浙江农业学报 ›› 2022, Vol. 34 ›› Issue (10): 2268-2276.DOI: 10.3969/j.issn.1004-1524.2022.10.21
收稿日期:2022-03-02
出版日期:2022-10-25
发布日期:2022-10-26
作者简介:*党向利,E-mail: xldang@ahau.edu.cn通讯作者:
党向利
基金资助:
WANG Lifanga(
), YE Liangb, XIE Zhongwenc, DANG Xianglib,*(
)
Received:2022-03-02
Online:2022-10-25
Published:2022-10-26
Contact:
DANG Xiangli
摘要:
为了制备茶叶抗菌肽粗提物并将其应用在冷却肉保鲜上,以龙井茶叶为材料提取茶叶抗菌肽粗提物,采用平板抑菌法检测茶叶抗菌肽粗提物的抑菌活性,通过细胞膜渗透率、磷离子泄漏、DNA结合和透射电子显微镜等指标分析茶叶抗菌肽粗提物对细菌的作用机制,通过微生物菌落数量和pH值两个指标评价茶叶抗菌肽粗提物对冷却肉的防腐保鲜效果。结果表明:提取的茶叶抗菌肽粗提物主要包括分子量小于18.4 ku的多肽,其对金黄色葡萄球菌和大肠埃希菌均具有抑菌活性,可造成细菌细胞膜渗透率增强,引起细菌细胞外磷离子浓度增加,造成细菌细胞膜不完整、出现破损,但不与细菌基因组DNA结合。茶叶抗菌肽粗提物可以显著抑制冷却肉中微生物的生长,延缓pH值上升,延长保鲜时间,对冷却肉具有防腐保鲜作用,具有较高的开发利用价值。
中图分类号:
王丽芳, 叶良, 谢忠稳, 党向利. 茶叶抗菌肽粗提物的抑菌活性及其对冷却肉保鲜的影响[J]. 浙江农业学报, 2022, 34(10): 2268-2276.
WANG Lifang, YE Liang, XIE Zhongwen, DANG Xiangli. Antibacterial activity of tea antimicrobial peptide extraction and its effect on preservation of chilled meat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2268-2276.
图1 茶叶抗菌肽粗提物SDS-PAGE电泳检测1,10 ku超滤管截留蛋白;2,3 ku超滤管截留蛋白;3,提取的茶叶抗菌肽。
Fig.1 SDS-PAGE of TAE1, Retained proteins by 10 ku ultrafiltration tube; 2, Retained proteins by 3 ku ultrafiltration tube; 3, Extracted TAE.
| 处理 Treatment | 抑菌圈直径Diameter of inhibition zone/mm | |
|---|---|---|
| 金黄色葡萄球菌 Staphylococcus aureus | 大肠埃希菌 Escherichia coli | |
| 茶叶抗菌肽TAE | 13.6±0.44 a | 7.9±0.38 a |
| 乳酸链球菌肽Nisin | 16.2±0.78 a | 4.7±0.42 b |
表1 茶叶抗菌肽粗提物对细菌的抑菌活性
Table 1 Antibacterial activity of TAE against bacteria
| 处理 Treatment | 抑菌圈直径Diameter of inhibition zone/mm | |
|---|---|---|
| 金黄色葡萄球菌 Staphylococcus aureus | 大肠埃希菌 Escherichia coli | |
| 茶叶抗菌肽TAE | 13.6±0.44 a | 7.9±0.38 a |
| 乳酸链球菌肽Nisin | 16.2±0.78 a | 4.7±0.42 b |
图4 DNA琼脂糖凝胶阻滞分析 M,DNA分子量标准;CK,阴性对照;1,阳性对照;2,茶叶抗菌肽。
Fig.4 Gel retardation analysis of S. aureus genomic DNA M, DNA marker; CK, Negative control; 1, Positive control; 2, TAE.
图6 茶叶抗菌肽处理对冷却肉微生物生长的影响柱上无相同小写字母表示差异显著(P<0.05)。下同。
Fig.6 Effect of TAE on total bacterial count of chilled meat Data on the bars marked without the same lowercase letter indicated significant differences at P<0.05. The same as below.
| [1] | 辛本凯, 王会岩. 抗菌肽在抗菌材料中的研究进展[J]. 吉林医药学院学报, 2021, 42(1): 53-55. |
| XIN B K, WANG H Y. Research progress of antimicrobial peptides in antibacterial materials[J]. Journal of Jilin Medical University, 2021, 42(1): 53-55. (in Chinese) | |
| [2] |
BROGDEN K A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. Nature Reviews Microbiology, 2005, 3(3): 238-250.
DOI PMID |
| [3] | BARBOSA PELEGRINI P, DEL SARTO R P, SILVA O N, et al. Antibacterial peptides from plants: what they are and how they probably work[J]. Biochemistry Research International, 2011, 2011: 250349. |
| [4] | 田志环. 抗菌肽的结构与功能[J]. 生物学教学, 2008, 33(7): 4-5. |
| TIAN Z H. Structure and function of antimicrobial peptides[J]. Biology Teaching, 2008, 33(7): 4-5. (in Chinese) | |
| [5] |
THEVISSEN K, KRISTENSEN H H, THOMMA B P H J, et al. Therapeutic potential of antifungal plant and insect defensins[J]. Drug Discovery Today, 2007, 12(21/22): 966-971.
DOI URL |
| [6] |
HEGEDÜS N, MARX F. Antifungal proteins: more than antimicrobials?[J]. Fungal Biology Reviews, 2013, 26(4): 132-145.
PMID |
| [7] | 周晓馥, 苗璐, 高峰, 等. 利用生物信息学对植物抗菌肽的预测与分析[J]. 生物技术, 2014, 24(3): 91-95. |
| ZHOU X F, MIAO L, GAO F, et al. Bioinformatics forecast and analysis of plant antimicrobial peptides[J]. Biotechnology, 2014, 24(3): 91-95. (in Chinese with English abstract) | |
| [8] |
NAWROT R, BARYLSKI J, NOWICKI G, et al. Plant antimicrobial peptides[J]. Folia Microbiologica, 2014, 59(3): 181-196.
DOI PMID |
| [9] | 魏志文. 绿茶中四种儿茶素单体(EC、EGC、ECG、EGCG)和槲皮素单体分离制备[D]. 合肥: 安徽农业大学, 2009. |
| WEI Z W. Separation and preparation of four individual catechins (EC, EGC, ECG, EGCG) and qurecetin monomer from green tea[D]. Hefei: Anhui Agricultural University, 2009. (in Chinese with English abstract) | |
| [10] | MO H Z, ZHU Y, CHEN Z M. Microbial fermented tea: a potential source of natural food preservatives[J]. Trends in Food Science & Technology, 2008, 19(3): 124-130. |
| [11] |
PERUMALLA A V S, HETTIARACHCHY N S. Green tea and grape seed extracts: potential applications in food safety and quality[J]. Food Research International, 2011, 44(4): 827-839.
DOI URL |
| [12] | 王永红, 张淑蓉. 冷鲜肉的保鲜技术研究进展[J]. 粮油食品科技, 2012, 20(1): 48-51. |
| WANG Y H, ZHANG S R. Research progress on keeping chilled meat fresh[J]. Science and Technology of Cereals, Oils and Foods, 2012, 20(1): 48-51. (in Chinese with English abstract) | |
| [13] | 李新福, 张威, 李超, 等. 不同保鲜剂对冷鲜猪肉品质的影响[J]. 安徽农业科学, 2020, 48(13): 183-188. |
| LI X F, ZHANG W, LI C, et al. Effects of different preservatives on storage quality of cold fresh pork[J]. Journal of Anhui Agricultural Sciences, 2020, 48(13): 183-188. (in Chinese) | |
| [14] |
XIE Y C, ZHANG Y, XIE Y K, et al. Radio frequency treatment accelerates drying rates and improves vigor of corn seeds[J]. Food Chemistry, 2020, 319: 126597.
DOI URL |
| [15] |
LU M Q, HAN J Y, ZHU B Y, et al. Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis)[J]. Planta, 2019, 249(2): 363-376.
DOI PMID |
| [16] |
DANG X L, TIAN J H, YANG W Y, et al. Bactrocerin-1: a novel inducible antimicrobial peptide from pupae of oriental fruit fly Bactrocera dorsalis Hendel[J]. Archives of Insect Biochemistry and Physiology, 2009, 71(3): 117-129.
DOI URL |
| [17] | DANG X L, ZHENG X X, WANG Y S, et al. Antimicrobial peptides from the edible insect Musca domestica and their preservation effect on chilled pork[J]. Journal of Food Processing and Preservation, 2020, 44(3): e14369. |
| [18] |
KLUBTHAWEE N, ADISAKWATTANA P, HANPITHAKPONG W, et al. A novel, rationally designed, hybrid antimicrobial peptide, inspired by cathelicidin and aurein, exhibits membrane-active mechanisms against Pseudomonas aeruginosa[J]. Scientific Reports, 2020, 10: 9117.
DOI URL |
| [19] | 段静芸, 徐幸莲, 周光宏. 壳聚糖在冷却鲜猪肉保鲜中的应用研究[J]. 食品工业科技, 2001, 22(4): 26-28. |
| DUAN J Y, XU X L, ZHOU G H. Study on the application of chitosan in preservation of chilled fresh pork[J]. Science and Technology of Food Industry, 2001, 22(4): 26-28. (in Chinese with English abstract) | |
| [20] |
MAHLAPUU M, BJÖRN C, EKBLOM J. Antimicrobial peptides as therapeutic agents: opportunities and challenges[J]. Critical Reviews in Biotechnology, 2020, 40(7): 978-992.
DOI PMID |
| [21] |
MAHLAPUU M, HÅKANSSON J, RINGSTAD L, et al. Antimicrobial peptides: an emerging category of therapeutic agents[J]. Frontiers in Cellular and Infection Microbiology, 2016, 6: 194.
DOI PMID |
| [22] | 刘唤明, 孙力军, 王雅玲, 等. 纳豆菌脂肽对金黄色葡萄球菌抑菌机理的研究[J]. 食品工业科技, 2012, 33(11): 109-112. |
| LIU H M, SUN L J, WANG Y L, et al. Study on antibacterial mechanism of lipopeptide from Bacillus natto against Staphyloccocus aureus[J]. Science and Technology of Food Industry, 2012, 33(11): 109-112. (in Chinese with English abstract) | |
| [23] |
YANG S, LI J, AWEYA J J, et al. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk[J]. International Journal of Food Microbiology, 2020, 335: 108891.
DOI URL |
| [24] | 陈飞龙, 刘渔珠, 彭勃, 等. 抗菌肽F1对金黄色葡萄球菌的胞内作用机制[J]. 食品科学, 2017, 38(6): 36-41. |
| CHEN F L, LIU Y Z, PENG B, et al. Intracellular mechanism of action of antimicrobial peptide F1 on Staphylococcus aureus[J]. Food Science, 2017, 38(6): 36-41. (in Chinese with English abstract) | |
| [25] | 苏冠芳, 郝刚, 李莉蓉, 等. 抗菌肽buforinⅡ衍生物抑制细菌核酸合成的机制研究[J]. 中国抗生素杂志, 2012, 37(3): 190-195. |
| SU G F, HAO G, LI L R, et al. Antibacterial peptides buforinⅡ-analogues on bacteria by inhibition of DNA synthesis[J]. Chinese Journal of Antibiotics, 2012, 37(3): 190-195. (in Chinese with English abstract) | |
| [26] |
CARDOSO M H, MENEGUETTI B T, COSTA B O, et al. Nonlytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets[J]. International Journal of Molecular Sciences, 2019, 20(19): 4877.
DOI URL |
| [27] | 程述震, 王晓拓, 王志东. 冷鲜肉保鲜技术研究进展[J]. 食品研究与开发, 2017, 38(16): 194-198. |
| CHENG S Z, WANG X T, WANG Z D. Research progress on preservation methods for chilled meat[J]. Food Research and Development, 2017, 38(16): 194-198. (in Chinese with English abstract) | |
| [28] | 李柯欣. 茶多酚的提取、抑菌作用与抑菌机理研究[D]. 成都: 西华大学, 2017. |
| LI K X. Study on extraction, bacteriostasis and bacteriostatic mechanism of tea polyphenols[D]. Chengdu: Xihua University, 2017. (in Chinese with English abstract) | |
| [29] | JAY J M. Modern food microbiology[M]. 6th ed. Gaithersburg, MD: Aspen Publishers, 2000. |
| [1] | 刘睿, 王丽娟, 王秋皓, 林旭东, 郭启航, 许多霖, 李文妍. 基于改进YOLOv8s的茶叶病虫害检测[J]. 浙江农业学报, 2025, 37(9): 1933-1942. |
| [2] | 陈巍, 王荣荣, 蒋雯静, 耿伟淞, 陈岑. 壳聚糖-壳寡糖复合膜的制备及其在草莓保鲜中的应用[J]. 浙江农业学报, 2025, 37(8): 1785-1793. |
| [3] | 马献, 尤雨薇, 康娟, 王国琴, 郑蕊, 苏建宇, 岳思君. 枸杞采后致腐病原菌的分离鉴定与天然抑菌剂筛选[J]. 浙江农业学报, 2025, 37(6): 1327-1335. |
| [4] | 李强, 刘思彤, 黄显斌, 姜君龙, 邓建宇, 王教瑜, 李玲. 山区猕猴桃溃疡病病原菌的鉴定及不同类型高效防治药剂的筛选[J]. 浙江农业学报, 2025, 37(10): 2116-2128. |
| [5] | 刘婕, 疏再发, 刘林敏, 叶火香, 周慧娟, 吉庆勇, 何卫中. 茶叶全程机械化的研究与应用[J]. 浙江农业学报, 2025, 37(10): 2235-2246. |
| [6] | 朱铭敏, 张国平, 谭建军, 孙玲姣, 朱黎, 焦洁. 基于YOLOv5s的轻量级茶叶嫩芽终端检测模型[J]. 浙江农业学报, 2024, 36(6): 1413-1424. |
| [7] | 宗自豪, 何丁生, 牛犇, 黄俊, 房祥军, 吴伟杰, 陈杭君, 郜海燕. 不同镂空包装对雨天采收杨梅贮运品质的影响[J]. 浙江农业学报, 2024, 36(1): 196-204. |
| [8] | 李彦湘, 丁德东, 何静, 张金花, 赵吉桃, 赵倩, 候彩霞, 朱珠. 木醋液对几种植物病原真菌的抑菌活性与作用机制[J]. 浙江农业学报, 2023, 35(9): 2149-2159. |
| [9] | 俞国红, 郑航, 叶云翔, 薛向磊, 傅童. 轻便自走式采茶机的设计与试验[J]. 浙江农业学报, 2023, 35(9): 2233-2239. |
| [10] | 张宁, 陶荣浩, 刘佩诗, 胡含秀, 高琳琳, 郭龙, 祝尊友, 马友华. 不同种类有机肥配施化肥对茶叶生长、品质和土壤肥力的影响[J]. 浙江农业学报, 2023, 35(8): 1844-1852. |
| [11] | 邓美华, 高娜, 吴林土, 徐火忠, 洪海清, 朱有为. 浙江省铅污染源解析与茶叶铅污染风险评价[J]. 浙江农业学报, 2023, 35(5): 1123-1131. |
| [12] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
| [13] | 马波, 陶震, 周瑞, 王雪, 吕茜茜, 孙士红, 王寒, 高金秋, 张楚涵, 陈凤清. 花叶万年青功能成分提取条件优化与活性探究[J]. 浙江农业学报, 2023, 35(2): 383-393. |
| [14] | 张馨月, 杨禹诚, 段皓月, 周杨洁, 黄嘉杨, 陈梓月, 蒋洁, 陈姝娟. 氮掺杂碳量子点-壳聚糖复合膜的制备及对草莓的保鲜效果[J]. 浙江农业学报, 2023, 35(12): 2935-2943. |
| [15] | 赵赛赛, 张皓杰, 蔡秀磊, 王丽荣, 申小冉, 曹志, 单虎. 一株假交替单胞菌DL3的抑菌与群体感应淬灭活性研究[J]. 浙江农业学报, 2023, 35(1): 50-57. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||