浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2088-2094.DOI: 10.3969/j.issn.1004-1524.2022.10.02
郑文寅1(), 曾令楠1, 程颖1, 侯丞志2, 曹文昕3, 赵莉3, 姚大年1,*(
)
收稿日期:
2021-05-05
出版日期:
2022-10-25
发布日期:
2022-10-26
通讯作者:
姚大年
作者简介:
*姚大年,E-mail: dnyao@163.com基金资助:
ZHENG Wenyin1(), ZENG Lingnan1, CHENG Ying1, HOU Chengzhi2, CAO Wenxin3, ZHAO Li3, YAO Danian1,*(
)
Received:
2021-05-05
Online:
2022-10-25
Published:
2022-10-26
Contact:
YAO Danian
摘要:
小麦籽粒中类胡萝卜素是一类重要的营养和健康化学成分。本研究利用7个类胡萝卜素含量不同的小麦品种,按Griffing双列杂交法Ⅱ配制21个杂交组合,进行配合力、遗传模型、显隐性基因和遗传参数估算等遗传分析。结果表明,在7个亲本中,生选2号是一个优良的亲本材料,其籽粒类胡萝卜素含量较高,一般配合力较好,可以较快地提高杂交后代类胡萝卜素含量。在亲本选配时应选择高×中类胡萝卜素含量类型。小麦籽粒类胡萝卜素含量为加性-显性-上位性模型遗传,高值受隐性基因控制且遗传力较低。在小麦营养和健康品质育种中,宜在高代进行严格选择以选育出较高类胡萝卜素含量的新品系,达到改良和提高我国小麦营养和健康品质的目的。
中图分类号:
郑文寅, 曾令楠, 程颖, 侯丞志, 曹文昕, 赵莉, 姚大年. 小麦籽粒类胡萝卜素含量的遗传分析[J]. 浙江农业学报, 2022, 34(10): 2088-2094.
ZHENG Wenyin, ZENG Lingnan, CHENG Ying, HOU Chengzhi, CAO Wenxin, ZHAO Li, YAO Danian. Inheritance of carotenoid content in wheat kernels[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2088-2094.
亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
P5 | 1.935 | 1.951 | 2.052 | ||||
P6 | 2.245 | 2.021 | |||||
P7 | 2.328 |
表1 亲本及其杂交组合的类胡萝卜素含量
Table 1 Carotenoid content of parents and crosses mg·kg-1
亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|---|
P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
P5 | 1.935 | 1.951 | 2.052 | ||||
P6 | 2.245 | 2.021 | |||||
P7 | 2.328 |
变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|
区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
误差Error | 54 | 0.072 4 |
表2 供试材料类胡萝卜素含量的方差分析
Table 2 ANOVA analysis of carotenoid content
变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|
区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
误差Error | 54 | 0.072 4 |
变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|
一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
误差Error | 54 | 0.024 1 |
表3 类胡萝卜素含量的配合力方差分析
Table 3 ANOVA analysis of the combining ability for carotenoid content
变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|
一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
误差Error | 54 | 0.024 1 |
亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
---|---|---|
P1 | 苏麦188 Sumai 188 | 0.499 0 a |
P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
表4 亲本的一般配合力效应及比较
Table 4 Comparison on effect of general combining ability of parents
亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
---|---|---|
P1 | 苏麦188 Sumai 188 | 0.499 0 a |
P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|
P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
P5 | -0.278 2 | -0.219 5 | ||||
P6 | -0.371 4 |
表5 杂交组合间的特殊配合力相对效应值
Table 5 Relative effect of special combining ability of crosses
亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
---|---|---|---|---|---|---|
P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
P5 | -0.278 2 | -0.219 5 | ||||
P6 | -0.371 4 |
参数Parameters | 数值 Value |
---|---|
a | -1.991 9 |
b | 0.487 6 |
ta0 | 8.643 4** |
tb0 | 9.759 2** |
tb1 | 10.256 0** |
表6 Wr/Vr直线回归分析结果
Table 6 Regression analysis of Wr/Vr
参数Parameters | 数值 Value |
---|---|
a | -1.991 9 |
b | 0.487 6 |
ta0 | 8.643 4** |
tb0 | 9.759 2** |
tb1 | 10.256 0** |
参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|---|
Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
公共亲本内Within common parents | 14 | 0.466 4 | |||
Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
公共亲本内Within common parents | 14 | 0.079 0 |
表7 Wr+Vr和Wr-Vr的方差分析
Table 7 ANOVA for Wr+Vr and Wr-Vr
参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
---|---|---|---|---|---|
Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
公共亲本内Within common parents | 14 | 0.466 4 | |||
Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
公共亲本内Within common parents | 14 | 0.079 0 |
图1 类胡萝卜素含量Wr依Vr的回归直线图 P1, 苏麦188;P2, 郑麦11;P3, 生选2号;P4, 扬麦21;P5, 扬幅麦4号;P6, 扬麦16;P7, 扬麦 15。
Fig.1 Line regressions of Wr on Vr for carotenoid content P1, Sumai 188;P2, Zhenmai 11;P3, Shengxuan No. 2;P4, Yangmai 21;P5, Yangfumai No. 4;P6, Yangmai 16;P7, Yangmai 15.
参数Parameter | 值Value |
---|---|
加性方差Additive variance | 0.098 1 |
显性方差Dominance variance | 0.093 0 |
遗传方差Hereditary variance | 0.191 1 |
环境方差Environmental variance | 0.072 4 |
表型方差Phenotypic variance | 0.214 4 |
广义遗传力Broad-sense heritability/% | 43.36 |
狭义遗传力Narrow-sense heritability/% | 45.78 |
表8 类胡萝卜素含量的遗传参数
Table 8 Genetic parameters for carotenoid content
参数Parameter | 值Value |
---|---|
加性方差Additive variance | 0.098 1 |
显性方差Dominance variance | 0.093 0 |
遗传方差Hereditary variance | 0.191 1 |
环境方差Environmental variance | 0.072 4 |
表型方差Phenotypic variance | 0.214 4 |
广义遗传力Broad-sense heritability/% | 43.36 |
狭义遗传力Narrow-sense heritability/% | 45.78 |
[1] | 张勇, 郝元峰, 张艳, 等. 小麦营养和健康品质研究进展[J]. 中国农业科学, 2016, 49(22): 4284-4298. |
ZHANG Y, HAO Y F, ZHANG Y, et al. Progress in research on genetic improvement of nutrition and health qualities in wheat[J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298. (in Chinese with English abstract) | |
[2] |
翟胜男, 郭军, 刘成, 等. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
DOI |
ZHAI S N, GUO J, LIU C, et al. Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat[J]. Acta Agronomica Sinica, 2020, 46(10): 1485-1495. (in Chinese with English abstract) | |
[3] |
LEENHARDT F, LYAN B, ROCK E, et al. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties[J]. European Journal of Agronomy, 2006, 25(2): 170-176.
DOI URL |
[4] |
HIDALGO A, BRANDOLINI A, POMPEI C, et al. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.)[J]. Journal of Cereal Science, 2006, 44(2): 182-193.
DOI URL |
[5] |
DIGESÙ A M, PLATANI C, CATTIVELLI L, et al. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats[J]. Journal of Cereal Science, 2009, 50(2): 210-218.
DOI URL |
[6] | 郑文寅, 汪帆, 司红起, 等. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量变异及对全麦粉色泽的影响[J]. 中国农业科学, 2013, 46(6): 1087-1094. |
ZHENG W Y, WANG F, SI H Q, et al. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat[J]. Scientia Agricultura Sinica, 2013, 46(6): 1087-1094. (in Chinese with English abstract) | |
[7] |
CLARKE F R, CLARKE J M, MCCAIG T N, et al. Inheritance of yellow pigment concentration in seven durum wheat crosses[J]. Canadian Journal of Plant Science, 2006, 86(1): 133-141.
DOI URL |
[8] | MENG E, LOYNS A, PENA R J. Wheat quality in the developing world: trends and opportunities[C]// //DIXON J, BRAUN H J, KOSINA P, et al. Wheat facts and futures, 2009: 26-41. |
[9] |
RODRÍGUEZ-SUÁREZ C, GIMÉNEZ M J, ATIENZA S G. Progress and perspectives for carotenoid accumulation in selected Triticeae species[J]. Crop and Pasture Science, 2010, 61(9): 743.
DOI URL |
[10] |
RODRÍGUEZ-SUÁREZ C, ATIENZA S G, PISTÓN F. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult[J]. PLoS One, 2011, 6(5): e19885.
DOI URL |
[11] |
PATIL R M, OAK M D, TAMHANKAR S A, et al. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum)[J]. Molecular Breeding, 2008, 21(4): 485-496.
DOI URL |
[12] |
SINGH A, REIMER S, POZNIAK C J, et al. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain[J]. Theoretical and Applied Genetics, 2009, 118(8): 1539-1548.
DOI PMID |
[13] | HOWITT C A, CAVANAGH C R, BOWERMAN A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Functional & Integrative Genomics, 2009, 9(3): 363-376. |
[14] |
ALURU M, XU Y, GUO R, et al. Generation of transgenic maize with enhanced provitamin A content[J]. Journal of Experimental Botany, 2008, 59(13): 3551-3562.
DOI PMID |
[15] |
ZHU C, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18232-18237.
DOI PMID |
[16] | 任得强, 吴媛媛, 周健, 等. 小麦品种(系)籽粒类胡萝卜素含量及其与其他品质性状的相关性[J]. 麦类作物学报, 2014, 34(6): 868-873. |
REN D Q, WU Y Y, ZHOU J, et al. Analysis on carotenoids content and some other quality traits of wheat varieties(lines)[J]. Journal of Triticeae Crops, 2014, 34(6): 868-873. (in Chinese with English abstract) | |
[17] | 吴媛媛, 周健, 包晓婷, 等. 基因型和环境对小麦类胡萝卜素含量及其品质性状的影响[J]. 麦类作物学报, 2015, 35(9): 1257-1261. |
WU Y Y, ZHOU J, BAO X T, et al. Effect of genotypes and environments to carotenoid contents and some quality traits of wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(9): 1257-1261. (in Chinese with English abstract) | |
[18] | 王志忠, 燕丽, 郑文寅, 等. 不同生态区域小麦品种籽粒类胡萝卜素含量及品质性状研究[J]. 南京农业大学学报, 2017, 40(1): 20-26. |
WANG Z Z, YAN L, ZHENG W Y, et al. Research on carotenoid contents and quality traits of wheat varieties in different ecological regions[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 20-26. (in Chinese with English abstract) | |
[19] | 姚金保, 周淼平, 马鸿翔, 等. 小麦籽粒硬度的遗传分析[J]. 江苏农业学报, 2018, 34(4): 721-725. |
YAO J B, ZHOU M P, MA H X, et al. Genetic analysis of grain hardness in bread wheat(Triticum aestivum L.)[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 721-725. (in Chinese with English abstract) | |
[20] | 莫惠栋. 双列资料的遗传模型分析[J]. 江苏农学院学报, 1987, 8(1): 59-64. |
MO H D. The analysis of genetical model for diallel data[J]. Journal of Jiangsu Agriculture College, 1987, 8(1): 59-64. (in Chinese) | |
[21] | 崔党群, 闻捷, 聂利红, 等. 小麦茎秆特性的遗传模型研究[J]. 河南农业科学, 2002, 31(9): 4-7. |
CUI D Q, WEN J, NIE L H, et al. Study on the genetic model of stem characters in wheat[J]. Journal of Henan Agricultural Sciences, 2002, 31(9): 4-7. (in Chinese with English abstract) | |
[22] |
CONG L, WANG C, CHEN L, et al. Expression of phytoene synthase1and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8652-8660.
DOI URL |
[23] |
HUNG P V, HATCHER D W. Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum wheat: influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN)[J]. Food Chemistry, 2011, 125(4): 1510-1516.
DOI URL |
[24] |
HIDALGO A, BRANDOLINI A, POMPEI C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours[J]. Food Chemistry, 2010, 121(3): 746-751.
DOI URL |
[25] | 田纪春. 小麦主要性状的遗传解析及分子标记辅助育种[M]. 北京: 科学出版社, 2015: 165. |
[1] | 郭晗, 陆洲, 徐飞飞, 罗明, 张序. 基于全局敏感性分析与机器学习的冬小麦叶面积指数估算[J]. 浙江农业学报, 2022, 34(9): 2020-2031. |
[2] | 王斯亮, 邵越, 闫成进. 草地贪夜蛾在玉米-小麦寄主转换中的转录组分析[J]. 浙江农业学报, 2022, 34(6): 1236-1247. |
[3] | 蔡瑶, 缪宇轩, 吴浩, 王丹. 高CO2浓度下冬小麦的高光谱特征及其与叶面积指数和SPAD值的反演[J]. 浙江农业学报, 2022, 34(3): 582-589. |
[4] | 闫宁, 张晗, 董宏图, 康凯, 罗斌. 基于透射光和反射光图像同位分割的小麦品种识别方法研究[J]. 浙江农业学报, 2022, 34(3): 590-598. |
[5] | 张琪琪, 万映秀, 曹文昕, 李炎, 刘方方, 李耀, 张平治. 安徽省小麦品质性状分析与评价[J]. 浙江农业学报, 2022, 34(10): 2079-2087. |
[6] | 王掌军, 姚明明, 余慧霞, 王彦青, 李清峰, 刘凤楼, 刘彩霞, 张双喜, 张晓岗, 刘生祥. 宁春4号×河东乌麦F2∶5家系遗传图谱构建与籽粒蛋白质性状QTL分析[J]. 浙江农业学报, 2021, 33(8): 1367-1378. |
[7] | 王玲玲, 吴文革, 李瑞, 胡健, 闫素辉, 邵庆勤, 许峰, 张从宇, 周永进, 李文阳. 施氮量对弱筋小麦籽粒品质与氮素利用的影响[J]. 浙江农业学报, 2021, 33(5): 777-784. |
[8] | 姚钊, 王重阳, 崔静. 小麦不同穗位籽粒灌浆特性的影响[J]. 浙江农业学报, 2021, 33(4): 576-585. |
[9] | 赵珂, 李秋荣, 侯璐, 白耀博, 蒋礼玲, 魏有海, 郭青云. 2份春小麦种质资源成株期抗条锈病基因遗传分析[J]. 浙江农业学报, 2021, 33(4): 595-601. |
[10] | 韩晓蕾, 高仕祺, 张帆, 羊健, 刘芃, 姜鸿明, 李林志. 酵母双杂交筛选与小麦黄花叶病毒P2互作的寄主因子[J]. 浙江农业学报, 2021, 33(3): 497-505. |
[11] | 徐民民, 黄莹, 李波, 徐艳, 张帅, 姚岭芸, 王政. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516-525. |
[12] | 王潭刚, 孙婷, 王冀川, 李慧琴, 高振, 石元强. 播期和密度对滴灌冬小麦群体结构与抗倒特性的影响[J]. 浙江农业学报, 2021, 33(2): 193-202. |
[13] | 王骏, 吴小保, 宋佳, 邓倩倩, 曾广, 任明见, 叶茂. 外源钙浸种对小麦防御酶和麦二叉蚜体内解毒酶活性的影响[J]. 浙江农业学报, 2021, 33(12): 2339-2347. |
[14] | 王士臻, 王教瑜, 王艳丽, 孙国仓. 麦瘟病与小麦抗麦瘟基因研究进展[J]. 浙江农业学报, 2021, 33(11): 2205-2212. |
[15] | 张统帅, 闫丽娟, 李广, 陈国鹏, 罗永忠. 免耕和秸秆覆盖对旱作区土壤氮素、水分和春小麦产量的影响[J]. 浙江农业学报, 2020, 32(8): 1329-1341. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 667
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 567
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||