the bovine testis[J]. Reproduction (Cambridge, England), 2002, 124(1): 85-94.
DOI URL |
[9] | HEIDARI B, GIFANI M, SHIRAZI A, et al. Enrichment of undifferentiated type a spermatogonia from goat testis using discontinuous percoll density gradient and differential plating[J]. Avicenna Journal of Medical Biotechnology, 2014, 6(2): 94-103. |
[10] | KUBOTA H, AVARBOCK M R, BRINSTER R L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(47): 16489-16494. |
[11] | CONRAD S, AZIZI H, HATAMI M, et al. Differential gene expression profiling of enriched human spermatogonia after short-and long-term culture[J]. BioMed Research International, 2014, 2014: 138350. |
[12] |
BUAGEAW A, SUWANI M, BEN-YEHUDAH A, et al. GDNF family receptor alpha1 phenotype of spermatogonial stem cells in immature mouse testes[J]. Biology of Reproduction, 2005, 73(5): 1011-1016.
DOI URL |
[13] |
KUBOTA H, AVARBOCK M R, BRINSTER R L. Culture conditions and single growth factors affect fate determination of mouse spermatogonial stem cells[J]. Biology of Reproduction, 2004, 71(3): 722-731.
DOI URL |
[14] |
KANATSU-SHINOHARA M, TOYOKUNI S, SHINOHARA T. CD9 is a surface marker on mouse and rat male germline stem cells[J]. Biology of Reproduction, 2004, 70(1): 70-75.
DOI URL |
[15] |
BUAAS F W, KIRSH A L, SHARMA M, et al. Plzf is required in adult male germ cells for stem cell self-renewal[J]. Nature Genetics, 2004, 36(6): 647-652.
DOI URL |
[16] |
SADA A, HASEGAWA K, PIN P H, et al. NANOS2 Acts downstream of glial cell line-derived neurotrophic factor signaling to suppress differentiation of spermatogonial stem cells[J]. Stem Cells, 2012, 30(2): 280-291.
DOI URL |
[17] |
LUO J P, MEGEE S, RATHI R, et al. Protein gene product 9.5 is a spermatogonia-specific marker in the pig testis: application to enrichment and culture of porcine spermatogonia[J]. Molecular Reproduction and Development, 2006, 73(12): 1531-1540.
DOI URL |
[18] |
TANG L, BONDAREVA A, GONZÁLEZ R, et al. TALEN-mediated gene targeting in porcine spermatogonia[J]. Molecular Reproduction and Development, 2018, 85(3): 250-261.
DOI URL |
[19] |
ZHAO H M, YANG H, LUO F H, et al. Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells in vitro[J]. Genetics and Molecular Research, 2016, 15(3): DOI: 10.4238/gmr.15038602.
DOI |
[20] | ZHENG Y, HE Y, AN J H, et al. THY1 is a surface marker of porcine gonocytes[J]. Reproduction, Fertility, and Development, 2014, 26(4): 533-539. |
[21] |
MENG X, LINDAHL M, HYVÖNEN M E, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF[J]. Science, 2000, 287(5457): 1489-1493.
DOI URL |
[22] |
KANATSU-SHINOHARA M, OGONUKI N, INOUE K, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells[J]. Biology of Reproduction, 2003, 69(2): 612-616.
DOI URL |
[23] |
KUIJK E W, COLENBRANDER B, ROELEN B A J. The effects of growth factors on in vitro-cultured porcine testicular cells[J]. Reproduction (Cambridge, England), 2009, 138(4): 721-731.
DOI URL |
[24] |
HEIDARI B, RAHMATI-AHMADABADI M, AKHONDI M M, et al. Isolation, identification, and culture of goat spermatogonial stem cells using c-kit and PGP9.5 markers[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(10): 1029-1038.
DOI URL |
[25] |
BAHADORANI M, HOSSEINI S M, ABEDI P, et al. Short-term in-vitro culture of goat enriched spermatogonial stem cells using different serum concentrations[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(1): 39-46.
DOI URL |
[26] | YANG Y F, YARAHMADI M, HONARAMOOZ A. Development of novel strategies for the isolation of piglet testis cells with a high proportion of gonocytes[J]. Reproduction, Fertility, and Development, 2010, 22(7): 1057-1065. |
[27] |
FUJIHARA M, KIM S M, MINAMI N, et al. Characterization and in vitro culture of male germ cells from developing bovine testis[J]. The Journal of Reproduction and Development, 2011, 57(3): 355-364.
DOI URL |
[28] |
HU J H, XI H M, REN Y J, et al. Recent advances in isolation, identification, and culture of mammalian spermatogonial stem cells[J]. Asian Journal of Andrology, 2021,23: DOI: 10.4103/aja.aja_41_21.
DOI |
[29] | 王配, 王丽娜, 霍海龙, 等. 猪类无精症缺失基因DAZL 的cDNA全长克隆、组织表达和亚细胞定位[J]. 畜牧兽医学报, 2021, 52(3): 683-692. |
WANG P, WANG L N, HUO H L, et al. cDNA full-length clonging,tissue expression and subcellular location of DAZL gene in pig[J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(3): 683-692.(in Chinese with English abstract) | |
[30] |
HERRID M, DAVEY R J, HILL J R. Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation[J]. Cell and Tissue Research, 2007, 330(2): 321-329.
DOI URL |
[31] |
HONARAMOOZ A, MEGEE S O, RATHI R, et al. Building a testis: formation of functional testis tissue after transplantation of isolated porcine (Sus scrofa) testis cells[J]. Biology of Reproduction, 2007, 76(1): 43-47.
DOI URL |
[32] |
KALA S, KAUSHIK R, SINGH K P, et al. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell[J]. Journal of Assisted Reproduction and Genetics, 2012, 29(12): 1335-1342.
DOI URL |
[33] |
PARK M H, PARK J E, KIM M S, et al. Development of a high-yield technique to isolate spermatogonial stem cells from porcine testes[J]. Journal of Assisted Reproduction and Genetics, 2014, 31(8): 983-991.
DOI URL |
[34] |
AOSHIMA K, AI B B, MAKINO Y, et al. Establishment of alternative culture method for spermatogonial stem cells using knockout serum replacement[J]. PLoS One, 2013, 8(10): e77715.
DOI URL |
[1] | 朱志伟, 陈晓宇, 于福先, 张樑, 黄菁, 王志刚, 赖建兵, 沈顺新, 殷文彬, 潘建治. 精准定时输精对后备母猪早期胚胎发育与繁殖性能的影响[J]. 浙江农业学报, 2021, 33(5): 794-800. |
[2] | 刘君雯, 王迪, 朱艳艳, 邢刚, 占松鹤, 刘晓露, 魏建忠, 孙裴, 刘雪兰, 李郁. 猪丹毒丝菌CbpB基因的克隆表达及其间接ELISA抗体检测方法的建立与应用[J]. 浙江农业学报, 2021, 33(5): 816-824. |
[3] | 涂藤, 尹清清, 张鹏飞, 王印, 杨泽晓, 姚学萍, 罗燕. 基于毛细管电泳的7种猪源性疫病的多重PCR检测方法的建立[J]. 浙江农业学报, 2021, 33(4): 618-631. |
[4] | 金俪雯, 刘增金, 刘爱军. 猪肉销售商可追溯体系参与行为及其影响因素——基于北京、上海、济南3市636位销售商的实证分析[J]. 浙江农业学报, 2021, 33(3): 541-552. |
[5] | 吴俊静, 乔木, 周佳伟, 梅书棋, 彭先文. 猪长链非编码RNA lnc-000649在PRRSV感染增殖中的作用[J]. 浙江农业学报, 2021, 33(2): 223-229. |
[6] | 夏江英, 杨菊, 宋天浩, 庞莲凤, 叶婷, 任志华, 邓俊良. 维生素C对β-伴大豆球蛋白诱导的仔猪肠上皮细胞炎性损伤的保护作用[J]. 浙江农业学报, 2021, 33(11): 2017-2025. |
[7] | 杨菊, 邓俊良, 夏江英, 宋天浩, 庞莲凤, 任志华. 维生素A对大豆7S球蛋白致仔猪肠上皮细胞屏障功能损伤的影响[J]. 浙江农业学报, 2021, 33(11): 2026-2033. |
[8] | 王伟, 滚双宝, 王鹏飞, 黄晓宇, 谢开会, 雒瑞瑞, 高小莉, 张博, 闫尊强, 杨巧丽, 马艳萍. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
[9] | 孙筱君, 沈琦, 吴逸飞, 姚晓红, 李园成, 孙宏, 王新, 汤江武, 葛向阳. 氨氮降解微生物的筛选和初步应用[J]. 浙江农业学报, 2020, 32(9): 1683-1691. |
[10] | 杜炎斌, 张港琛, 王瑜欣, 刘宝宝, 宫胜龙, 东笑, 汪洋. 猪链球菌rpoE基因克隆及生物信息学分析[J]. 浙江农业学报, 2020, 32(7): 1149-1154. |
[11] | 孙瑞萍, 王峰, 晁哲, 刘海隆, 邢漫萍, 刘圈炜, 黄丽丽, 郑心力, 魏立民. 屯昌猪PDK4基因克隆及其组织表达分析[J]. 浙江农业学报, 2020, 32(6): 978-985. |
[12] | 郭富城, 金丽, 苏强, 粟雨芯, 李方琳, 陈士恩, 马晓霞. PEDV N蛋白的原核表达纯化及B细胞抗原表位预测分析[J]. 浙江农业学报, 2020, 32(5): 762-769. |
[13] | 陈韫陆, 单颖, 罗浩, 徐计东, 赵灵燕, 方维焕, 李肖梁. 猪Ⅲ型干扰素原核表达及其抗病毒效果研究[J]. 浙江农业学报, 2020, 32(5): 779-788. |
[14] | 段倩倩, 毛天骄, 韩业芹, 韩雪姣, 魏建忠, 孙裴, 李郁. 猪链球菌2型灭活疫苗对小鼠的免疫效果评价[J]. 浙江农业学报, 2020, 32(4): 577-585. |
[15] | 俞洁雅, 倪梦萍, 丁良长, 胡洲铭, 肖建中, 郑强. 一株猪粪降解菌的筛选、评价及鉴定[J]. 浙江农业学报, 2020, 32(4): 586-592. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||