浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2088-2094.DOI: 10.3969/j.issn.1004-1524.2022.10.02
郑文寅1(
), 曾令楠1, 程颖1, 侯丞志2, 曹文昕3, 赵莉3, 姚大年1,*(
)
收稿日期:2021-05-05
出版日期:2022-10-25
发布日期:2022-10-26
作者简介:*姚大年,E-mail: dnyao@163.com通讯作者:
姚大年
基金资助:
ZHENG Wenyin1(
), ZENG Lingnan1, CHENG Ying1, HOU Chengzhi2, CAO Wenxin3, ZHAO Li3, YAO Danian1,*(
)
Received:2021-05-05
Online:2022-10-25
Published:2022-10-26
Contact:
YAO Danian
摘要:
小麦籽粒中类胡萝卜素是一类重要的营养和健康化学成分。本研究利用7个类胡萝卜素含量不同的小麦品种,按Griffing双列杂交法Ⅱ配制21个杂交组合,进行配合力、遗传模型、显隐性基因和遗传参数估算等遗传分析。结果表明,在7个亲本中,生选2号是一个优良的亲本材料,其籽粒类胡萝卜素含量较高,一般配合力较好,可以较快地提高杂交后代类胡萝卜素含量。在亲本选配时应选择高×中类胡萝卜素含量类型。小麦籽粒类胡萝卜素含量为加性-显性-上位性模型遗传,高值受隐性基因控制且遗传力较低。在小麦营养和健康品质育种中,宜在高代进行严格选择以选育出较高类胡萝卜素含量的新品系,达到改良和提高我国小麦营养和健康品质的目的。
中图分类号:
郑文寅, 曾令楠, 程颖, 侯丞志, 曹文昕, 赵莉, 姚大年. 小麦籽粒类胡萝卜素含量的遗传分析[J]. 浙江农业学报, 2022, 34(10): 2088-2094.
ZHENG Wenyin, ZENG Lingnan, CHENG Ying, HOU Chengzhi, CAO Wenxin, ZHAO Li, YAO Danian. Inheritance of carotenoid content in wheat kernels[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2088-2094.
| 亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|---|
| P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
| P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
| P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
| P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
| P5 | 1.935 | 1.951 | 2.052 | ||||
| P6 | 2.245 | 2.021 | |||||
| P7 | 2.328 |
表1 亲本及其杂交组合的类胡萝卜素含量
Table 1 Carotenoid content of parents and crosses mg·kg-1
| 亲本Parent | P1 | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|---|
| P1 | 3.622 | 2.294 | 3.115 | 2.576 | 3.128 | 3.377 | 3.336 |
| P2 | 2.458 | 2.645 | 2.614 | 2.436 | 2.687 | 2.648 | |
| P3 | 2.292 | 2.985 | 2.656 | 2.875 | 3.034 | ||
| P4 | 1.985 | 2.465 | 2.224 | 2.254 | |||
| P5 | 1.935 | 1.951 | 2.052 | ||||
| P6 | 2.245 | 2.021 | |||||
| P7 | 2.328 |
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
| 基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
| 误差Error | 54 | 0.072 4 |
表2 供试材料类胡萝卜素含量的方差分析
Table 2 ANOVA analysis of carotenoid content
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 区组Block | 2 | 0.645 7 | 8.992 | 0.195 4 |
| 基因型Genotype | 27 | 0.121 8 | 1.683** | 0.000 1 |
| 误差Error | 54 | 0.072 4 |
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
| 特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
| 误差Error | 54 | 0.024 1 |
表3 类胡萝卜素含量的配合力方差分析
Table 3 ANOVA analysis of the combining ability for carotenoid content
| 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|
| 一般配合力 General combining ability | 6 | 0.558 7 | 23.161 8 | <0.001 |
| 特殊配合力 Special combining ability | 21 | 0.117 1 | 4.853 4 | <0.001 |
| 误差Error | 54 | 0.024 1 |
| 亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
|---|---|---|
| P1 | 苏麦188 Sumai 188 | 0.499 0 a |
| P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
| P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
| P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
| P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
| P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
| P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
表4 亲本的一般配合力效应及比较
Table 4 Comparison on effect of general combining ability of parents
| 亲本代号 No. | 亲本名称 Parent name | 效应值 Effect value |
|---|---|---|
| P1 | 苏麦188 Sumai 188 | 0.499 0 a |
| P2 | 镇麦11 Zhenmai 11 | -0.046 5 c |
| P3 | 生选2号 Shengxuan No.2 | 0.139 0 b |
| P4 | 扬麦21 Yangmai 21 | -0.171 9 cd |
| P5 | 扬辐麦4号 Yangfumai No.4 | -0.232 6 d |
| P6 | 扬麦16 Yangmai 16 | -0.113 8 cd |
| P7 | 扬麦15 Yangmai 15 | -0.073 3 c |
| 亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|
| P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
| P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
| P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
| P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
| P5 | -0.278 2 | -0.219 5 | ||||
| P6 | -0.371 4 |
表5 杂交组合间的特殊配合力相对效应值
Table 5 Relative effect of special combining ability of crosses
| 亲本Parent | P2 | P3 | P4 | P5 | P6 | P7 |
|---|---|---|---|---|---|---|
| P1 | -0.735 5 | -0.195 6 | -0.329 1 | 0.271 5 | 0.411 6 | 0.327 1 |
| P2 | -0.033 9 | 0.255 0 | 0.128 3 | 0.262 9 | 0.183 9 | |
| P3 | 0.444 2 | 0.168 7 | 0.270 3 | 0.389 6 | ||
| P4 | 0.292 3 | -0.074 4 | -0.081 8 | |||
| P5 | -0.278 2 | -0.219 5 | ||||
| P6 | -0.371 4 |
| 参数Parameters | 数值 Value |
|---|---|
| a | -1.991 9 |
| b | 0.487 6 |
| ta0 | 8.643 4** |
| tb0 | 9.759 2** |
| tb1 | 10.256 0** |
表6 Wr/Vr直线回归分析结果
Table 6 Regression analysis of Wr/Vr
| 参数Parameters | 数值 Value |
|---|---|
| a | -1.991 9 |
| b | 0.487 6 |
| ta0 | 8.643 4** |
| tb0 | 9.759 2** |
| tb1 | 10.256 0** |
| 参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|---|
| Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
| 公共亲本内Within common parents | 14 | 0.466 4 | |||
| Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
| 公共亲本内Within common parents | 14 | 0.079 0 |
表7 Wr+Vr和Wr-Vr的方差分析
Table 7 ANOVA for Wr+Vr and Wr-Vr
| 参数 Parameters | 变异来源 Source of variation | 自由度 DF | 均方 MS | F值 F value | P值 P value |
|---|---|---|---|---|---|
| Wr+Vr | 公共亲本间Between common parents | 6 | 5.171 5 | 11.088 0 | 0.000 1 |
| 公共亲本内Within common parents | 14 | 0.466 4 | |||
| Wr-Vr | 公共亲本间Between common parents | 6 | 0.717 7 | 9.084 0 | 0.000 4 |
| 公共亲本内Within common parents | 14 | 0.079 0 |
图1 类胡萝卜素含量Wr依Vr的回归直线图 P1, 苏麦188;P2, 郑麦11;P3, 生选2号;P4, 扬麦21;P5, 扬幅麦4号;P6, 扬麦16;P7, 扬麦 15。
Fig.1 Line regressions of Wr on Vr for carotenoid content P1, Sumai 188;P2, Zhenmai 11;P3, Shengxuan No. 2;P4, Yangmai 21;P5, Yangfumai No. 4;P6, Yangmai 16;P7, Yangmai 15.
| 参数Parameter | 值Value |
|---|---|
| 加性方差Additive variance | 0.098 1 |
| 显性方差Dominance variance | 0.093 0 |
| 遗传方差Hereditary variance | 0.191 1 |
| 环境方差Environmental variance | 0.072 4 |
| 表型方差Phenotypic variance | 0.214 4 |
| 广义遗传力Broad-sense heritability/% | 43.36 |
| 狭义遗传力Narrow-sense heritability/% | 45.78 |
表8 类胡萝卜素含量的遗传参数
Table 8 Genetic parameters for carotenoid content
| 参数Parameter | 值Value |
|---|---|
| 加性方差Additive variance | 0.098 1 |
| 显性方差Dominance variance | 0.093 0 |
| 遗传方差Hereditary variance | 0.191 1 |
| 环境方差Environmental variance | 0.072 4 |
| 表型方差Phenotypic variance | 0.214 4 |
| 广义遗传力Broad-sense heritability/% | 43.36 |
| 狭义遗传力Narrow-sense heritability/% | 45.78 |
| [1] | 张勇, 郝元峰, 张艳, 等. 小麦营养和健康品质研究进展[J]. 中国农业科学, 2016, 49(22): 4284-4298. |
| ZHANG Y, HAO Y F, ZHANG Y, et al. Progress in research on genetic improvement of nutrition and health qualities in wheat[J]. Scientia Agricultura Sinica, 2016, 49(22): 4284-4298. (in Chinese with English abstract) | |
| [2] |
翟胜男, 郭军, 刘成, 等. 小麦类胡萝卜素合成途径关键基因Lcye功能分析[J]. 作物学报, 2020, 46(10): 1485-1495.
DOI |
| ZHAI S N, GUO J, LIU C, et al. Functional analysis of Lcye gene involved in the carotenoid synthesis in common wheat[J]. Acta Agronomica Sinica, 2020, 46(10): 1485-1495. (in Chinese with English abstract) | |
| [3] |
LEENHARDT F, LYAN B, ROCK E, et al. Genetic variability of carotenoid concentration, and lipoxygenase and peroxidase activities among cultivated wheat species and bread wheat varieties[J]. European Journal of Agronomy, 2006, 25(2): 170-176.
DOI URL |
| [4] |
HIDALGO A, BRANDOLINI A, POMPEI C, et al. Carotenoids and tocols of einkorn wheat (Triticum monococcum ssp. monococcum L.)[J]. Journal of Cereal Science, 2006, 44(2): 182-193.
DOI URL |
| [5] |
DIGESÙ A M, PLATANI C, CATTIVELLI L, et al. Genetic variability in yellow pigment components in cultivated and wild tetraploid wheats[J]. Journal of Cereal Science, 2009, 50(2): 210-218.
DOI URL |
| [6] | 郑文寅, 汪帆, 司红起, 等. 普通小麦籽粒LOX、PPO活性和类胡萝卜素含量变异及对全麦粉色泽的影响[J]. 中国农业科学, 2013, 46(6): 1087-1094. |
| ZHENG W Y, WANG F, SI H Q, et al. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat[J]. Scientia Agricultura Sinica, 2013, 46(6): 1087-1094. (in Chinese with English abstract) | |
| [7] |
CLARKE F R, CLARKE J M, MCCAIG T N, et al. Inheritance of yellow pigment concentration in seven durum wheat crosses[J]. Canadian Journal of Plant Science, 2006, 86(1): 133-141.
DOI URL |
| [8] | MENG E, LOYNS A, PENA R J. Wheat quality in the developing world: trends and opportunities[C]// //DIXON J, BRAUN H J, KOSINA P, et al. Wheat facts and futures, 2009: 26-41. |
| [9] |
RODRÍGUEZ-SUÁREZ C, GIMÉNEZ M J, ATIENZA S G. Progress and perspectives for carotenoid accumulation in selected Triticeae species[J]. Crop and Pasture Science, 2010, 61(9): 743.
DOI URL |
| [10] |
RODRÍGUEZ-SUÁREZ C, ATIENZA S G, PISTÓN F. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult[J]. PLoS One, 2011, 6(5): e19885.
DOI URL |
| [11] |
PATIL R M, OAK M D, TAMHANKAR S A, et al. Mapping and validation of a major QTL for yellow pigment content on 7AL in durum wheat (Triticum turgidum L. ssp. durum)[J]. Molecular Breeding, 2008, 21(4): 485-496.
DOI URL |
| [12] |
SINGH A, REIMER S, POZNIAK C J, et al. Allelic variation at Psy1-A1 and association with yellow pigment in durum wheat grain[J]. Theoretical and Applied Genetics, 2009, 118(8): 1539-1548.
DOI PMID |
| [13] | HOWITT C A, CAVANAGH C R, BOWERMAN A F, et al. Alternative splicing, activation of cryptic exons and amino acid substitutions in carotenoid biosynthetic genes are associated with lutein accumulation in wheat endosperm[J]. Functional & Integrative Genomics, 2009, 9(3): 363-376. |
| [14] |
ALURU M, XU Y, GUO R, et al. Generation of transgenic maize with enhanced provitamin A content[J]. Journal of Experimental Botany, 2008, 59(13): 3551-3562.
DOI PMID |
| [15] |
ZHU C, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(47): 18232-18237.
DOI PMID |
| [16] | 任得强, 吴媛媛, 周健, 等. 小麦品种(系)籽粒类胡萝卜素含量及其与其他品质性状的相关性[J]. 麦类作物学报, 2014, 34(6): 868-873. |
| REN D Q, WU Y Y, ZHOU J, et al. Analysis on carotenoids content and some other quality traits of wheat varieties(lines)[J]. Journal of Triticeae Crops, 2014, 34(6): 868-873. (in Chinese with English abstract) | |
| [17] | 吴媛媛, 周健, 包晓婷, 等. 基因型和环境对小麦类胡萝卜素含量及其品质性状的影响[J]. 麦类作物学报, 2015, 35(9): 1257-1261. |
| WU Y Y, ZHOU J, BAO X T, et al. Effect of genotypes and environments to carotenoid contents and some quality traits of wheat varieties[J]. Journal of Triticeae Crops, 2015, 35(9): 1257-1261. (in Chinese with English abstract) | |
| [18] | 王志忠, 燕丽, 郑文寅, 等. 不同生态区域小麦品种籽粒类胡萝卜素含量及品质性状研究[J]. 南京农业大学学报, 2017, 40(1): 20-26. |
| WANG Z Z, YAN L, ZHENG W Y, et al. Research on carotenoid contents and quality traits of wheat varieties in different ecological regions[J]. Journal of Nanjing Agricultural University, 2017, 40(1): 20-26. (in Chinese with English abstract) | |
| [19] | 姚金保, 周淼平, 马鸿翔, 等. 小麦籽粒硬度的遗传分析[J]. 江苏农业学报, 2018, 34(4): 721-725. |
| YAO J B, ZHOU M P, MA H X, et al. Genetic analysis of grain hardness in bread wheat(Triticum aestivum L.)[J]. Jiangsu Journal of Agricultural Sciences, 2018, 34(4): 721-725. (in Chinese with English abstract) | |
| [20] | 莫惠栋. 双列资料的遗传模型分析[J]. 江苏农学院学报, 1987, 8(1): 59-64. |
| MO H D. The analysis of genetical model for diallel data[J]. Journal of Jiangsu Agriculture College, 1987, 8(1): 59-64. (in Chinese) | |
| [21] | 崔党群, 闻捷, 聂利红, 等. 小麦茎秆特性的遗传模型研究[J]. 河南农业科学, 2002, 31(9): 4-7. |
| CUI D Q, WEN J, NIE L H, et al. Study on the genetic model of stem characters in wheat[J]. Journal of Henan Agricultural Sciences, 2002, 31(9): 4-7. (in Chinese with English abstract) | |
| [22] |
CONG L, WANG C, CHEN L, et al. Expression of phytoene synthase1and carotene desaturase crtI genes result in an increase in the total carotenoids content in transgenic elite wheat (Triticum aestivum L.)[J]. Journal of Agricultural and Food Chemistry, 2009, 57(18): 8652-8660.
DOI URL |
| [23] |
HUNG P V, HATCHER D W. Ultra-performance liquid chromatography (UPLC) quantification of carotenoids in durum wheat: influence of genotype and environment in relation to the colour of yellow alkaline noodles (YAN)[J]. Food Chemistry, 2011, 125(4): 1510-1516.
DOI URL |
| [24] |
HIDALGO A, BRANDOLINI A, POMPEI C. Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours[J]. Food Chemistry, 2010, 121(3): 746-751.
DOI URL |
| [25] | 田纪春. 小麦主要性状的遗传解析及分子标记辅助育种[M]. 北京: 科学出版社, 2015: 165. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 刘胜男, 朱建义, 李明, 赵浩宇, 熊涛, 汤永禄, 周小刚, 李朝苏. 稻茬免耕带旋播种小麦的田间杂草防除效果与小麦产量[J]. 浙江农业学报, 2025, 37(10): 2129-2137. |
| [3] | 杨晓雨, 马指挥, 魏青, 牛志鹏, 陈安琪, 胡正冲, 王林生. 一个小麦芒长基因的初步定位及候选基因预测[J]. 浙江农业学报, 2025, 37(1): 14-23. |
| [4] | 沈峥嵘, 戴远兴, 郭留明, 汪芷瑶, 张恒木. 中国小麦花叶病毒(CWMV)外壳蛋白(CP)特异性抗体的制备与应用[J]. 浙江农业学报, 2024, 36(9): 2042-2050. |
| [5] | 齐学礼, 李莹, 段俊枝. 耐盐基因在小麦耐盐基因工程中的应用[J]. 浙江农业学报, 2024, 36(6): 1447-1457. |
| [6] | 李晶晶, 李闯, 路亚南, 郑文明. 小麦类硫素基因家族鉴定及表达分析[J]. 浙江农业学报, 2024, 36(4): 729-737. |
| [7] | 蔡诗怡, 虞慧芳, 王建升, 祝彪, 沈钰森, 顾宏辉, 盛小光. 花椰菜“坐球高度”性状的主基因+多基因遗传分析[J]. 浙江农业学报, 2024, 36(3): 527-533. |
| [8] | 张永彬, 李想, 满卫东, 刘明月, 樊继好, 胡皓然, 宋利杰, 刘玮佳. 融合Sentinel-1/2数据和机器学习算法的冬小麦产量估算方法研究[J]. 浙江农业学报, 2024, 36(12): 2812-2822. |
| [9] | 刘永安, 黄业昌, 岳高红, 高锡腾, 邓立章, 潘彬荣. 优质小麦品种温麦10号籽粒蛋白质组学分析[J]. 浙江农业学报, 2024, 36(11): 2437-2446. |
| [10] | 娄渊根, 李闯, 李晶晶, 邢国珍, 路亚南, 郑文明. 小麦HP基因家族鉴定和分析[J]. 浙江农业学报, 2023, 35(9): 2023-2032. |
| [11] | 余桂红, 宋桂成, 张鹏, 王化敦, 范祥云. 十八个小麦品种(系)拔节期耐渍性的综合评价[J]. 浙江农业学报, 2023, 35(6): 1235-1242. |
| [12] | 杨凯, 陈凯, 李红梅, 赵忠娟, 扈进冬, 李纪顺, 杨合同. 哈茨木霉LTR-2与产脲节杆菌DnL1-1协同对小麦茎基腐病的防治效果与机理[J]. 浙江农业学报, 2023, 35(6): 1385-1395. |
| [13] | 任开明, 王犇, 杨文俊, 樊永惠, 张文静, 马尚宇, 黄正来. 施氮对稻茬弱筋小麦生长特性、品质与产量的影响[J]. 浙江农业学报, 2023, 35(4): 769-779. |
| [14] | 鲁帅, 罗晓刚, 刘全伟, 张屹, 孟洋昊, 李洁, 张景来. 有机无机复混肥对小麦生长、土壤养分和重金属含量的影响[J]. 浙江农业学报, 2023, 35(4): 922-930. |
| [15] | 白卫卫, 赵雪妮, 罗斌, 赵薇, 黄硕, 张晗. 基于YOLOv5的小麦种子发芽检测方法研究[J]. 浙江农业学报, 2023, 35(2): 445-454. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||