浙江农业学报 ›› 2022, Vol. 34 ›› Issue (2): 275-283.DOI: 10.3969/j.issn.1004-1524.2022.02.08
杨思瑞1(
), 杨卓1, 火苗1, 张洁1, 张力莉1, 李胜利2,*(
), 徐晓锋1,*(
)
收稿日期:2020-09-18
出版日期:2022-02-25
发布日期:2022-03-02
作者简介:徐晓锋,E-mail: xuxiaofengnd@126.com通讯作者:
李胜利,徐晓锋
基金资助:
YANG Sirui1(
), YANG Zhuo1, HUO Miao1, ZHANG Jie1, ZHANG Lili1, LI Shengli2,*(
), XU Xiaofeng1,*(
)
Received:2020-09-18
Online:2022-02-25
Published:2022-03-02
Contact:
LI Shengli,XU Xiaofeng
摘要:
为探究荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异,本试验于宁夏某规模化荷斯坦奶牛场不同群体牛舍分别采集土壤样品,利用16S rDNA测序测定其细菌菌群结构。结果表明:不同群体牛舍土壤细菌菌群的OTU数目与Alpha多样性均无显著差异(P>0.05),主坐标分析(PCoA)结果显示,不同群体牛舍土壤细菌菌群的Beta多样性差异明显,高产泌乳牛舍土壤与低产泌乳牛舍土壤的细菌菌群结构较接近。不同群体奶牛牛舍土壤的优势菌门 (丰度>10%)基本为变形菌门、拟杆菌门、放线菌门与厚壁菌门,泌乳牛舍土壤中放线菌门的丰度显著高于其他群体牛舍土壤(P<0.05),哺乳犊牛岛土壤中软壁菌门与Gemmatimonadates的丰度极显著高于其他群体牛舍土壤(P<0.01)。不同群体奶牛牛舍土壤中优势菌属(丰度>3%)差异明显,各牛舍土壤的优势菌属中,Proteiniphilum、Fermentimonas、Truepera等蛋白质降解菌在非泌乳阶段牛舍土壤中的丰度较高;脱硫杆菌属、盐单胞菌属、硫碱螺旋菌属等嗜盐碱的菌属在干奶牛舍土壤与断奶犊牛舍土壤中的丰度较高;不动杆菌属与鞘脂杆菌属等致病菌在高产泌乳牛舍土壤中的丰度较高。
中图分类号:
杨思瑞, 杨卓, 火苗, 张洁, 张力莉, 李胜利, 徐晓锋. 荷斯坦奶牛不同群体牛舍土壤细菌菌群结构差异分析[J]. 浙江农业学报, 2022, 34(2): 275-283.
YANG Sirui, YANG Zhuo, HUO Miao, ZHANG Jie, ZHANG Lili, LI Shengli, XU Xiaofeng. Analysis on difference of soil bacterial community structure in different groups of Holstein dairy cow barns[J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 275-283.
图1 牛舍土壤细菌菌群OTU数目花瓣图 dcA,干奶牛舍;hcA,高产泌乳牛舍;ncA,哺乳犊牛岛;wcA,断奶犊牛舍;rcA,育成牛舍;lcA,低产泌乳牛舍。下同。
Fig.1 Petal diagram of OTU number of bacterial flora in barn soil dcA, Dry cow barn;hcA, High-yielding lactating cow barn;ncA, Pre-weaned calf hutch;wcA, Post-weaned calf barn;rcA, Growing heifer barn;lcA, Low-yielding lactating cow barn. The same as below.
| 项目 Items | 干奶牛舍 Dry cow barns | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| Observed_species | 1 255.667 ±463.032 | 1 309.333 ±112.896 | 1 227.000 ±272.691 | 1 404.333 ±186.938 | 1 014.000 ±226.042 | 1 384.333 ±149.608 |
| Chao1 | 1 272.389 ±476.011 | 1 331.266 ±116.980 | 1 248.770 ±281.470 | 1 423.185 ±194.090 | 1 033.964 ±231.660 | 1 405.857 ±150.520 |
| Ace | 1 304.429 ±495.972 | 1 366.262 ±120.319 | 1 284.718 ±288.482 | 1 462.526 ±206.938 | 1 069.257 ±243.637 | 1 442.893 ±157.122 |
| Shannon | 7.406±0.802 | 6.931±0.793 | 6.774±0.808 | 7.219±0.141 | 6.576±0.357 | 7.475±0.269 |
| Simpson | 0.980±0.010 | 0.962±0.033 | 0.954±0.026 | 0.974±0.008 | 0.963±0.012 | 0.980±0.010 |
| Goods_coverage | 0.998±0.001 | 0.997±0.000 | 0.998±0.001 | 0.997±0.001 | 0.998±0.001 | 0.997±0.000 |
表1 牛舍土壤细菌菌群Alpha多样性指数
Table 1 Alpha diversity index of bacterial flora in barn soil
| 项目 Items | 干奶牛舍 Dry cow barns | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| Observed_species | 1 255.667 ±463.032 | 1 309.333 ±112.896 | 1 227.000 ±272.691 | 1 404.333 ±186.938 | 1 014.000 ±226.042 | 1 384.333 ±149.608 |
| Chao1 | 1 272.389 ±476.011 | 1 331.266 ±116.980 | 1 248.770 ±281.470 | 1 423.185 ±194.090 | 1 033.964 ±231.660 | 1 405.857 ±150.520 |
| Ace | 1 304.429 ±495.972 | 1 366.262 ±120.319 | 1 284.718 ±288.482 | 1 462.526 ±206.938 | 1 069.257 ±243.637 | 1 442.893 ±157.122 |
| Shannon | 7.406±0.802 | 6.931±0.793 | 6.774±0.808 | 7.219±0.141 | 6.576±0.357 | 7.475±0.269 |
| Simpson | 0.980±0.010 | 0.962±0.033 | 0.954±0.026 | 0.974±0.008 | 0.963±0.012 | 0.980±0.010 |
| Goods_coverage | 0.998±0.001 | 0.997±0.000 | 0.998±0.001 | 0.997±0.001 | 0.998±0.001 | 0.997±0.000 |
| 门水平 Phylum level | 干奶牛舍 Dry cow barn | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| 变形菌门Proteobacteria | 37.687 | 44.198 | 47.086 | 42.072 | 31.752 | 39.062 |
| 拟杆菌门Bacteroidetes | 21.603 | 21.154 | 19.596 | 21.375 | 38.287 | 26.579 |
| 放线菌门Actinobacteria | 13.115 BCcd | 26.316 Aa | 10.954 BCcd | 6.443 Cd | 14.252 BCbc | 20.552 ABab |
| 厚壁菌门Firmicutes | 17.089 | 5.054 | 12.162 | 17.139 | 7.920 | 8.621 |
| 栖热菌门Deinococcus-Thermus | 4.799 | 0.366 | 5.021 | 4.463 | 1.025 | 0.364 |
| 绿弯菌门Chloroflexi | 1.040 Bb | 0.975 Bb | 1.094 Bb | 2.069 ABa | 2.553 Aa | 2.100 ABa |
| Gemmatimonadates | 1.058 Bb | 0.499 Bc | 0.815 Bbc | 1.691 Aa | 0.648 Bbc | 0.763 Bbc |
| 酸杆菌门Acidobacteria | 0.958 | 0.953 | 0.784 | 0.515 | 0.257 | 1.145 |
| unidentified_Bacteria | 0.288 B | 0.066 B | 1.917 A | 0.239 B | 0.076 B | 0.097 B |
| 软壁菌门Tenericutes | 0.081 B | 0.032 B | 0.055 B | 1.981 A | 0.027 B | 0.020 B |
| 其他Others | 2.283 | 0.386 | 0.516 | 2.013 | 3.203 | 0.695 |
表2 牛舍土壤细菌门水平丰度
Table 2 Bacterial abundances of soil bacteria in barn at phylum level %
| 门水平 Phylum level | 干奶牛舍 Dry cow barn | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| 变形菌门Proteobacteria | 37.687 | 44.198 | 47.086 | 42.072 | 31.752 | 39.062 |
| 拟杆菌门Bacteroidetes | 21.603 | 21.154 | 19.596 | 21.375 | 38.287 | 26.579 |
| 放线菌门Actinobacteria | 13.115 BCcd | 26.316 Aa | 10.954 BCcd | 6.443 Cd | 14.252 BCbc | 20.552 ABab |
| 厚壁菌门Firmicutes | 17.089 | 5.054 | 12.162 | 17.139 | 7.920 | 8.621 |
| 栖热菌门Deinococcus-Thermus | 4.799 | 0.366 | 5.021 | 4.463 | 1.025 | 0.364 |
| 绿弯菌门Chloroflexi | 1.040 Bb | 0.975 Bb | 1.094 Bb | 2.069 ABa | 2.553 Aa | 2.100 ABa |
| Gemmatimonadates | 1.058 Bb | 0.499 Bc | 0.815 Bbc | 1.691 Aa | 0.648 Bbc | 0.763 Bbc |
| 酸杆菌门Acidobacteria | 0.958 | 0.953 | 0.784 | 0.515 | 0.257 | 1.145 |
| unidentified_Bacteria | 0.288 B | 0.066 B | 1.917 A | 0.239 B | 0.076 B | 0.097 B |
| 软壁菌门Tenericutes | 0.081 B | 0.032 B | 0.055 B | 1.981 A | 0.027 B | 0.020 B |
| 其他Others | 2.283 | 0.386 | 0.516 | 2.013 | 3.203 | 0.695 |
| 属水平 Genus level | 干奶牛舍 Dry cow barn | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| Proteiniphilum | 5.335 ABb | 0.189 Cc | 1.477 BCc | 8.444 Aa | 5.102 ABb | 0.082 Cc |
| Fermentimonas | 6.663 Aa | 0.214 Bcd | 3.726 ABab | 3.507 ABabc | 2.777 ABbcd | 0.157 Bd |
| 不动杆菌属Acinetobacter | 0.357 | 9.273 | 4.868 | 0.260 | 0.029 | 2.161 |
| Truepera | 4.798 | 0.331 | 5.021 | 4.461 | 1.025 | 0.307 |
| 嗜冷杆菌属Psychrobacter | 0.543 B | 2.052 B | 9.769 A | 0.226 B | 0.006 B | 0.217 B |
| 硫碱螺旋菌属Thioalkalispira | 0.224 B | 0.330 B | 0.293 B | 9.958 A | 0.132 B | 0.057 B |
| Ornithinicoccus | 0.706 Cbc | 2.774 Aa | 1.271 BCb | 0.168 Cc | 2.421 ABa | 2.223 ABa |
| 盐单胞菌属Halomonas | 3.015 Aa | 1.976 ABab | 0.270 Bc | 1.908 ABab | 0.986 Bbc | 1.236 ABbc |
| 假单胞菌属Pseudomonas | 1.576 | 1.365 | 2.247 | 2.852 | 0.376 | 0.685 |
| 藤黄色单胞菌属Luteimonas | 0.684 BCcd | 1.837 Bb | 1.415 BCbc | 0.137 Cd | 0.463 BCcd | 4.361 Aa |
| Pedobacter | 0.045 Bc | 3.248 Ab | 0.131 Bc | 0.050 Bc | 0.058 Bc | 5.259 Aa |
| Membranicola | 1.255 B | 0.160 B | 0.402 B | 0.184 B | 5.417 A | 1.006 B |
| 甲基杆菌属Methylobacter | 0.060 B | 0.091 B | 0.118 B | 2.426 AB | 4.576 A | 0.116 B |
| Parapedobacter | 0.042 Bb | 2.709 ABa | 0.043 Bb | 0.048 Bb | 0.073 Bb | 4.040 Aa |
| 鸟杆菌属Ornithobacterium | 0.269 B | 0.096 B | 6.182 A | 0.117 B | 0.055 B | 0.029 B |
| Planktosalinus | 1.266 B | 0.054 B | 0.074 B | 0.132 B | 4.707 A | 0.313 B |
| Altererythrobacter | 1.017 Bb | 0.818 Bbc | 0.251 Bbc | 0.134 Bc | 0.837 Bbc | 2.622 Aa |
| 鞘脂杆菌属Sphingobacterium | 0.063 Bb | 3.016 Aa | 0.085 Bb | 0.045 Bb | 0.025 Bb | 2.045 ABa |
| 芽孢杆菌属Bacillus | 0.261 | 0.481 | 0.308 | 1.558 | 0.159 | 2.432 |
| 脱硫杆菌属Desulfobacterium | 4.393 A | 0.066 B | 0.168 B | 0.101 B | 0.004 B | 0 B |
表3 牛舍土壤细菌属水平丰度
Table 3 Bacterial abundances of soil bacteria in barn at genus level %
| 属水平 Genus level | 干奶牛舍 Dry cow barn | 高产泌乳牛舍 High-yielding lactating cow barn | 哺乳犊牛岛 Pre-weaned calf hutch | 断奶犊牛舍 Post-weaned calf barn | 育成牛舍 Growing heifer barn | 低产泌乳牛舍 Low-yielding lactating cow barn |
|---|---|---|---|---|---|---|
| Proteiniphilum | 5.335 ABb | 0.189 Cc | 1.477 BCc | 8.444 Aa | 5.102 ABb | 0.082 Cc |
| Fermentimonas | 6.663 Aa | 0.214 Bcd | 3.726 ABab | 3.507 ABabc | 2.777 ABbcd | 0.157 Bd |
| 不动杆菌属Acinetobacter | 0.357 | 9.273 | 4.868 | 0.260 | 0.029 | 2.161 |
| Truepera | 4.798 | 0.331 | 5.021 | 4.461 | 1.025 | 0.307 |
| 嗜冷杆菌属Psychrobacter | 0.543 B | 2.052 B | 9.769 A | 0.226 B | 0.006 B | 0.217 B |
| 硫碱螺旋菌属Thioalkalispira | 0.224 B | 0.330 B | 0.293 B | 9.958 A | 0.132 B | 0.057 B |
| Ornithinicoccus | 0.706 Cbc | 2.774 Aa | 1.271 BCb | 0.168 Cc | 2.421 ABa | 2.223 ABa |
| 盐单胞菌属Halomonas | 3.015 Aa | 1.976 ABab | 0.270 Bc | 1.908 ABab | 0.986 Bbc | 1.236 ABbc |
| 假单胞菌属Pseudomonas | 1.576 | 1.365 | 2.247 | 2.852 | 0.376 | 0.685 |
| 藤黄色单胞菌属Luteimonas | 0.684 BCcd | 1.837 Bb | 1.415 BCbc | 0.137 Cd | 0.463 BCcd | 4.361 Aa |
| Pedobacter | 0.045 Bc | 3.248 Ab | 0.131 Bc | 0.050 Bc | 0.058 Bc | 5.259 Aa |
| Membranicola | 1.255 B | 0.160 B | 0.402 B | 0.184 B | 5.417 A | 1.006 B |
| 甲基杆菌属Methylobacter | 0.060 B | 0.091 B | 0.118 B | 2.426 AB | 4.576 A | 0.116 B |
| Parapedobacter | 0.042 Bb | 2.709 ABa | 0.043 Bb | 0.048 Bb | 0.073 Bb | 4.040 Aa |
| 鸟杆菌属Ornithobacterium | 0.269 B | 0.096 B | 6.182 A | 0.117 B | 0.055 B | 0.029 B |
| Planktosalinus | 1.266 B | 0.054 B | 0.074 B | 0.132 B | 4.707 A | 0.313 B |
| Altererythrobacter | 1.017 Bb | 0.818 Bbc | 0.251 Bbc | 0.134 Bc | 0.837 Bbc | 2.622 Aa |
| 鞘脂杆菌属Sphingobacterium | 0.063 Bb | 3.016 Aa | 0.085 Bb | 0.045 Bb | 0.025 Bb | 2.045 ABa |
| 芽孢杆菌属Bacillus | 0.261 | 0.481 | 0.308 | 1.558 | 0.159 | 2.432 |
| 脱硫杆菌属Desulfobacterium | 4.393 A | 0.066 B | 0.168 B | 0.101 B | 0.004 B | 0 B |
| [1] |
KUZYAKOV Y, BLAGODATSKAYA E. Microbial hotspots and hot moments in soil: concept & review[J]. Soil Biology and Biochemistry, 2015, 83:184-199.
DOI URL |
| [2] |
FIERER N. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10):579-590.
DOI URL |
| [3] | 杨秉珣, 刘泉, 董廷旭. 川西北不同沙化程度草地土壤细菌群落特征[J]. 水土保持研究, 2018, 25(6):45-52. |
| YANG B X, LIU Q, DONG T X. Soil bacterial communities of grasslands with different desertification degrees in northwest Sichuan[J]. Research of Soil and Water Conservation, 2018, 25(6):45-52.(in Chinese with English abstract) | |
| [4] | 万盼, 胡艳波, 张弓乔, 等. 甘肃小陇山油松与柴胡栽培土壤细菌群落特征[J]. 生态学报, 2018, 38(17):6016-6024. |
| WAN P, HU Y B, ZHANG G Q, et al. Soil bacterial communities under Pinus tabulaeformis Carr. and Bupleurum chinense plantations at Xiaolongshan Mountain of Gansu Province[J]. Acta Ecologica Sinica, 2018, 38(17):6016-6024.(in Chinese with English abstract) | |
| [5] | 程琳, 陈吉祥, 李彦林, 等. 荒漠草原植物骆驼蓬根际土壤细菌群落分析[J]. 干旱区研究, 2018, 35(4):977-983. |
| CHENG L, CHEN J X, LI Y L, et al. Diversity of bacterial communities in rhizosphere soil of Peganum harmala L. in desert steppe[J]. Arid Zone Research, 2018, 35(4):977-983.(in Chinese with English abstract) | |
| [6] | 陈丽燕, 戴华鑫, 陈江华, 等. 豫中烟区土壤微生物特性及其与土壤理化性质的关系[J]. 烟草科技, 2017, 50(5):1-9. |
| CHEN L Y, DAI H X, CHEN J H, et al. Microbial characteristics and their relationships with physicochemical properties of soils in central Henan tobacco growing areas[J]. Tobacco Science & Technology, 2017, 50(5):1-9.(in Chinese with English abstract) | |
| [7] | 张雯. 银川地区规模化奶牛养殖场环境微生物群落分布及耐药性研究[D]. 银川:宁夏大学, 2018. |
| ZHANG W. Study on environmental microbial diversity and antibiotic resistance of large-scale dairy farms in Yinchuan[D]. Yinchuan: Ningxia University, 2018. (in Chinese with English abstract) | |
| [8] | 张俊华, 贾萍萍, 刘吉利, 等. 宁夏养鸡场粪污及周边土壤重金属和细菌群落特征研究[J]. 农业环境科学学报, 2020, 39(8):1692-1705. |
| ZHANG J H, JIA P P, LIU J L, et al. Heavy metal and bacterial community characteristics in poultry farm manure and surrounding soils in Ningxia, China[J]. Journal of Agro-Environment Science, 2020, 39(8):1692-1705.(in Chinese with English abstract) | |
| [9] | 别佳, 佟庆, 胡宗福, 等. 林蛙养殖场地土壤菌群结构及潜在病原菌分析[J]. 中国畜牧兽医, 2018, 45(2):528-535. |
| BIE J, TONG Q, HU Z F, et al. Analysis of soil microbial communities and potential pathogens in Rana dybowskii farm[J]. China Animal Husbandry & Veterinary Medicine, 2018, 45(2):528-535.(in Chinese with English abstract) | |
| [10] |
KUMAR R R, PARK B J, CHO J Y. Application and environmental risks of livestock manure[J]. Journal of the Korean Society for Applied Biological Chemistry, 2013, 56(5):497-503.
DOI URL |
| [11] | XUE Z S, ZHANG W P, WANG L H, et al. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations[J]. mBio, 2015, 6(3):1-12. |
| [12] |
LIU J X, ZHAO Z, AVILLAN J J, et al. Dairy farm soil presents distinct microbiota and varied prevalence of antibiotic resistance across housing areas[J]. Environmental Pollution, 2019, 254:113058.
DOI URL |
| [13] | 吴蔓莉, 祁燕云, 祝长成, 等. 堆肥对土壤中石油烃的去除及微生物群落的影响[J]. 中国环境科学, 2018, 38(8):3042-3048. |
| WU M L, QI Y Y, ZHU C C, et al. Influence of compost amendment on hydrocarbon degradation and microbial communities in petroleum contaminated soil[J]. China Environmental Science, 2018, 38(8):3042-3048.(in Chinese with English abstract) | |
| [14] |
ECKELKAMP E A, TARABA J L, AKERS K A, et al. Understanding compost bedded pack barns: interactions among environmental factors, bedding characteristics, and udder health[J]. Livestock Science, 2016, 190:35-42.
DOI URL |
| [15] |
FÁVERO S, PORTILHO F V R, OLIVEIRA A C R, et al. Factors associated with mastitis epidemiologic indexes, animal hygiene, and bulk milk bacterial concentrations in dairy herds housed on compost bedding[J]. Livestock Science, 2015, 181:220-230.
DOI URL |
| [16] |
MENG Q X, XU X H, ZHANG W H, et al. Bacterial community succession in dairy manure composting with a static composting technique[J]. Canadian Journal of Microbiology, 2019, 65(6):436-449.
DOI URL |
| [17] |
SUN L K, HAN X M, LI J S, et al. Microbial community and its association with physicochemical factors during compost bedding for dairy cows[J]. Frontiers in Microbiology, 2020, 11:254.
DOI URL |
| [18] |
HAHNKE S, LANGER T, KOECK D E, et al. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3):1466-1475.
DOI URL |
| [19] |
ALBUQUERQUE L, SIMÕES C, NOBRE M F, et al. Truepera radiovictrix gen. nov., sp. nov., a new radiation resistant species and the proposal of Trueperaceae fam. nov[J]. FEMS Microbiology Letters, 2005, 247(2):161-169.
DOI URL |
| [20] | 王建建, 高权新, 张晨捷, 等. 野生与养殖银鲳消化道菌群结构中产酶菌的对比分析[J]. 水产学报, 2014, 38(11):1899-1909. |
| WANG J J, GAO Q X, ZHANG C J, et al. Comparative analysis of enzyme-producing bacteria in the digestive tract flora of wild and breeding silver pomfret[J]. Journal of Fisheries of China, 2014, 38(11):1899-1909.(in Chinese with English abstract) | |
| [21] |
BRYSCH K, SCHNEIDER C, FUCHS G, et al. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov[J]. Archives of Microbiology, 1987, 148(4):264-274.
DOI URL |
| [22] |
VREELAND R H, LITCHFIELD C D, MARTIN E L, et al. Halomonas Elongata, a new genus and species of extremely salt-tolerant bacteria[J]. International Journal of Systematic Bacteriology, 1980, 30(2):485-495.
DOI URL |
| [23] | SOROKIN D Y. Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2002, 52(6):2175-2182. |
| [24] |
DOUGHARI H J, NDAKIDEMI P A, HUMAN I S, et al. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview[J]. Microbes and Environments, 2011, 26(2):101-112.
DOI URL |
| [25] | 李传海, 尚健, 聂文芳, 等. 家鸽粪便细菌多样性的高通量测序分析及其环境意义[J]. 南京农业大学学报, 2017, 40(1):116-122. |
| LI C H, SHANG J, NIE W F, et al. Illumina sequencing of 16S rDNA tag revealed bacterial communities in pigeon feces and its environmental implication[J]. Journal of Nanjing Agricultural University, 2017, 40(1):116-122.(in Chinese with English abstract) | |
| [26] |
SAHAR N, SHAHID M, ALI A. A case of Sphingobacterium spiritivorum bacteremia and literature review[J]. Infectious Diseases in Clinical Practice, 2019, 28(1):7-9.
DOI URL |
| [27] | 段盛文, 刘正初, 郑科, 等. Sphingobacterium bambusaue及其紫外诱变菌株的石油降解功能[J]. 微生物学通报, 2013, 40(12):2336-2341. |
| DUAN S W, LIU Z C, ZHENG K, et al. Petroleum degradation capacity of Sphingobacterium bambusaue and its UV-mutants[J]. Microbiology China, 2013, 40(12):2336-2341.(in Chinese with English abstract) | |
| [28] |
LI X, LIU Y, CHEN Z, et al. Membranicola marinus gen. nov., sp. nov., a new member of the family Saprospiraceae isolated from a biofilter in a recirculating aquaculture system[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3):1275-1280.
DOI URL |
| [29] |
ZHONG Z P, LIU Y, WANG F, et al. Planktosalinus lacus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from a salt lake[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(5):2084-2089.
DOI URL |
| [1] | 师阳阳, 吕丽霞, 脱登峰. 低温弱光胁迫下AMF和PGPR对紫罗兰生长及营养吸收的影响[J]. 浙江农业学报, 2025, 37(8): 1694-1705. |
| [2] | 张程程, 范涛, 章检明, 赵风亮, 忻晓庭, 牛海月, 刘大群. 缙云梅干菜腌制过程中细菌群落与品质的变化[J]. 浙江农业学报, 2025, 37(6): 1336-1343. |
| [3] | 季梦婷, 陈长江, 朱玲, 詹梦琳, 肖顺, 蔡学清. 无花果细菌性叶斑病病原鉴定[J]. 浙江农业学报, 2025, 37(5): 1097-1106. |
| [4] | 赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632. |
| [5] | 巩鑫鑫, 刘瑞玲, 韩延超, 孟祥红, 郜海燕, 陈杭君. 四种食用菌采后主要病原菌的分离与鉴定[J]. 浙江农业学报, 2025, 37(2): 456-465. |
| [6] | 王云龙, 贾生强, 崔玲宇, 吕豪豪, 沈阿林, 苏瑶. 秸秆还田下土壤碳氮分布与固氮和反硝化细菌种群的相互影响[J]. 浙江农业学报, 2025, 37(10): 2150-2164. |
| [7] | 朱小梅, 邢锦城, 洪立洲, 王建红, 刘冲, 董静, 孙果丽, 何苏南. 不同施氮处理下黑麦草翻压还田对滩涂盐渍土碳氮与细菌群落结构的影响[J]. 浙江农业学报, 2025, 37(1): 159-168. |
| [8] | 陈瑶瑶, 刘雪萍, 张绍勇, 王继栋, 王瑞俊, 张立钦. 南太湖水体抑藻菌的筛选分离及其活性成分鉴定[J]. 浙江农业学报, 2024, 36(5): 1124-1133. |
| [9] | 斯林林, 徐静, 曹凯, 张贤, 王建红. 绿肥种植对红壤旱地生土细菌群落结构的影响[J]. 浙江农业学报, 2023, 35(8): 1864-1875. |
| [10] | 孙秀娟, 徐伟慧, 王志刚. 大豆根瘤内生细菌的分离鉴定及其对大豆植株的促生效应[J]. 浙江农业学报, 2023, 35(7): 1532-1541. |
| [11] | 黄婉媛, 李彩斌, 彭宇, 李章海, 黄衍章, 丁婷. 烟草根黑腐病拮抗菌的分离鉴定和生防作用特性研究[J]. 浙江农业学报, 2023, 35(4): 873-883. |
| [12] | 冯林, 周铨, 陈卫良, 毛碧增. 防控温郁金细菌性枯萎病的生物有机肥研制与应用[J]. 浙江农业学报, 2023, 35(3): 630-638. |
| [13] | 李艳艳, 卜建华, 韩丽云, 王川川, 母童. 奶牛乳脂代谢关键候选基因的鉴定与功能分析[J]. 浙江农业学报, 2023, 35(12): 2794-2808. |
| [14] | 田秀, 童炳丽, 谢元贵, 廖小锋, 吴婷婷, 刘济明. 米槁根际细菌对果实药用活性成分的影响及其PICRUST功能预测分析[J]. 浙江农业学报, 2022, 34(9): 1837-1848. |
| [15] | 陈照明, 王强, 李燕丽, 张金萍, 冯江, 刘涛, 俞巧钢, 马军伟. 氮素水平对潮土氨氧化微生物和硝化作用的影响[J]. 浙江农业学报, 2022, 34(9): 2004-2012. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||