浙江农业学报 ›› 2022, Vol. 34 ›› Issue (5): 1015-1023.DOI: 10.3969/j.issn.1004-1524.2022.05.16
收稿日期:
2021-05-03
出版日期:
2022-05-25
发布日期:
2022-06-06
通讯作者:
曹子林
作者简介:
* 曹子林,E-mail: fjcaozilin@qq.com基金资助:
WANG Xiaoli1(), ZHAO Yingwei2, KONG Xiaona1, CAO Zilin3,*(
)
Received:
2021-05-03
Online:
2022-05-25
Published:
2022-06-06
Contact:
CAO Zilin
摘要:
蓝桉是桉树中少有的油、材兼用树种。从云南蓝桉人工林中采集根际土,调查菌根真菌的种类和优势种,并通过控制育苗基质中菌根真菌菌群的数量,分析菌根真菌对蓝桉苗木生长和光合特性的影响,探讨影响其生长的主要菌根真菌种类,以期从菌根化育苗方面为蓝桉的壮苗培育提供指导。结果表明:从根际土中分离出3属6种菌根真菌,分别为聚丛球囊霉(Glomus aggregatum)、何氏球囊霉(Glomus hoi)、多梗球囊霉(Glomus multicaule)、摩西球囊霉(Glomus mosseae)、幼套近明球囊霉(Claroideoglomus etunicatum)、缩隔球囊霉(Septoglomus constrictum),其中,聚丛球囊霉、幼套近明球囊霉和摩西球囊霉为优势菌种(三者合计占总孢子密度的80.77%)。苗龄10个月时,随着育苗基质中菌群数量增多,蓝桉苗木的菌根侵染率增大,侵染强度增强,且接种适量的菌根真菌对苗高、地径都具有显著(P<0.05)促进作用,且能显著(P<0.05)提高苗木的叶绿素含量和表观量子效率,降低光补偿点和光饱和点。相关性分析和逐步回归分析结果显示,对苗木生长和光合能力起主要促进作用的是聚丛球囊霉、幼套近明球囊霉和缩隔球囊霉。
中图分类号:
王晓丽, 赵英伟, 孔晓娜, 曹子林. 蓝桉根际菌根真菌的分离鉴定及其对蓝桉生长和光合特性的影响[J]. 浙江农业学报, 2022, 34(5): 1015-1023.
WANG Xiaoli, ZHAO Yingwei, KONG Xiaona, CAO Zilin. Isolation and identification of mycorrhizal fungi in rhizosphere and their effect on growth and photosynthetic characteristics of Eucalyptus globulus seedlings[J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1015-1023.
图1 聚丛球囊霉孢子形态(400×) A,水中的孢子;B,孢子壁(L1、L2)。
Fig.1 Morphological characteristics of Glomus aggregatum spores (400×) A, Spore in water; B, Spore wall (L1 and L2).
图2 何氏球囊霉孢子形态(400×) A,水中的孢子、连菌孢丝(SH);B,压破的孢子;C,孢子壁(L1、L2)。
Fig.2 Morphological characteristics of Glomus hoi spores (400×) A, Spore in water, and subtending hypha (SH); B, Crushed spore; C, Spore wall (L1 and L2).
图3 多梗球囊霉孢子形态(400×) A,水中的孢子;B,连菌孢丝(SH);C,孢子壁(L1)。
Fig.3 Morphological characteristics of Glomus multicaule spores (400×) A, Spore in water; B, Subtending hypha (SH); C, Spore wall (L1).
图4 摩西球囊霉孢子形态(400×) A,水中的孢子、连菌孢丝(SH);B,孢子壁(L1、L2、L3)。
Fig.4 Morphological characteristics of Glomus mosseae spores (400×) A, Spore in water, and subtending hypha (SH); B, Spore wall (L1, L2 and L3).
图5 幼套近明球囊霉孢子形态(400×) A,水中的孢子、连孢菌丝(SH);B,孢子壁(L1、L2)。
Fig.5 Morphological characteristics of Claroideoglomus etunicatum spores (400×) A, Spore in water, and subtending hypha (SH); B, Spore wall (L1 and L2).
图6 缩隔球囊霉孢子形态(400×) A,水中的孢子、连孢菌丝(SH);B,孢子壁(L1)。
Fig.6 Morphological characteristics of Septoglomus constrictum spores (400×) A, Spore in water, and subtending hypha (SH); B, Spore wall (L1).
处理 Treatment | 菌根侵染率 Mycorrhizal infection rate/% | 菌根侵染强度 Mycorrhizal infection intensity |
---|---|---|
1 | 0 | Ⅰ |
2 | 61.5 | Ⅳ |
3 | 79.5 | Ⅴ |
表1 不同处理下蓝桉苗木的菌根侵染率和侵染强度
Table 1 Mycorrhizal infection rate and infection intensity of Eucalyptus globulus seedlings under different treatments
处理 Treatment | 菌根侵染率 Mycorrhizal infection rate/% | 菌根侵染强度 Mycorrhizal infection intensity |
---|---|---|
1 | 0 | Ⅰ |
2 | 61.5 | Ⅳ |
3 | 79.5 | Ⅴ |
图7 蓝桉苗木根部菌根外观形态、根内菌丝和真菌泡囊 a,菌根外观形态;b,根内菌丝(100×);c,根内泡囊(100×)。
Fig.7 Morphological characteristics of mycorrhiza, hyphae and vesicles of root of Eucalyptus globulus seedlings a, Morphological characteristics of mycorrhiza; b, Hyphae in root (100×); c, Vesicles in root (100×).
处理 Treatment | 育苗前Before seedling | 育苗后 After seedling | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 9 | 19 | 5 | 14 | 4 | 1 | 20 | 83 | 6 | 59 | 5 | 2 |
3 | 18 | 38 | 10 | 28 | 8 | 2 | 35 | 76 | 16 | 56 | 14 | 3 |
表2 育苗前后不同处理基质中菌根菌的孢子密度
Table 2 Spore density of mycorrhizal fungi in nursery substrate under different treatments before and after growing seedlings g-1
处理 Treatment | 育苗前Before seedling | 育苗后 After seedling | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 9 | 19 | 5 | 14 | 4 | 1 | 20 | 83 | 6 | 59 | 5 | 2 |
3 | 18 | 38 | 10 | 28 | 8 | 2 | 35 | 76 | 16 | 56 | 14 | 3 |
处理 Treatment | 5个月 Five months | 10个月 Ten months | ||||||
---|---|---|---|---|---|---|---|---|
苗高 Seedling height/cm | 地径 Ground diameter/mm | 苗高 Seedling height/cm | 地径 Ground diameter/mm | 根干重 Root dry weight/g | 茎干重 Stem dry weight/g | 叶干重 Leaf dry weight/g | ||
1 | 28.61±1.22 ab | 1.36±0.08 | 32.82±1.18 b | 2.63±0.07 ab | 0.33±0.07 | 0.76±0.08 | 0.55±0.03 | |
2 | 31.39±1.29 a | 1.41±0.78 | 36.77±0.82 a | 2.82±0.09 a | 0.39±0.07 | 0.78±0.09 | 0.56±0.01 | |
3 | 26.31±1.11 b | 1.28±0.59 | 31.18±1.02 b | 2.46±0.11 b | 0.35±0.05 | 0.82±0.08 | 0.73±0.08 |
表3 不同处理对蓝桉苗木生长情况和生物量的影响
Table 3 Effects of different treatments on growth indexes and biomass of Eucalyptus globulus seedlings
处理 Treatment | 5个月 Five months | 10个月 Ten months | ||||||
---|---|---|---|---|---|---|---|---|
苗高 Seedling height/cm | 地径 Ground diameter/mm | 苗高 Seedling height/cm | 地径 Ground diameter/mm | 根干重 Root dry weight/g | 茎干重 Stem dry weight/g | 叶干重 Leaf dry weight/g | ||
1 | 28.61±1.22 ab | 1.36±0.08 | 32.82±1.18 b | 2.63±0.07 ab | 0.33±0.07 | 0.76±0.08 | 0.55±0.03 | |
2 | 31.39±1.29 a | 1.41±0.78 | 36.77±0.82 a | 2.82±0.09 a | 0.39±0.07 | 0.78±0.09 | 0.56±0.01 | |
3 | 26.31±1.11 b | 1.28±0.59 | 31.18±1.02 b | 2.46±0.11 b | 0.35±0.05 | 0.82±0.08 | 0.73±0.08 |
处理 Treatment | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶面积 指数 Leaf area index | 表观量子效率 Apparent quantum yield | 最大净光合速率 Maximum net photosynthetic rate/ (μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate/(μmol· m-2·s-1) | 光补偿点 Light compensation point/(μmol· m-2·s-1) | 光饱和点 Light saturation point/(μmol· m-2·s-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.705± 0.049 b | 0.236± 0.013 | 0.942± 0.054 b | 1.32± 0.16 | 0.047± 0.010 c | 4.726± 1.880 | 1.035± 0.178 | 20.010± 1.189 a | 315.923± 32.767 a |
2 | 0.712± 0.061 b | 0.245± 0.003 | 0.957± 0.064 b | 1.49± 0.12 | 0.070± 0.006 b | 4.838± 0.743 | 1.071± 0.031 | 13.044± 0.716 b | 265.894± 4.345 b |
3 | 0.834± 0.048 a | 0.271± 0.071 | 1.105± 0.061 a | 1.50± 0.11 | 0.097± 0.005 a | 4.910± 1.074 | 1.127± 0.061 | 8.781± 0.606 c | 217.170± 20.564 c |
表4 不同处理对蓝桉苗木叶绿素含量、叶面积指数和光合参数的影响
Table 4 Effects of different treatments on chlorophyll content, leaf area index and photosynthetic parameters of Eucalyptus globulus seedlings
处理 Treatment | 叶绿素a Chlorophyll a/ (mg·g-1) | 叶绿素b Chlorophyll b/ (mg·g-1) | 总叶绿素 Total chlorophyll/ (mg·g-1) | 叶面积 指数 Leaf area index | 表观量子效率 Apparent quantum yield | 最大净光合速率 Maximum net photosynthetic rate/ (μmol·m-2·s-1) | 暗呼吸速率 Dark respiration rate/(μmol· m-2·s-1) | 光补偿点 Light compensation point/(μmol· m-2·s-1) | 光饱和点 Light saturation point/(μmol· m-2·s-1) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.705± 0.049 b | 0.236± 0.013 | 0.942± 0.054 b | 1.32± 0.16 | 0.047± 0.010 c | 4.726± 1.880 | 1.035± 0.178 | 20.010± 1.189 a | 315.923± 32.767 a |
2 | 0.712± 0.061 b | 0.245± 0.003 | 0.957± 0.064 b | 1.49± 0.12 | 0.070± 0.006 b | 4.838± 0.743 | 1.071± 0.031 | 13.044± 0.716 b | 265.894± 4.345 b |
3 | 0.834± 0.048 a | 0.271± 0.071 | 1.105± 0.061 a | 1.50± 0.11 | 0.097± 0.005 a | 4.910± 1.074 | 1.127± 0.061 | 8.781± 0.606 c | 217.170± 20.564 c |
指标Index | A | B | C | D | E | F |
---|---|---|---|---|---|---|
苗高Seedling height/cm | -0.991 | 1.000* | -0.958 | 0.991 | 0.958 | -0.835 |
地径Ground diameter/cm | 0.679 | -0.271 | 0.032 | -0.439 | 0.032 | 0.036 |
根干重Rood dry weight/g | -0.929 | 0.992 | -0.945 | 0.996 | 0.945 | -0.956 |
茎干重Stem dry weight/g | 0.996 | -0.846 | 0.693 | -0.928 | -0.693 | 0.553 |
叶干重Leaf dry weight/g | 0.928 | -0.657 | 0.457 | -0.781 | -0.457 | 0.158 |
表观量子效率Apparent quantum yield | 0.689 | -0.234 | 0.046 | -0.283 | -0.046 | -0.053 |
最大净光合速率 | -0.961 | 0.693 | -0.544 | 0.444 | 0.544 | -0.390 |
Maximum net photosynthetic rate/(μmol·m-2·s-1) | ||||||
暗呼吸速率Dark respiration rate/(μmol·m-2·s-1) | -0.744 | 0.310 | -0.125 | 0.207 | 0.125 | 0.228 |
光补偿点Light compensation point(μmol·m-2·s-1) | -0.544 | 0.052 | 0.138 | 0.454 | 0.138 | 0.322 |
光饱和点Light saturation point/(μmol·m-2·s-1) | -0.649 | 0.181 | 0.008 | 0.335 | 0.008 | 0.298 |
表5 已鉴定菌种与蓝桉苗木生理生化指标的相关性
Table 5 Correlation within mycorrhizal fungi species and physiochemical indexes of Eucalyptus globulus seedlings
指标Index | A | B | C | D | E | F |
---|---|---|---|---|---|---|
苗高Seedling height/cm | -0.991 | 1.000* | -0.958 | 0.991 | 0.958 | -0.835 |
地径Ground diameter/cm | 0.679 | -0.271 | 0.032 | -0.439 | 0.032 | 0.036 |
根干重Rood dry weight/g | -0.929 | 0.992 | -0.945 | 0.996 | 0.945 | -0.956 |
茎干重Stem dry weight/g | 0.996 | -0.846 | 0.693 | -0.928 | -0.693 | 0.553 |
叶干重Leaf dry weight/g | 0.928 | -0.657 | 0.457 | -0.781 | -0.457 | 0.158 |
表观量子效率Apparent quantum yield | 0.689 | -0.234 | 0.046 | -0.283 | -0.046 | -0.053 |
最大净光合速率 | -0.961 | 0.693 | -0.544 | 0.444 | 0.544 | -0.390 |
Maximum net photosynthetic rate/(μmol·m-2·s-1) | ||||||
暗呼吸速率Dark respiration rate/(μmol·m-2·s-1) | -0.744 | 0.310 | -0.125 | 0.207 | 0.125 | 0.228 |
光补偿点Light compensation point(μmol·m-2·s-1) | -0.544 | 0.052 | 0.138 | 0.454 | 0.138 | 0.322 |
光饱和点Light saturation point/(μmol·m-2·s-1) | -0.649 | 0.181 | 0.008 | 0.335 | 0.008 | 0.298 |
苗木指标Indexes of seedling | 回归方程Regression equation | r | R2 | P |
---|---|---|---|---|
Y1:苗高Seedling height/cm | Y1=21.675+0.234X2+0.100X5 | 1.000 | 0.999 | 0.017 |
Y2:根干重Rood dry weight/g | Y2=0.237+0.001X2+0.002X4 | 0.998 | 0.995 | 0.045 |
Y2:最大净光合速率Maximum net photosynthetic rate/(μmoL·m-2·s-1) | Y3=4.410+0.004X2+0.004X4 | 0.998 | 0.995 | 0.045 |
表6 已鉴定菌种与蓝桉苗木生长指标以及光合特性的逐步回归分析
Table 6 Stepwise regression within mycorrhizal fungi species and growth indexes and photosynthetic characteristics of Eucalyptus globulus seedlings
苗木指标Indexes of seedling | 回归方程Regression equation | r | R2 | P |
---|---|---|---|---|
Y1:苗高Seedling height/cm | Y1=21.675+0.234X2+0.100X5 | 1.000 | 0.999 | 0.017 |
Y2:根干重Rood dry weight/g | Y2=0.237+0.001X2+0.002X4 | 0.998 | 0.995 | 0.045 |
Y2:最大净光合速率Maximum net photosynthetic rate/(μmoL·m-2·s-1) | Y3=4.410+0.004X2+0.004X4 | 0.998 | 0.995 | 0.045 |
[1] | 王豁然. 桉树生物学概论[M]. 北京: 科学出版社, 2010. |
[2] | 项学武, 吴柳月, 黄六帖. 不同桉树专用追肥对桉树生长的影响探讨[J]. 南方农业, 2017, 11(8): 48-49. |
XIANG X W, WU L Y, HUANG L T. Study on the effects of different special topdressing fertilizer on Eucalyptus growth[J]. South China Agriculture, 2017, 11(8): 48-49. (in Chinese) | |
[3] |
CARRERO O, STAPE J L, ALLEN L, et al. Productivity gains from weed control and fertilization of short-rotation Eucalyptus plantations in the Venezuelan Western Llanos[J]. Forest Ecology and Management, 2018, 430: 566-575.
DOI URL |
[4] | 任忠秀, 包雪梅, 于家伊, 等. 我国桉树人工林施肥现状、存在问题及对策[J]. 桉树科技, 2013, 30(4): 52-59. |
REN Z X, BAO X M, YU J Y, et al. Current status, problems and countermeasures of Eucalyptus plantation fertilization practices in China[J]. Eucalypt Science & Technology, 2013, 30(4): 52-59. (in Chinese with English abstract) | |
[5] | 花晓梅. 林木菌根研究[M]. 北京: 中国科学技术出版社, 1995. |
[6] | 弓明钦, 陈羽, 王凤珍, 等. 华南地区桉树林中VA菌根菌资源及其组成[J]. 林业科学研究, 1997, 10(3): 277-282. |
GONG M Q, CHEN Y, WANG F Z, et al. Resources and distribution of VAM fungus communities in Eucalyptus forest in Southern China[J]. Rorest Research, 1997, 10(3): 277-282. (in Chinese with English abstract) | |
[7] | 谭方河, 王云璋. 四川松树、桉树外生菌根菌种类调查[J]. 四川林业科技, 2000, 21(3): 65-69. |
TAN F H, WANG Y Z. Investigation on exogenetic mycorrhizal species of Pinus and Eucalyptus in Sichuan[J]. Journal of Sichuan Forestry Science and Technology, 2000, 21(3): 65-69. (in Chinese) | |
[8] | 仲崇禄, 弓明钦, 徐大平, 等. 接种菌根菌对桉树生长的影响[J]. 林业科学研究, 2001, 14(2): 181-187. |
ZHONG C L, GONG M Q, XU D P, et al. Effect of genotype and ectomycorrhizal fungal inoculation on growth of Eucalyptus trees[J]. Forest Research, 2001, 14(2): 181-187. (in Chinese with English abstract) | |
[9] | 朱天辉, 张健, 胡庭兴, 等. 四川桉树外生菌根真菌的研究[J]. 四川农业大学学报, 2001, 19(2): 137-140. |
ZHU T H, ZHANG J, HU T X, et al. The study on ectomycorrhizal fungi associated with Eucalyptus in Sichuan[J]. Journal of Sichuan Agricultural University, 2001, 19(2): 137-140. (in Chinese with English abstract) | |
[10] | 朱天辉, 张健, 胡庭兴, 等. 四川桉树菌根类型及林分密度对菌根真菌的影响[J]. 四川农业大学学报, 2001, 19(3): 222-224. |
ZHU T H, ZHANG J, HU T X, et al. Mycorrhizae type associated with Eucalyptus in Sichuan and effect of forest density on mycorrhizal fungi[J]. Journal of Sichuan Agricultural University, 2001, 19(3): 222-224. (in Chinese with English abstract) | |
[11] | TRAPPE J M, SCHENCK N C. Taxonomy of the fungi forming endomycorrhizae[C]// SCHENCK N C. Methods and principles of mycorrhizal research. Saint Paul, Minnesota, US: The American Phytopathological Society, 1982. |
[12] | SCHENCK N C, YVONNE P. Manual for the identification of VA mycorrhizal fungi[M]. 2nd ed. Florida, US: INVAM, 1988. |
[13] |
AN Z Q, HENDRIX J W, HERSHMAN D E, et al. Evaluation of the “most probable number” (MPN) and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi[J]. Mycologia, 1990, 82(5): 576-581.
DOI URL |
[14] |
BERCH S M, KENDRICK B. Vesicular-arbuscular mycorrhizae of southern Ontario ferns and fern-allies[J]. Mycologia, 1982, 74(5): 769-776.
DOI URL |
[15] | 伍建榕, 汪洋, 赵春燕, 等. 云南干热河谷地区木棉科植物丛枝菌根真菌的调查研究[J]. 西北农林科技大学学报(自然科学版), 2014, 42(1): 205-210. |
WU J R, WANG Y, ZHAO C Y, et al. AMF isolated from Bombacaceae plants in Dry and Hot Valley of Yunnan[J]. Journal of Northwest A & F University (Natural Science Edition), 2014, 42(1): 205-210. (in Chinese with English abstract) | |
[16] | 潘欣, 张健, 朱天辉, 等. 四川省巨桉林下大型真菌多样性研究[J]. 资源科学, 2011, 33(4): 773-780. |
PAN X, ZHANG J, ZHU T H, et al. Macrofungal diversity in Eucalyptus grandis forests in Sichuan Province[J]. Resources Science, 2011, 33(4): 773-780. (in Chinese with English abstract) | |
[17] |
NICOLSON T H, SCHENCK N C. Endogonaceous mycorrhizal endophytes in Florida[J]. Mycologia, 1979, 71(1): 178-198.
DOI URL |
[18] | 李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社, 2001. |
[19] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
[20] | 景跃波. 云南热区西南桦人工林丛枝菌根研究[D]. 昆明: 云南大学, 2015. |
JING Y B. Arbuscular mycorrhizas of Betula alnoides plantations in tropical and sub-tropical regions of Yunnan[D]. Kunming: Yunnan University, 2015. (in Chinese with English abstract) | |
[21] | 刘建福, 张勇, 谢丽源, 等. 丛枝菌根真菌对澳洲坚果幼苗的生长效应[J]. 热带作物学报, 2005, 26(3): 16-19. |
LIU J F, ZHANG Y, XIE L Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and development of Macadamia plantlets[J]. Chinese Journal of Tropical Crops, 2005, 26(3): 16-19. (in Chinese with English abstract) | |
[22] | 朱凌骏, 傅致远, 张金池, 等. 菌根真菌对榉树光合特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 121-127. |
ZHU L J, FU Z Y, ZHANG J C, et al. Effects of mycorrhizal fungi on photosynthetic characteristics of Zelkova serrata Thunb[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 121-127. (in Chinese with English abstract) | |
[23] | 常双双, 王承南, 王森, 等. 5种丛枝菌根真菌对君迁子幼苗光合生长的影响[J]. 经济林研究, 2016, 34(2): 79-85. |
CHANG S S, WANG C N, WANG S, et al. Effects of inoculating different kinds of AMF on growth of seedlings in Diospyros lotus[J]. Nonwood Forest Research, 2016, 34(2): 79-85. (in Chinese with English abstract) |
[1] | 胡开博, 杨清夏, 李扬, 吴开贤, 赵平, 龙光强. 化肥减氮配施氨基酸肥料对春玉米生产的影响[J]. 浙江农业学报, 2022, 34(4): 661-670. |
[2] | 杨超, 刘敏竹, 李强, 韩涛, 彭良志, 凌丽俐, 付行政, 淳长品, 曹立, 何义仲. 发光二极管(LED)光质对金秋砂糖橘幼苗生长发育和光合特性的影响[J]. 浙江农业学报, 2022, 34(1): 89-97. |
[3] | 周贝宁, 毛恋, 花壮壮, 芦建国. 碱性盐胁迫对夏蜡梅光合荧光特性影响[J]. 浙江农业学报, 2021, 33(8): 1416-1425. |
[4] | 刘艳伟, 周潇, 杨启良, 茶品元. 不同施肥和灌溉水平对三七生长特性和发病率的影响[J]. 浙江农业学报, 2021, 33(8): 1426-1435. |
[5] | 唐红, 黄滔, 刘玮, 黄程前, 黄文韬, 郑硕理, 陈白冰. 四个观赏海棠品种光合特性比较研究[J]. 浙江农业学报, 2021, 33(5): 846-854. |
[6] | 王铁, 黄胜佳, 杨友婷, 谭丽平, 邱霞, 董甜甜, 黎思辰, 孙国超, 熊博, 王均, 汪志辉. 不同中间砧对媛小春柑橘生长与光合特性的影响[J]. 浙江农业学报, 2021, 33(3): 413-421. |
[7] | 杨成年, 李芳, 朱成科, 唐征县, 易子琳, 韩璐璐, 阳龙江, 彭小倩, 贺蝶, 李杨, 任朝颖, 吕光俊. 杂交鲟出血病病原的分离鉴定与组织病理学观察[J]. 浙江农业学报, 2021, 33(12): 2275-2285. |
[8] | 陈梦竹, 康振亚, 郭向辉, 耿毅, 白明焕, 欧阳萍, 陈德芳, 黄小丽, 赖为民. 一株岩原鲤源致病性ST-251型嗜水气单胞菌的分离与生物学特性研究[J]. 浙江农业学报, 2021, 33(12): 2286-2294. |
[9] | 赵华, 任晴雯, 王熙予, 李珍妮, 唐秀梅, 蒋丽慧, 刘鹏, 邢承华. 丛枝菌根真菌对盐胁迫下番茄抗氧化酶活性和光合特性的影响[J]. 浙江农业学报, 2021, 33(11): 2075-2084. |
[10] | 袁献宇, 杨龙斌, 何赞赞, 毛天骄, 何长生, 占松鹤, 孙裴, 魏建忠, 李郁. 安徽省猪伪狂犬病毒的分离鉴定及其主要毒力基因分子特征[J]. 浙江农业学报, 2020, 32(1): 43-56. |
[11] | 易可可, 阴文奇, 周远成, 蒋金蓁, 张白玉, 李中银, 颜其贵. 四株猪伪狂犬病毒株的分离鉴定与主要毒力基因分析[J]. 浙江农业学报, 2019, 31(9): 1429-1436. |
[12] | 杨移斌, 艾晓辉, 宋怿, 董靖, 胥宁, 姜兰. 黄颡鱼溶血性腹水病初探[J]. 浙江农业学报, 2019, 31(8): 1239-1248. |
[13] | 孙德智, 杨恒山, 张庆国, 范富, 苏雅乐其其格, 彭靖, 韩晓日. 外源一氧化氮供体硝普钠对番茄幼苗盐胁迫伤害的缓解作用[J]. 浙江农业学报, 2019, 31(8): 1286-1294. |
[14] | 杨亚娜, 樊小雪, 徐刚, 张宇, 李亚灵, 温祥珍. 不同红蓝LED光照强度和灌溉量交互作用对番茄幼苗生长的影响[J]. 浙江农业学报, 2019, 31(5): 737-745. |
[15] | 崔一龙, 石芸, 杨达汉, 尹有勤, 薛江东, 霍晓伟, 马德慧. 马源蜡样芽孢杆菌的分离鉴定及毒力基因检测[J]. 浙江农业学报, 2019, 31(2): 216-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||