浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 266-274.DOI: 10.3969/j.issn.1004-1524.2022.02.07
收稿日期:
2020-09-04
出版日期:
2022-02-25
发布日期:
2022-03-02
通讯作者:
沈和定
作者简介:
沈和定,E-mail: hdshen@shou.edu.cn基金资助:
SHEN Benlong(), XUE Baobao, MENG Delong, SHEN Heding*(
)
Received:
2020-09-04
Online:
2022-02-25
Published:
2022-03-02
Contact:
SHEN Heding
摘要:
为筛选缢蛏(Sinonovacula constricta)耐高温新品系,该实验以缢蛏新品种申浙1号为基础群,先期建立了16个全同胞家系,并在第2、8、22、36日对各家系的生长进行了监测,在稚贝期分别挑选了3组壳长较长和3组壳长较短家系进行了半致死温度试验与抗氧化能力测定。结果表明:家系6、14在稚贝期的成活率显著高于其他家系(P<0.05),其中家系14的成活率最高;在半致死温度试验中,家系16的半致死温度最高达到36.64 ℃,且壳长较长家系与壳长较短家系半致死温度差异显著(P<0.05);各家系过氧化物酶(POD)、总抗氧化能力(T-AOC)、谷胱甘肽(GSH)随温度升高而升高,壳长较长家系的3种抗氧化能力在高温下均显著高于壳长较短家系(P<0.05)。通过家系选育和高温实验挑选具有抗逆性的耐高温后代,并通过抗氧化能力的测定在生理生化角度证明了家系挑选的必要性。在综合评估了各家系的壳长、存活率、耐热性和抗氧化能力等数据后最终确定家系14是适合生产的最优家系,家系15、16可用作备选家系。
中图分类号:
申奔龙, 薛宝宝, 孟德龙, 沈和定. 缢蛏早期耐高温家系建立及抗氧化能力测定[J]. 浙江农业学报, 2022, 34(2): 266-274.
SHEN Benlong, XUE Baobao, MENG Delong, SHEN Heding. Establishment of a high temperature resistant family and determination of antioxidant capacity of razor clam Sinonovacula constricta[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 266-274.
家系编号 Family number | 第2天 The 2nd day | 第8天 The 8th day | 第22天 The 22nd day | 第36天 The 36th day | ||||
---|---|---|---|---|---|---|---|---|
SL/μm | SH/μm | SL/μm | SH/μm | SL/mm | SH/mm | SL/mm | SH/mm | |
1 | 135.58 ±8.58 a | 105.51 ±5.93 ab | 249.40 ±15.53 a | 207.73 ±19.01 a | — | — | — | — |
2 | 136.83 ±7.03 a | 107.00 ±4.25 ab | 252.36 ±20.15 a | 209.20 ±19.53 ab | — | — | — | — |
3 | 138.75 ±7.49 ab | 109.00 ±5.38 b | 261.36 ±12.3 bc | 221.20 ±13.37 cde | 2.15 ±0.41 ab | 1.05 ±0.17 a | 4.88 ±0.67 a | 1.94 ±0.26 b |
4 | 136.58 ±8.37 a | 106.83 ±4.74 ab | 261.43 ±9.75 bc | 218.36 ±9.68 bcd | 2.17 ±0.35 ab | 1.06 ±0.16 a | 4.97 ±0.54 a | 1.99 ±0.22 ab |
5 | 136.75 ±8.49 a | 107.75 ±5.17 ab | 256.36 ±12.93 ab | 212.86 ±12.77 abc | 2.07 ±0.22 a | 1.03 ±0.11 a | 4.76 ±1.16 a | 1.90 ±0.46 a |
6 | 138.00 ±8.32 a | 107.08 ±4.56 ab | 270.53 ±12.83 def | 225.36 ±15.03 def | 2.52 ±0.44 defg | 1.23 ±0.20 bc | 6.43 ±0.94 def | 2.64 ±0.42 gi |
7 | 138.33 ±7.61 ab | 108.08 ±4.94 ab | 264.20 ±15.60 bcde | 219.86 ±15.78 cd | 2.36 ±0.33 bcd | 1.18 ±0.21 b | 5.68 ±0.65 bc | 2.28 ±0.26 cd |
8 | 143.08 ±9.82 b | 108.83 ±4.90 ab | 271.36 ±12.75 def | 225.90 ±12.08 def | 2.57 ±0.62defg | 1.28 ±0.28 bcd | 6.54 ±1.13 defg | 2.62 ±0.45 fgi |
9 | 137.83 ±7.49a | 107.58 ±4.85 ab | 262.53 ±21.66 bcd | 218.83 ±21.86 bcd | — | — | — | — |
10 | 137.33 ±7.79 a | 108.00 ±4.97 ab | 270.53 ±15.49 ef | 227.06 ±14.96 def | 2.48 ±0.43 cdef | 1.27 ±0.19 bcd | 6.26 ±0.92 cde | 2.51 ±0.36 efg |
11 | 138.08 ±7.84 a | 105.66 ±4.56 a | 263.70 ±13.05 bcd | 220.60 ±12.47 cd | 2.24 ±0.26 abc | 1.05 ±0.11 a | 5.43 ±0.88 b | 2.18 ±0.35 bc |
12 | 136.33 ±7.92 a | 106.50 ±4.50 ab | 269.03 ±14.68 cdef | 225.40 ±13.78 def | 2.46 ±0.36 cdef | 1.23 ±0.18 bc | 5.96 ±0.93 bc | 2.39 ±0.37 de |
13 | 138.33 ±8.71 ab | 106.50 ±4.72 ab | 266.36 ±14.43 cdef | 216.43 ±38.93 abcd | 2.43 ±0.4 cdef | 1.26 ±0.25 bcd | 6.01 ±1.29 bcd | 2.42 ±0.51 def |
14 | 138.91 ±7.43 ab | 108.33 ±5.37 ab | 275.03 ±14.49 f | 232.10 ±12.76 f | 2.75 ±0.4 g | 1.34 ±0.19 cd | 7.04 ±0.72 g | 2.83 ±0.29 i |
15 | 139.33 ±7.90 ab | 107.91 ±4.96 ab | 274.70 ±14.35 f | 232.06 ±13.38 f | 2.71 ±0.61 fg | 1.34 ±0.24 cd | 6.93 ±1.31 fg | 2.78 ±0.52 i |
16 | 139.83 ±10.01 ab | 107.16 ±4.68 ab | 273.03 ±13.83 ef | 231.03 ±13.31 ef | 2.66 ±0.55 efg | 1.36 ±0.25 d | 6.71 ±0.85 efg | 2.69 ±0.33 gi |
表1 缢蛏不同家系在浮游期和稚贝期的壳长和壳高
Table 1 Shell length (SL) and shell height (SH) for families of S. constricta at larval stage and spat stage
家系编号 Family number | 第2天 The 2nd day | 第8天 The 8th day | 第22天 The 22nd day | 第36天 The 36th day | ||||
---|---|---|---|---|---|---|---|---|
SL/μm | SH/μm | SL/μm | SH/μm | SL/mm | SH/mm | SL/mm | SH/mm | |
1 | 135.58 ±8.58 a | 105.51 ±5.93 ab | 249.40 ±15.53 a | 207.73 ±19.01 a | — | — | — | — |
2 | 136.83 ±7.03 a | 107.00 ±4.25 ab | 252.36 ±20.15 a | 209.20 ±19.53 ab | — | — | — | — |
3 | 138.75 ±7.49 ab | 109.00 ±5.38 b | 261.36 ±12.3 bc | 221.20 ±13.37 cde | 2.15 ±0.41 ab | 1.05 ±0.17 a | 4.88 ±0.67 a | 1.94 ±0.26 b |
4 | 136.58 ±8.37 a | 106.83 ±4.74 ab | 261.43 ±9.75 bc | 218.36 ±9.68 bcd | 2.17 ±0.35 ab | 1.06 ±0.16 a | 4.97 ±0.54 a | 1.99 ±0.22 ab |
5 | 136.75 ±8.49 a | 107.75 ±5.17 ab | 256.36 ±12.93 ab | 212.86 ±12.77 abc | 2.07 ±0.22 a | 1.03 ±0.11 a | 4.76 ±1.16 a | 1.90 ±0.46 a |
6 | 138.00 ±8.32 a | 107.08 ±4.56 ab | 270.53 ±12.83 def | 225.36 ±15.03 def | 2.52 ±0.44 defg | 1.23 ±0.20 bc | 6.43 ±0.94 def | 2.64 ±0.42 gi |
7 | 138.33 ±7.61 ab | 108.08 ±4.94 ab | 264.20 ±15.60 bcde | 219.86 ±15.78 cd | 2.36 ±0.33 bcd | 1.18 ±0.21 b | 5.68 ±0.65 bc | 2.28 ±0.26 cd |
8 | 143.08 ±9.82 b | 108.83 ±4.90 ab | 271.36 ±12.75 def | 225.90 ±12.08 def | 2.57 ±0.62defg | 1.28 ±0.28 bcd | 6.54 ±1.13 defg | 2.62 ±0.45 fgi |
9 | 137.83 ±7.49a | 107.58 ±4.85 ab | 262.53 ±21.66 bcd | 218.83 ±21.86 bcd | — | — | — | — |
10 | 137.33 ±7.79 a | 108.00 ±4.97 ab | 270.53 ±15.49 ef | 227.06 ±14.96 def | 2.48 ±0.43 cdef | 1.27 ±0.19 bcd | 6.26 ±0.92 cde | 2.51 ±0.36 efg |
11 | 138.08 ±7.84 a | 105.66 ±4.56 a | 263.70 ±13.05 bcd | 220.60 ±12.47 cd | 2.24 ±0.26 abc | 1.05 ±0.11 a | 5.43 ±0.88 b | 2.18 ±0.35 bc |
12 | 136.33 ±7.92 a | 106.50 ±4.50 ab | 269.03 ±14.68 cdef | 225.40 ±13.78 def | 2.46 ±0.36 cdef | 1.23 ±0.18 bc | 5.96 ±0.93 bc | 2.39 ±0.37 de |
13 | 138.33 ±8.71 ab | 106.50 ±4.72 ab | 266.36 ±14.43 cdef | 216.43 ±38.93 abcd | 2.43 ±0.4 cdef | 1.26 ±0.25 bcd | 6.01 ±1.29 bcd | 2.42 ±0.51 def |
14 | 138.91 ±7.43 ab | 108.33 ±5.37 ab | 275.03 ±14.49 f | 232.10 ±12.76 f | 2.75 ±0.4 g | 1.34 ±0.19 cd | 7.04 ±0.72 g | 2.83 ±0.29 i |
15 | 139.33 ±7.90 ab | 107.91 ±4.96 ab | 274.70 ±14.35 f | 232.06 ±13.38 f | 2.71 ±0.61 fg | 1.34 ±0.24 cd | 6.93 ±1.31 fg | 2.78 ±0.52 i |
16 | 139.83 ±10.01 ab | 107.16 ±4.68 ab | 273.03 ±13.83 ef | 231.03 ±13.31 ef | 2.66 ±0.55 efg | 1.36 ±0.25 d | 6.71 ±0.85 efg | 2.69 ±0.33 gi |
图1 十三个家系在稚贝期的存活率 不同处理间没有相同字母表示差异显著(P<0.05)。
Fig.1 Survival rate of 13 families of S. constricta in spat stage Different letters in the figure indicated significant differences (P<0.05).
图2 家系3、4、5、14、15、16在不同温度下的相对存活率 壳长较短的家系编号为3、4、5,壳长较长的家系编号为14、15、16。
Fig.2 Relative survival rates of S. constricta families 3, 4, 5, 14, 15, 16 at different temperature The families with shorter shell length were numbered 3, 4, and 5, and families with longer shell length were numbered 14, 15, 16.
图3 温度对缢蛏家系过氧化物酶活力的影响 横坐标代表每个家系分别在0、1、3、7天不同温度下取样。数据以蛋白质质量计。下同。
Fig.3 The effect of temperature on peroxidase activity of S. constricta families The abscissa represents that each family was sampled at different temperatures on 0, 1, 3, and 7 days.Data was detected based on protein weight. The same as below.
[1] | 常亚青. 贝类增养殖学[M]. 北京: 中国农业出版社, 2007: 249. |
[2] |
PARKER L M, ROSS P M, O’CONNOR W A. The effect of ocean acidification and temperature on the fertilization and embryonic development of the Sydney rock oyster Saccostrea glomerata(Gould 1850)[J]. Global Change Biology, 2009, 15(9):2123-2136.
DOI URL |
[3] | 杨东敏, 张艳丽, 丁鉴锋, 等. 高温、低盐对菲律宾蛤仔免疫能力的影响[J]. 大连海洋大学学报, 2017, 32(3):302-309. |
YANG D M, ZHANG Y L, DING J F, et al. Synergistic effects of high temperature and low salinity on immunity of Manila clam Ruditapes philippinarum[J]. Journal of Dalian Ocean University, 2017, 32(3):302-309.(in Chinese with English abstract) | |
[4] | 刘超, 郭景兰, 彭张明, 等. 施氏獭蛤稚贝对高温和干露的耐受性研究[J]. 水产科学, 2015, 34(3):169-173. |
LIU C, GUO J L, PENG Z M, et al. Tolerance of juvenile shellfish Lutraria sieboldii to high-temperature and dry exposure[J]. Fisheries Science, 2015, 34(3):169-173.(in Chinese with English abstract) | |
[5] | 袁有宪, 曲克明, 陈聚法, 等. 栉孔扇贝对环境变化适应性研究-温度对存活、呼吸、摄食及消化的影响[J]. 中国水产科学, 2000, 7(3):24-27. |
YUAN Y X, QU K M, CHEN J F, et al. Adaptability of Chlymys farreri to environment-effects of temperature on survival, respiration, ingestion and digestion[J]. Journal of Fishery Sciences of China, 2000, 7(3):24-27.(in Chinese with English abstract) | |
[6] | 王静, 姚翠鸾. 温度胁迫对紫贻贝与翡翠贻贝生理活动的影响和Hsp27的响应[J]. 集美大学学报(自然科学版), 2019, 24(1) 1-9. |
WANG J, YAO C L. The impacts of temperature stress on some physidogical processes and response of Hsp27 in Mytilus galloprovincialis and Perna viridis[J]. Journal of Jimei University (Natural Science), 2019, 24(1):1-9.(in Chinese with English abstract) | |
[7] | 范德朋, 潘鲁青, 马甡, 等. 温度对缢蛏(Sinonovacula constricta)耗氧率和排氨率的影响[J]. 青岛海洋大学学报(自然科学版), 2002, 32(1):56-62. |
FAN D P, PAN L Q, MA S, et al. Effects of temperature on oxygen consumption rate and ammonia excretion rate of Sinonovacula constricta[J]. Journal of Ocean University of Qingdao, 2002, 32(1):56-62.(in Chinese with English abstract) | |
[8] |
MATOZZO V, CHINELLATO A, MUNARI M, et al. Can the combination of decreased pH and increased temperature values induce oxidative stress in the clam Chamelea gallina and the mussel Mytilus galloprovincialis?[J]. Marine Pollution Bulletin, 2013, 72(1):34-40.
DOI URL |
[9] |
ABELE D, HEISE K, PORTNER H O, et al. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya arenaria[J]. Journal of Experimental Biology, 2002, 205(13):1831-1841.
DOI URL |
[10] |
FORMAN H J, MAIORINO M, URSINI F. Signaling functions of reactive oxygen species[J]. Biochemistry, 2010, 49(5):835-842.
DOI URL |
[11] | 张显良. 中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2020: 23. |
[12] | 王兴强, 曹梅, 阎斌伦. 缢蛏Sinonovacula constricta(Lamarck)养殖期间发病原因及防治对策[J]. 现代渔业信息, 2006, 21(5):13-16. |
WANG X Q, CAO M, YAN B L. Analysis of diseases cause and prevention measures in farming of Sinonovacula constricta(Lamarck)[J]. Modern Fisheries Information, 2006, 21(5):13-16.(in Chinese with English abstract) | |
[13] | 李云峰. 家系选择在水产动物养殖中的应用[J]. 北京水产, 2007(5):44-46. |
LI Y F. Application of family selection in aquaculture[J]. Journal of Beijing Fisheries, 2007(5):44-46.(in Chinese) | |
[14] |
EVANS S, LANGDON C. Effects of genotype × environment interactions on the selection of broadly adapted pacific oysters (Crassostrea gigas)[J]. Aquaculture, 2006, 261(2):522-534.
DOI URL |
[15] | 闫喜武, 霍忠明, 张跃环, 等. 菲律宾蛤仔家系的建立及早期生长发育[J]. 水产学报, 2010, 34(1):32-40. |
YAN X W, HUO Z M, ZHANG Y H, et al. Preliminary study of establishment of families and their early growth and development for Manila clam(Ruditapes philippinarum)[J]. Journal of Fisheries of China, 2010, 34(1):32-40.(in Chinese with English abstract)
DOI URL |
|
[16] | 刘项峰, 于佐安, 王军, 等. 虾夷扇贝耐高温实验及其遗传力的估计[J]. 齐鲁渔业, 2017, 34(8):1-4. |
LIU X F, YU Z A, WANG J, et al. High temperature tolerance experiment and heritability estimation of Mizuhopecten yessoensis[J]. Shandong Fisheries, 2017, 34(8):1-4.(in Chinese) | |
[17] | 王庆志, 李石磊, 付成东, 等. 虾夷扇贝耐高温育种家系的建立与早期筛查[J]. 水产学报, 2014, 38(3):371-377. |
WANG Q Z, LI S L, FU C D, et al. Establishment of high temperature resistance families and use of laboratory assays to predict subsequent survival in juvenile stage of the Japanese scallop (Mizuhopecten yessoensis)[J]. Journal of Fisheries of China, 2014, 38(3):371-377.(in Chinese with English abstract) | |
[18] | 廖一波, 陈全震, 曾江宁, 等. 四种主要经济贝类的热忍受研究[J]. 海洋通报, 2007, 26(1):50-54. |
LIAO Y B, CHEN Q Z, ZENG J N, et al. Thermal tolerance of four commercial shellfishes[J]. Marine Science Bulletin, 2007, 26(1):50-54.(in Chinese with English abstract) | |
[19] | 杨先乐, 林茂, 喻文娟, 等. MTT比色法在药物对鱼类细胞的毒性检测中的应用[J]. 上海水产大学学报, 2007, 16(2):157-161. |
YANG X L, LIN M, YU W J, et al. MTT assay applied to detect the toxicity of drug on fish cell lines[J]. Journal of Shanghai Fisheries University, 2007, 16(2):157-161.(in Chinese with English abstract) | |
[20] | 沈夏霜, 敖秋桅, 甘西, 等. 吉富罗非鱼抗病品系F5代抗病性能和生长性能的评估[J]. 南方水产科学, 2018, 14(3):83-90. |
SHEN X S, AO Q W, GAN X, et al. Estimation of disease resistance and growth in F5 generation families of GIFT tilapia[J]. South China Fisheries Science, 2018, 14(3):83-90.(in Chinese with English abstract) | |
[21] | 贾永义, 顾志敏, 杨元杰, 等. 日本沼虾家系的初步构建及生长相关性状的遗传力估计[J]. 浙江海洋学院学报(自然科学版), 2014, 33(2):154-160. |
JIA Y Y, GU Z M, YANG Y J, et al. Initial family construction and heritability estimates for growth-related traits in Macrobrachium nipponensis[J]. Journal of Zhejiang Ocean University (Natural Science), 2014, 33(2):154-160.(in Chinese with English abstract) | |
[22] | 刘志刚, 王辉, 栗志民, 等. 墨西哥湾扇贝高起始致死温度的研究[J]. 中国水产科学, 2007, 14(5):778-785. |
LIU Z G, WANG H, LI Z M, et al. Upper incipient lethal temperature of Argopecten irradians concentricus Say[J]. Journal of Fishery Sciences of China, 2007, 14(5):778-785.(in Chinese with English abstract) | |
[23] | TREMBLAY R, MYRAND B, GUDERLEY H. Thermal sensitivity of organismal and mitochondrial oxygen consumption in relation to susceptibility of blue mussels, Mytilus edulis(L.), to summer mortality[J]. Journal of Shellfish Research, 1998, 17(1):141-152. |
[24] |
ABELE D, BURLANDO B, VIARENGO A, et al. Exposure to elevated temperatures and hydrogen peroxide elicits oxidative stress and antioxidant response in the Antarctic intertidal limpet Nacella concinna[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 1998, 120(2):425-435.
DOI URL |
[25] |
GUERRA C, ZENTENO-SAVÍN T, MAEDA-MARTÍNEZ A N, et al. Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived Catarina scallop Argopecten ventricosus reared in its natural environment[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 162(4):421-430.
DOI URL |
[26] | 连姗姗, 李雪, 邢强, 等. 繁殖和高温对栉孔扇贝抗氧化能力的影响[J]. 中国海洋大学学报(自然科学版), 2015, 45(10):18-24. |
LIAN S S, LI X, XING Q, et al. Effects of reproduction and heat stress on the antioxidant ability of Zhikong scallop(Chlamys farreri)[J]. Periodical of Ocean University of China, 2015, 45(10):18-24.(in Chinese with English abstract) | |
[27] | LU S C. Glutathione synjournal[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013, 1830(5):3143-3153. |
[1] | 王掌军, 姚明明, 余慧霞, 王彦青, 李清峰, 刘凤楼, 刘彩霞, 张双喜, 张晓岗, 刘生祥. 宁春4号×河东乌麦F2∶5家系遗传图谱构建与籽粒蛋白质性状QTL分析[J]. 浙江农业学报, 2021, 33(8): 1367-1378. |
[2] | 吴燕, 乔晓燕, 葛伟强, 高青海. 高温强光下外源褪黑素对栝楼雌花生理生化特性的影响[J]. 浙江农业学报, 2020, 32(3): 421-429. |
[3] | 庞强强, 周曼, 孙晓东, 张文, 蔡兴来. 菜心耐热性评价及酶促抗氧化系统对高温胁迫的响应[J]. 浙江农业学报, 2020, 32(1): 72-79. |
[4] | 方芳, 何序晨, 张志豪, 张勤, 关亚静, 胡晋, 胡伟民. 玉米自交系苗期对高温胁迫的响应机制及其抗逆性[J]. 浙江农业学报, 2019, 31(7): 1045-1056. |
[5] | 胡能兵, 庞丹丹, 隋益虎, 舒英杰, 何克勤, 朱小妹. 14种辣椒对高温胁迫的生理响应及抗热性评价[J]. 浙江农业学报, 2018, 30(7): 1168-1174. |
[6] | 邓晓雷, 潘晶晶, 祝水金, 陈进红. 铃期极端高温对转iaaM基因棉花棉铃产量性状、纤维品质和棉仁营养品质的影响[J]. 浙江农业学报, 2018, 30(11): 1805-1810. |
[7] | 武晓雨, 邓百万, 陈文强, 解修超. 紫外诱变选育耐高温香菇新品种[J]. 浙江农业学报, 2017, 29(12): 2015-2022. |
[8] | 王鸿磊1,2,徐平平1,樊继德3,赵林3. 多源感知高效循环智能控制设施大棚架构与实现[J]. 浙江农业学报, 2016, 28(7): 1224-. |
[9] | 李治鑫1,2,李鑫1,*,韩文炎1,*. 外源24表油菜素内酯诱导茶树(Camellia sinensis L.)耐热性的生理机制[J]. 浙江农业学报, 2016, 28(6): 959-. |
[10] | 张菁菁1,沈根明2,华国浩3,杨建生3,林雨鑫1,3,安婷婷1,戴国俊1,*,宋申申1. 高温应激下添加维生素E对蛋鸡血液生化指标和产蛋性能的影响[J]. 浙江农业学报, 2016, 28(2): 228-. |
[11] | 夏爱华1,李娜1,贾漫丽1,毛晓霞2,李季生1,3,杨贵明1,*. 高温胁迫对家蚕血液蛋白质组的影响[J]. 浙江农业学报, 2015, 27(7): 1160-. |
[12] | 姜燕敏1,2,周晓音3,*,柳婧4,陈翔3. 丽水山区影响枇杷生长发育的临界气温历史变化特征分析[J]. 浙江农业学报, 2015, 27(6): 1061-. |
[13] | 曹栋栋1,2,阮晓丽2,詹艳2,石瑛琪2. 杂交水稻种子不同活力测定方法与其田间成苗率的相关性[J]. 浙江农业学报, 2014, 26(5): 1145-. |
[14] | 孙雪钢1,林蔚红2,聂鹏程3,*,姚建松4,刘飞3,何勇3. 综合农业园区农业物联网系统的研究与应用[J]. 浙江农业学报, 2014, 26(4): 1105-. |
[15] | 马尧;徐立鸿*;蔚瑞华. 模糊推理技术在黄瓜温室环境决策中的应用[J]. , 2011, 23(1): 90-93. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 834
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 543
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||