浙江农业学报 ›› 2022, Vol. 34 ›› Issue (1): 128-140.DOI: 10.3969/j.issn.1004-1524.2022.01.16
收稿日期:2021-01-10
出版日期:2022-01-25
发布日期:2022-02-05
作者简介:* 蔡燕飞,E-mail: yanfeicai@scau.edu.cn通讯作者:
蔡燕飞
基金资助:
YAN Jingting(
), QIAO Kai, CAI Yanfei*(
)
Received:2021-01-10
Online:2022-01-25
Published:2022-02-05
Contact:
CAI Yanfei
摘要:
为确定rpoB、gyrA和cheA基因在芽孢杆菌近缘种鉴定上的有效性,通过Blast-N算法,比对菌肥常用芽孢杆菌模式菌16S rRNA、rpoB、gyrA、cheA基因的序列差异,确定其应用效力。据此,提出一种根据菌株原始信息选择对应的基因引物扩增其序列,通过序列相似度和系统发育树快速、准确鉴定芽孢杆菌菌种的方法,并以19株可用于微生物肥料生产的芽孢杆菌分离株为材料,验证该方法的可行性。结果显示:地衣芽孢杆菌(Bacillus licheniformis)与枯草芽孢杆菌亚种(Bacillus subtilis subsp. subtilis、Bacillus subtilis subsp. inaquosorum、Bacillus subtilis subsp. spizizenii)、解淀粉芽孢杆菌亚种(Bacillus amyloliquefaciens、Bacillus velezensis)之间rpoB、gyrA、cheA基因序列的一致性分别为84.93%~86.57%、低于78.21%和78.25%~78.58%,枯草芽孢杆菌和解淀粉芽孢杆菌亚种之间gyrA基因序列的一致性为81.01%~95.82%,cheA基因序列的一致性为94.50%~95.83%,蜡样芽孢杆菌亚种(Bacillus cereus、Bacillus thuringiensis)之间gyrA基因序列的一致性为94.54%,巨大芽孢杆菌(Bacillus megaterium)和阿氏芽孢杆菌(Bacillus aryabhattai)cheA基因序列的一致性为94.55%。序列差异表明,rpoB、gyrA和cheA基因可以区分地衣芽孢杆菌、枯草芽孢杆菌组和解淀粉芽孢杆菌组,gyrA和cheA基因可以鉴定出枯草芽孢杆菌组、解淀粉芽孢杆菌组的亚种,gyrA基因能够鉴定蜡样芽孢杆菌组的亚种,cheA基因能区分巨大芽孢杆菌和阿氏芽孢杆菌。应用所提方法,将19株芽孢杆菌分离株鉴定为茹氏短芽孢杆菌(Brevibacillus reuszeri)、Bacillus mesonae、五大连池芽孢杆菌(Bacillus wudalianchiensis)、大猩猩芽孢杆菌(Bacillus massiliogorillae)、枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp. subtilis)、蜡样芽孢杆菌、阿氏芽孢杆菌和贝莱斯芽孢杆菌(Bacillus velezensis)。
中图分类号:
颜静婷, 乔凯, 蔡燕飞. rpoB、gyrA、cheA基因在芽孢杆菌鉴定上的应用[J]. 浙江农业学报, 2022, 34(1): 128-140.
YAN Jingting, QIAO Kai, CAI Yanfei. Application of rpoB, gyrA and cheA genes in identifying Bacillus genus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 128-140.
| 菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
|---|---|---|---|---|---|---|---|
| 16S rRNA | rpoB | gyrA | cheA | ||||
| 巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
| 阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
| 地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
| 胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
| 多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
| 解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
| 贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
| Rhizosphere soil of diseased beet | |||||||
| 枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
| Bacillus subtilis subsp. subtilis | |||||||
| Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
| 枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
| Bacillus subtilis subsp. spizizenii | |||||||
| 苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
| 蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
表1 供试芽孢杆菌模式菌及其相关信息
Table 1 Basic information of reference Bacillustype strains used in present study
| 菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
|---|---|---|---|---|---|---|---|
| 16S rRNA | rpoB | gyrA | cheA | ||||
| 巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
| 阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
| 地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
| 胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
| 多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
| 解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
| 贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
| Rhizosphere soil of diseased beet | |||||||
| 枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
| Bacillus subtilis subsp. subtilis | |||||||
| Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
| 枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
| Bacillus subtilis subsp. spizizenii | |||||||
| 苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
| 蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
| 菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
|---|---|---|---|
| YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
| YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
| YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
| YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
| YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
| YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
| YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
| YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
表2 供试芽孢杆菌分离株的促生特性和来源
Table 2 Origins and growth-promoting properties of Bacillus isolates used in present study
| 菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
|---|---|---|---|
| YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
| YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
| YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
| YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
| YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
| YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
| YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
| YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
| YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
| YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
| YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
| 引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
|---|---|---|---|
| 16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
| rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
| gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
| gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
| gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
| cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
表3 特异性引物序列
Table 3 Sequences of designed specific primers
| 引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
|---|---|---|---|
| 16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
| rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
| gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
| gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
| gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
| cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
|---|---|---|---|---|---|---|---|---|---|---|
| B. v | 99.61 | |||||||||
| B. sub | 99.48 | 99.68 | ||||||||
| B. ina | 99.42 | 99.49 | 99.74 | |||||||
| B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
| B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
| B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
| B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
| B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
| B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
| P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
| P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
表4 芽孢杆菌模式菌的16S rRNA基因序列一致性
Table 4 Sequence identities of 16S rRNA gene in reference strains within Bacillus genus %
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
|---|---|---|---|---|---|---|---|---|---|---|
| B. v | 99.61 | |||||||||
| B. sub | 99.48 | 99.68 | ||||||||
| B. ina | 99.42 | 99.49 | 99.74 | |||||||
| B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
| B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
| B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
| B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
| B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
| B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
| P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
| P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
|---|---|---|---|---|---|---|---|---|
| B. v | 98.44 | |||||||
| B. sub | 90.23 | 90.31 | ||||||
| B. ina | 90.29 | 90.26 | 97.88 | |||||
| B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
| B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
| B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
| B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
| B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
表5 芽孢杆菌模式菌的rpoB基因序列一致性
Table 5 Sequence identities of rpoB gene in reference strains within Bacillus genus %
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
|---|---|---|---|---|---|---|---|---|
| B. v | 98.44 | |||||||
| B. sub | 90.23 | 90.31 | ||||||
| B. ina | 90.29 | 90.26 | 97.88 | |||||
| B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
| B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
| B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
| B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
| B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
|---|---|---|---|---|---|---|---|---|---|
| B. v | 94.65 | ||||||||
| B. sub | NF | NF | |||||||
| B. ina | NF | NF | 94.50 | ||||||
| B. spi | NF | NF | 95.00 | 95.83 | |||||
| B. lich | 78.21 | NF | NF | NF | NF | ||||
| B. t | NF | NF | NF | NF | NF | NF | |||
| B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
| B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
| B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
表6 芽孢杆菌模式菌的cheA基因序列一致性
Table 6 Sequence identities of cheA gene in reference strains within Bacillus genus
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
|---|---|---|---|---|---|---|---|---|---|
| B. v | 94.65 | ||||||||
| B. sub | NF | NF | |||||||
| B. ina | NF | NF | 94.50 | ||||||
| B. spi | NF | NF | 95.00 | 95.83 | |||||
| B. lich | 78.21 | NF | NF | NF | NF | ||||
| B. t | NF | NF | NF | NF | NF | NF | |||
| B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
| B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
| B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
|---|---|---|---|---|---|---|---|---|
| B. v | 95.08 | |||||||
| B. sub | 81.16 | NF | ||||||
| B. ina | 81.16 | 81.01 | 94.00 | |||||
| B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
| B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
| B. t | NF | NF | NF | NF | NF | NF | ||
| B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
| B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
表7 芽孢杆菌模式菌的gyrA基因序列一致性
Table 7 Sequence identities of gyrA gene in reference strains within Bacillus genus
| 菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
|---|---|---|---|---|---|---|---|---|
| B. v | 95.08 | |||||||
| B. sub | 81.16 | NF | ||||||
| B. ina | 81.16 | 81.01 | 94.00 | |||||
| B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
| B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
| B. t | NF | NF | NF | NF | NF | NF | ||
| B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
| B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
| 菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
|---|---|
| 多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
| 胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
| 地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
| 巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
| 阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
| 枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
| 枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
| Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
| 解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
| 贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
| 蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
| 苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
表8 鉴定菌种所用引物对应表
Table 8 Strains and corresponding primers for identification
| 菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
|---|---|
| 多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
| 胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
| 地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
| 巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
| 阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
| 枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
| 枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
| Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
| 解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
| 贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
| 蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
| 苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
图2 PCR扩增产物电泳结果 M,DNA分子量标记;1,YC001;2,YC002;3,YC003;4,YC004;5,YC005;6,YC006;7,YC009;8,YC010;9,YC011;10,YC012;11,YC013;12,YC014;13,YC015;14,YC016;15,YC017。
Fig.2 Electrophoretic results of PCR amplified products 1, DNA marker; 1, YC001; 2, YC002; 3, YC003; 4, YC004; 5, YC005; 6,YC006; 7,YC009; 8, YC010; 9,YC011; 10, YC012; 11, YC013; 12, YC014; 13, YC015; 14, YC016; 15, YC017.
| 分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
|---|---|---|---|---|---|---|
| YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
| YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
| YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
| YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
| YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
表9 分离株与枯草芽孢杆菌复合体模式菌的rpoB基因序列一致性
Table 9 Sequence identities of rpoB gene between Bacillus isolates and reference strains within B.subtilis complex %
| 分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
|---|---|---|---|---|---|---|
| YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
| YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
| YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
| YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
| YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
| 分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
|---|---|---|
| YC009 | 94.06 | 98.42 |
| YC010 | 94.75 | 95.77 |
| YC011 | 96.90 | 94.64 |
| YC012 | 94.99 | 96.11 |
| YC013 | 94.86 | 95.94 |
| YC014 | 94.31 | 97.97 |
| YC015 | 96.42 | 94.61 |
| YC016 | 94.29 | 98.76 |
| YC017 | 94.92 | 95.99 |
表10 分离株与相应模式菌的cheA序列比对结果
Table 10 Sequence identities of cheA gene between Bacillus isolates and corresponding reference strains %
| 分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
|---|---|---|
| YC009 | 94.06 | 98.42 |
| YC010 | 94.75 | 95.77 |
| YC011 | 96.90 | 94.64 |
| YC012 | 94.99 | 96.11 |
| YC013 | 94.86 | 95.94 |
| YC014 | 94.31 | 97.97 |
| YC015 | 96.42 | 94.61 |
| YC016 | 94.29 | 98.76 |
| YC017 | 94.92 | 95.99 |
| [1] |
ABHILASH P C, DUBEY R K, TRIPATHI V, et al. Plant growth-promoting microorganisms for environmental sustainability[J]. Trends in Biotechnology, 2016, 34(11): 847-850.
DOI URL |
| [2] |
KOUR D, RANA K L, YADAV A N, et al. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101487.
DOI URL |
| [3] |
BASHAN Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnology Advances, 1998, 16(4): 729-770.
DOI URL |
| [4] |
NAVON A. Bacillus thuringiensis insecticides in crop protection: reality and prospects[J]. Crop Protection, 2000, 19(8/9/10): 669-676.
DOI URL |
| [5] |
SCHALLMEY M, SINGH A, WARD O P. Developments in the use of Bacillus species for industrial production[J]. Canadian Journal of Microbiology, 2004, 50(1): 1-17.
DOI URL |
| [6] |
FRITZE D. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria[J]. Phytopathology, 2004, 94(11): 1245-1248.
DOI URL |
| [7] |
DUNLAP C A. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists[J]. Biological Control, 2019, 134: 82-86.
DOI URL |
| [8] |
FIRA D, DIMKIĆ I, BERIĆ T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.
DOI URL |
| [9] |
TALBOYS P J, OWEN D W, HEALEY J R, et al. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum[J]. BMC Plant Biology, 2014, 14(1): 1-9.
DOI URL |
| [10] | 常文智, 马鸣超, 李力, 等. 施用胶质类芽孢杆菌对土壤生物活性和花生产量的影响[J]. 中国土壤与肥料, 2014(1): 84-89. |
| CHANG W Z, MA M C, LI L, et al. Effects of Paenibacillus mucilaginosus on soil biological activity and yield of peanut[J]. Soil and Fertilizer Sciences in China, 2014(1): 84-89.(in Chinese with English abstract) | |
| [11] | 张伟伟, 王宝琴. 一株胶质芽孢杆菌解磷活性及其适宜解磷条件研究[J]. 中国农学通报, 2014, 30(21): 136-140. |
| ZHANG W W, WANG B Q. Study on phosphate-solubilizing activity and suitable conditions of a strain of Bacillus mucilaginosus[J]. Chinese Agricultural Science Bulletin, 2014, 30(21): 136-140.(in Chinese with English abstract) | |
| [12] |
NICHOLSON W L, MUNAKATA N, HORNECK G, et al. Resistance of Bacillus endosporesto extreme terrestrial and extraterrestrial environments[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3): 548-572.
DOI URL |
| [13] |
ELSHAGHABEE F M F, ROKANA N, GULHANE R D, et al. Bacillus as potential probiotics: status, concerns, and future perspectives[J]. Frontiers in Microbiology, 2017, 8: 1490.
DOI URL |
| [14] |
ULRICH N, NAGLER K, LAUE M, et al. Experimental studies addressing the longevity of Bacillus subtilis spores: the first data from a 500-year experiment[J]. PLoS One, 2018, 13(12): e0208425.
DOI URL |
| [15] | GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401. |
| [16] |
REVA O N, DIXELIUS C, MEIJER J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis[J]. FEMS Microbiology Ecology, 2004, 48(2): 249-259.
DOI URL |
| [17] |
VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis[J]. Canadian Journal of Microbiology, 2007, 53(6): 673-687.
DOI URL |
| [18] |
TAYEB L A, LEFEVRE M, PASSET V, et al. Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences[J]. Research in Microbiology, 2008, 159(3): 169-177.
DOI URL |
| [19] |
KIM B J, LEE S H, LYU M A, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB)[J]. Journal of Clinical Microbiology, 1999, 37(6): 1714-1720.
DOI URL |
| [20] |
YAMAMOTO S, BOUVET P J M, HARAYAMA S. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization[J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(1): 87-95.
DOI URL |
| [21] |
DUNLAP C A, KIM S J, KWON S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1212-1217.
DOI URL |
| [22] | 王振亚. 胶质类芽孢杆菌3016基因组学初步研究[D]. 泰安: 山东农业大学, 2012. |
| WANG Z Y. Preliminary analysis on the genome of Paenibacillus mucilaginosus[D]. Tai’an: Shandong Agricultural University, 2012. (in Chinese with English abstract) | |
| [23] | 王璇. 胶质类芽孢杆菌3016全基因组测序及菌种水平特异分子标识的筛选和鉴定[D]. 泰安: 山东农业大学, 2011. |
| WANG X. Genome sequencing of Paenibacillus mucilaginosus 3016 and screening/identification of special molecular marker at species level[D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese with English abstract) | |
| [24] | SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
| [25] |
CASE R J, BOUCHER Y, DAHLLÖF I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J]. Applied and Environmental Microbiology, 2007, 73(1): 278-288.
DOI URL |
| [26] |
KI J S, ZHANG W, QIAN P Y. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification[J]. Journal of Microbiological Methods, 2009, 77(1): 48-57.
DOI URL |
| [27] | MAUGHAN H, VAN DER AUWERA G. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading[J]. Infection, Genetics and Evolution, 2011, 11(5): 789-797. |
| [28] |
STUBBS S L, BRAZIER J S, TALBOT P R, et al. PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes[J]. Journal of Clinical Microbiology, 2000, 38(9): 3209-3213.
DOI URL |
| [29] |
FOX G E, WISOTZKEY J D, JURTSHUK P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. International Journal of Systematic Bacteriology, 1992, 42(1): 166-170.
DOI URL |
| [30] |
CELANDRONI F, VECCHIONE A, CARA A, et al. Identification of Bacillus species: implication on the quality of probiotic formulations[J]. PLoS One, 2019, 14(5): e0217021.
DOI URL |
| [31] |
GADHAVE K R, DEVLIN P F, EBERTZ A, et al. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner[J]. Microbial Ecology, 2018, 76(3): 741-750.
DOI URL |
| [32] |
MUGADZA D T, OWUSU-DARKO R, BUYS E M. Short communication: source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing[J]. Journal of Dairy Science, 2019, 102(1): 135-139.
DOI URL |
| [33] |
SENESI S, CELANDRONI F, TAVANTI A, et al. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy[J]. Applied and Environmental Microbiology, 2001, 67(2): 834-839.
DOI URL |
| [34] |
AIT TAYEB L, AGERON E, GRIMONT F, et al. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J]. Research in Microbiology, 2005, 156(5/6): 763-773.
DOI URL |
| [35] |
WANG X Q, VU A, LEE K, et al. CheA-receptor interaction sites in bacterial chemotaxis[J]. Journal of Molecular Biology, 2012, 422(2): 282-290.
DOI URL |
| [36] |
BARNES M H, LAMARR W A, FOSTER K A. DNA gyrase and DNA topoisomerase of Bacillus subtilis: expression and characterization of recombinant enzymes encoded by the gyrA, gyrB and parC, parE genes[J]. Protein Expression and Purification, 2003, 29(2): 259-264.
DOI URL |
| [37] |
CHUN J, BAE K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie Van Leeuwenhoek, 2000, 78(2): 123-127.
DOI URL |
| [38] | 程琳琳, 王芳, 吴琼, 等. 微生物菌剂中5种芽孢杆菌实时荧光PCR鉴定[J]. 中国卫生检验杂志, 2010, 20(2): 246-248. |
| CHENG L L, WANG F, WU Q, et al. Identification of five Bacillus species used in environment microbe agentia with real-time PCR[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(2): 246-248.(in Chinese with English abstract) | |
| [39] |
ABD ALAMER I S, TOMAH A A, LI B, et al. Isolation, identification and characterization of rhizobacteria strains for biological control of bacterial wilt (Ralstonia solanacearum) of eggplant in China[J]. Agriculture, 2020, 10(2): 37.
DOI URL |
| [40] | 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. |
| LI S Z, CHEN Y, YANG R H, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp[J]. Acta Microbiologica Sinica, 2019, 59(10): 1969-1983. (in Chinese with English abstract) | |
| [41] |
MASUM M M I, LIU L, YANG M, et al. Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae[J]. Journal of Applied Microbiology, 2018, 125(6): 1852-1867.
DOI URL |
| [42] | YU C, JIN J, MENG L Q, et al. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29[J]. Cellular and Molecular Biology (Noisy-Le-Grand, France), 2017, 63(5): 19-24. |
| [43] |
BLACKWOOD K S, TURENNE C Y, HARMSEN D, et al. Reassessment of sequence-based targets for identification of Bacillus species[J]. Journal of Clinical Microbiology, 2004, 42(4): 1626-1630.
DOI URL |
| [44] |
CAAMAÑO-ANTELO S, FERNÁNDEZ-NO I C, BÖHME K, et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes[J]. Food Microbiology, 2015, 46: 288-298.
DOI URL |
| [45] |
QI Y, PATRA G, LIANG X D, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis[J]. Applied and Environmental Microbiology, 2001, 67(8): 3720-3727.
DOI URL |
| [46] |
KO K S, KIM J M, KIM J W, et al. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR[J]. Journal of Clinical Microbiology, 2003, 41(7): 2908-2914.
DOI URL |
| [1] | 王婷, 范宇鑫, 王惠, 杜荆山, 石秋环, 王玉洁, 申洪涛, 王艳芳, 奚家勤, 刘领. 甲基营养型芽孢杆菌对初烤微带青烟叶化学成分含量及协调性的影响[J]. 浙江农业学报, 2025, 37(9): 1969-1980. |
| [2] | 裴惠民, 巫明明, 翟荣荣, 叶靖, 金月, 朱仪, 侯建军, 朱国富, 叶胜海. 低镉水稻基因功能与新品种培育研究进展[J]. 浙江农业学报, 2025, 37(9): 2012-2020. |
| [3] | 刘朋飞, 张舒涵, 洪凯, 邵越, 楼兵干. 浙江省番茄溃疡病病原菌分离与鉴定[J]. 浙江农业学报, 2025, 37(6): 1293-1300. |
| [4] | 马献, 尤雨薇, 康娟, 王国琴, 郑蕊, 苏建宇, 岳思君. 枸杞采后致腐病原菌的分离鉴定与天然抑菌剂筛选[J]. 浙江农业学报, 2025, 37(6): 1327-1335. |
| [5] | 季梦婷, 陈长江, 朱玲, 詹梦琳, 肖顺, 蔡学清. 无花果细菌性叶斑病病原鉴定[J]. 浙江农业学报, 2025, 37(5): 1097-1106. |
| [6] | 高强, 王丽丽, 张渐隆, 杨波, 李峰, 朱先志, 刘爱新, 韩超, 田雷. 高地芽孢杆菌CY1的分离鉴定及其对烟草黑胫病的防治作用[J]. 浙江农业学报, 2025, 37(2): 405-416. |
| [7] | 陆娜, 王伟科, 林佳瑶, 周祖法. 秀珍菇黄菇病病原菌鉴定及其致病相关的转录组分析[J]. 浙江农业学报, 2025, 37(2): 426-437. |
| [8] | 巩鑫鑫, 刘瑞玲, 韩延超, 孟祥红, 郜海燕, 陈杭君. 四种食用菌采后主要病原菌的分离与鉴定[J]. 浙江农业学报, 2025, 37(2): 456-465. |
| [9] | 李亚妮, 陈卫良, 毛碧增. 温郁金根茎腐烂病的病原鉴定[J]. 浙江农业学报, 2024, 36(5): 1086-1093. |
| [10] | 陆春霞, 刘开莉, 梁贵秋, 肖潇, 韦伟, 徐雯雯, 陈菁, 莫炳巧, 李小群, 黎尔纳, 黄旭华, 李安华, 韦师妮. 十一个桑黄菌株的形态学观察与分子鉴定[J]. 浙江农业学报, 2024, 36(4): 800-810. |
| [11] | 何佳薇, 黄乐琴, 卢振宇, 方瑾, 雷子阳, 张慧娟, 蒋明. 珍稀濒危植物华顶杜鹃叶斑病病原菌的分离与鉴定[J]. 浙江农业学报, 2024, 36(4): 837-845. |
| [12] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
| [13] | 柴荣耀, 游雨欣, 邱海萍, 郭峻宁, 张震, 李斌, 沈升法, 王艳丽. 甘薯抗茎腐病鉴定技术的建立及种质资源抗性分析[J]. 浙江农业学报, 2024, 36(3): 569-578. |
| [14] | 罗芷涵, 刘朋飞, 于军, 齐鹤, 陈小光, 楼兵干. 国槐枝枯病病原菌鉴定及其生物学特性[J]. 浙江农业学报, 2024, 36(3): 579-588. |
| [15] | 郭伟娜, 陶晶, 何梦婷, 王紫苇, 马佰贺, 赵磊. 鸡源鼠伤寒沙门菌的分离鉴定、药敏试验与毒力基因检测[J]. 浙江农业学报, 2024, 36(2): 284-294. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||