浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2603-2609.DOI: 10.3969/j.issn.1004-1524.2022.12.03
收稿日期:
2022-03-22
出版日期:
2022-12-25
发布日期:
2022-12-26
作者简介:
冯金林(1986—),男,河北泊头人,博士,副教授,研究方向为植物发育生物学。E-mail:jinlin_feng@163.com
基金资助:
FENG Jinlin(), XI Xiaoyu, ZHAO Shifeng
Received:
2022-03-22
Online:
2022-12-25
Published:
2022-12-26
摘要:
N末端乙酰转移酶Naa50在调控拟南芥生长发育方面至关重要。为探究Naa50是否通过调控细胞有丝分裂来影响植物生长发育,将naa50-1突变体与H2B-YFP株系杂交,利用H2B-YFP标示细胞分裂过程中染色体的分离行为。结果表明,与野生型相比,拟南芥naa50-1突变体根尖分生区细胞有丝分裂指数下降,染色体畸变率明显增加,微核率上升,且处在分裂中期的细胞比例增加。将naa50-1突变体与CYCB1-CUS株系杂交,检测根细胞中CYCB1蛋白表达,发现naa50-1突变体中CYCB1蛋白表达量明显增加。PI染色分析表明,naa50-1突变体根部存在部分死细胞。以上结果表明,在细胞有丝分裂过程中,Naa50促进遗传物质平均分配到两个子细胞中,促进细胞从分裂中期向后期转换;Naa50通过调控细胞分裂进而参与植物生长发育的调控。
中图分类号:
冯金林, 席晓宇, 赵世凤. 拟南芥N末端乙酰转移酶Naa50参与调控根细胞有丝分裂[J]. 浙江农业学报, 2022, 34(12): 2603-2609.
FENG Jinlin, XI Xiaoyu, ZHAO Shifeng. Arabidopsis N-terminal acetyltransferase Naa50 is involved in regulation of root cell mitosis[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2603-2609.
图1 野生型和naa50-1突变体根尖细胞细胞核表型观察 利用H2B-YFP对萌发5 d的拟南芥根尖细胞细胞核形态的观察。标尺=20 μm。
Fig.1 Observation of nuclear phenotype in root tip cells of wild-type and naa50-1 mutant Observation of nuclear morphology of root tip cells in 5-day-old Arabidopsis by using H2B-YFP. Bar=20 μm.
图2 拟南芥根尖分生区细胞不同时期有丝分裂与不同类型染色体畸变 图A、B、C、D分别为野生型细胞分裂的前期、中期、后期、末期;图E、F、G、H为naa50-1突变体细胞分裂前期、中期、后期、末期;图I为微核;图J为染色体桥;图K为多束分裂;图L为不等分裂;图M为细胞板偏转;图N为双核现象。标尺=5 μm。
Fig.2 Mitosis and chromosomal aberration of Arabidopsis root apical meristem cells at different stages A, B, C and D are showing the wild-type cells at prophase, metaphase, anaphase and telophase respectively; E, F, G and H are showing the naa50-1 mutant cells at prophase, metaphase, anaphase and telophase respectively; I, Cell with micronucleus; J, Cell with chromosome bridge; K, Cell with multiple bundles of chromosome; L, Asymmetric division cell; M, Cell with plate migration; N, Cell with two nuclei; Bar=5 μm.
基因型 Genotype | TNC | NAC | NCM | NCB | NCC | NAD | CPM | CTN | CFC | PCA/% | PCM/% |
---|---|---|---|---|---|---|---|---|---|---|---|
野生型Wild-type | 3 254 | 66 | 3 | 12 | 1 | 10 | 18 | 1 | 20 | 2.0 | 0.09 |
naa50-1 | 2 265 | 253 | 14 | 17 | 14 | 35 | 130 | 2 | 41 | 11.2 | 0.62 |
表1 Naa50对拟南芥根尖分生区细胞染色体畸变率的影响
Table 1 Effects of Naa50 on chromosome aberration rate and of Arabidopsis root apical meristem cells
基因型 Genotype | TNC | NAC | NCM | NCB | NCC | NAD | CPM | CTN | CFC | PCA/% | PCM/% |
---|---|---|---|---|---|---|---|---|---|---|---|
野生型Wild-type | 3 254 | 66 | 3 | 12 | 1 | 10 | 18 | 1 | 20 | 2.0 | 0.09 |
naa50-1 | 2 265 | 253 | 14 | 17 | 14 | 35 | 130 | 2 | 41 | 11.2 | 0.62 |
基因型Genotype | TNC | NMS | NCP | NCM | NCA | NCT | MI/% |
---|---|---|---|---|---|---|---|
野生型Wild-type | 3254 | 426 | 47 | 20(0.6%) | 164 | 195 | 13.0 |
naa50-1 | 2265 | 241 | 38 | 34(1.5%) | 114 | 55 | 10.6 |
表2 Naa50对拟南芥根尖分生区细胞有丝分裂率的影响
Table 2 Effects of Naa50 on mitotic rate of Arabidopsis root apical meristem cells
基因型Genotype | TNC | NMS | NCP | NCM | NCA | NCT | MI/% |
---|---|---|---|---|---|---|---|
野生型Wild-type | 3254 | 426 | 47 | 20(0.6%) | 164 | 195 | 13.0 |
naa50-1 | 2265 | 241 | 38 | 34(1.5%) | 114 | 55 | 10.6 |
图3 拟南芥根尖细胞中CYCB1的表达和PI染色 A,利用CYCB1-GUS对生长5 d的拟南芥根中CYCB1的表达量进行检测;B,对生长5 d的拟南芥根尖进行PI染色;标尺=50 μm。
Fig.3 Expression of CYCB1 and PI staining in the root cells of Arabidopsis A, Detection of the expression of CYCB1 in the roots of 5-day-old Arabidopsis by using CYCB1-GUS; B, PI staining in the root tips of 5-day-old Arabidopsis; Bar=50 μm.
[1] |
POLEVODA B, SHERMAN F. Nα-terminal acetylation of eukaryotic proteins[J]. Journal of Biological Chemistry, 2000, 275(47): 36479-36482.
DOI URL |
[2] |
POLEVODA B, SHERMAN F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins[J]. Journal of Molecular Biology, 2003, 325(4): 595-622.
PMID |
[3] | NGUYEN K T, MUN S H, LEE C S, et al. Control of protein degradation by N-terminal acetylation and the N-end rule pathway[J]. Experimental & Molecular Medicine, 2018, 50(7): 1-8. |
[4] |
SCOTT D C, MONDA J K, BENNETT E J, et al. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex[J]. Science, 2011, 334(6056): 674-678.
DOI PMID |
[5] |
DIKIY I, ELIEZER D. N-terminal acetylation stabilizes N-terminal helicity in lipid-and micelle-bound α-synuclein and increases its affinity for physiological membranes[J]. Journal of Biological Chemistry, 2014, 289(6): 3652-3665.
DOI URL |
[6] |
HOLMES W M, MANNAKEE B K, GUTENKUNST R N, et al. Loss of amino-terminal acetylation suppresses a prion phenotype by modulating global protein folding[J]. Nature Communications, 2014, 5: 4383.
DOI PMID |
[7] |
FORTE G M A, POOL M R, STIRLING C J, et al. N-terminal acetylation inhibits protein targeting to the endoplasmic reticulum[J]. Plos Biology, 2011, 9(5): e1001073.
DOI URL |
[8] |
XU F, HUANG Y, LI L, et al. Two N-terminal acetyltransferases antagonistically regulate the stability of a nod-like receptor in Arabidopsis[J]. The Plant Cell, 2015, 27(5): 1547-1562.
DOI URL |
[9] |
STARHEIM K K, GEVAERT K, ARNESEN T. Protein N-terminal acetyltransferases: when the start matters[J]. Trends in Biochemical Sciences, 2012, 37(4): 152-161.
DOI PMID |
[10] |
LINSTER E, STEPHAN I, BIENVENUT W V, et al. Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis[J]. Nature Communications, 2015, 6: 7640.
DOI URL |
[11] |
YI C H, PAN H L, SEEBACHER J, et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival[J]. Cell, 2011, 146(4): 607-620.
DOI URL |
[12] |
AKSNES H, DRAZIC A, MARIE M, et al. First things first: vital protein marks by N-terminal acetyltransferases[J]. Trends in Biochemical Sciences, 2016, 41(9): 746-760.
DOI PMID |
[13] |
WEIDENHAUSEN J, KOPP J, ARMBRUSTER L, et al. Structural and functional characterization of the N-terminal acetyltransferase Naa50[J]. Structure, 2021, 29(5): 413-425.
DOI PMID |
[14] |
AKSNES H, REE R, ARNESEN T. Co-translational, post-translational, and non-catalytic roles of N-terminal acetyltransferases[J]. Molecular Cell, 2019, 73(6): 1097-1114.
DOI PMID |
[15] | VAN DAMME P, HOLE K, PIMENTA-MARQUES A, et al. NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation[J]. PLoS Genetics, 2011, 7(7): e1002169. |
[16] |
AKSNES H, VAN DAMME P, GORIS M, et al. An organellar Nα-acetyltransferase, Naa60, acetylates cytosolic N termini of transmembrane proteins and maintains Golgi integrity[J]. Cell Reports, 2015, 10(8): 1362-1374.
DOI PMID |
[17] |
DINH T V, BIENVENUT W V, LINSTER E, et al. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling[J]. Proteomics, 2015, 15(14): 2426-2435.
DOI PMID |
[18] |
LINSTER E, WIRTZ M. N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses[J]. Journal of Experimental Botany, 2018, 69(19): 4555-4568.
DOI PMID |
[19] |
REDDI R, SADDANAPU V, CHINTHAPALLI D K, et al. Human Naa50 protein displays broad substrate specificity for amino-terminal acetylation[J]. Journal of Biological Chemistry, 2016, 291(39): 20530-20538.
DOI URL |
[20] |
EVJENTH R, HOLE K, KARLSEN O A, et al. Human Naa50p (Nat5/San) displays both protein Nα-and N-acetyltransferase activity[J]. Journal of Biological Chemistry, 2009, 284(45): 31122-31129.
DOI URL |
[21] |
HOU F, CHU C W, KONG X, et al. The acetyltransferase activity of San stabilizes the mitotic cohesin at the centromeres in a shugoshin-independent manner[J]. The Journal of Cell Biology, 2007, 177(4): 587-597.
DOI URL |
[22] |
RIBEIRO A L, SILVA R D, FOYN H, et al. Naa50/San-dependent N-terminal acetylation of Scc1 is potentially important for sister chromatid cohesion[J]. Scientific Reports, 2016, 6: 39118.
DOI PMID |
[23] |
WILLIAMS B C, GARRETT-ENGELE C M, LI Z X, et al. Two putative acetyltransferases, San and deco, are required for establishing sister chromatid cohesion in Drosophila[J]. Current Biology, 2003, 13(23): 2025-2036.
DOI URL |
[24] |
ARMBRUSTER L, LINSTER E, BOYER J B, et al. NAA50 is an enzymatically active Nα-acetyltransferase that is crucial for development and regulation of stress responses[J]. Plant Physiology, 2020, 183(4): 1502-1516.
DOI URL |
[25] |
FENG J L, HU J X, LI Y, et al. The N-terminal acetyltransferase Naa50 regulates Arabidopsis growth and osmotic stress response[J]. Plant and Cell Physiology, 2020, 61(9): 1565-1575.
DOI URL |
[26] | 曹嘉巍. NDE1与PLK1互作在有丝分裂中的功能研究[D]. 杭州: 浙江大学, 2021. |
CAO J W. Regulation of NDE1 by PLK1 in mitosis[D]. Hangzhou: Zhejiang University, 2021. (in Chinese with English abstract) | |
[27] | 魏文青, 谢泽雄. 酵母有丝分裂染色体异常分离机制[J]. 生物技术通报, 2021, 37(12): 227-234. |
WEI W Q, XIE Z X. Mechanism of abnormal chromosomal segregation in yeast mitosis[J]. Biotechnology Bulletin, 2021, 37(12): 227-234. (in Chinese with English abstract) | |
[28] |
PETRICKA J J, WINTER C M, BENFEY P N. Control of Arabidopsis root development[J]. Annual Review of Plant Biology, 2012, 63: 563-590.
DOI URL |
[29] |
LI S, SUN T, REN H. The functions of the cytoskeleton and associated proteins during mitosis and cytokinesis in plant cells[J]. Frontiers in Plant Science, 2015, 6: 282.
DOI PMID |
[30] |
LIU P W, QI M, XUE X H, et al. Dynamics and functions of the actin cytoskeleton during the plant cell cycle[J]. Chinese Science Bulletin, 2011, 56(33): 3504-3510.
DOI URL |
[31] | RASMUSSEN C G, WRIGHT A J, SABINE M. The role of the cytoskeleton and associated proteins in plant cell division plane determination[J]. Plant Journal for Cell & Molecular Biology, 2013, 75(2): 258-269. |
[1] | 徐莉, 王其, 丁婷, 江腾. 玉米GRMZM2G455909基因的克隆及其抗病功能初步分析[J]. 浙江农业学报, 2022, 34(9): 1976-984. |
[2] | 李红英, 高延武, 于茹恩, 王政博, 李雪萍, 刘龙昌. 利用CRISPR_Cas9技术创建拟南芥Argonaute2基因缺失突变体[J]. 浙江农业学报, 2021, 33(11): 2001-2008. |
[3] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. |
[4] | 何春梅, 王娟, 董瑞, 刘春晓, 刘强, 关海英, 汪黎明, 徐相波, 刘铁山. 玉米ZmGS5基因的克隆及其对转基因拟南芥种子发育的影响[J]. 浙江农业学报, 2019, 31(4): 513-518. |
[5] | 郭丹丹, 杨清华, 朱丹华, 金杭霞. 碱蓬SgP5CS基因过表达提高拟南芥耐旱性[J]. 浙江农业学报, 2019, 31(4): 572-578. |
[6] | 邓子兵, 邱梁堃, 马建忠. 拟南芥AFP4的克隆、原核表达和纯化及其与ABI5的互作[J]. 浙江农业学报, 2018, 30(12): 2072-2080. |
[7] | 安玉兰, 翟克清, 杨峰, 雷玥, 胡克玲, 甘德芳, 汪承刚. 过表达CsMADSs拟南芥的表型变化及CsMADSs表达水平[J]. 浙江农业学报, 2018, 30(10): 1671-1679. |
[8] | 胡志辉, 张丽琴, 汪艳杰, 兰红, 郭瑞, 陈高, 陈禅友. 喷施细胞分裂素对豇豆叶片光谱和荧光参数的影响[J]. 浙江农业学报, 2017, 29(6): 943-950. |
[9] | 刘丹, 吴凤芝. 转Pal基因拟南芥对根际土壤细菌群落的影响[J]. 浙江农业学报, 2016, 28(12): 2068-2075. |
[10] | 赵莺婕1,刘春林2,阮颖1,*. 拟南芥AtSb10基因的克隆及其过表达转基因株系的获得[J]. 浙江农业学报, 2015, 27(9): 1550-. |
[11] | 汪小福;刘仁虎;陈笑芸;王伏林;关晶晶;陈锦清;*. 甘蓝型油菜磷酸烯醇式丙酮酸羧化酶的研究分析[J]. , 2010, 22(3): 0-280. |
[12] | 许永汉;邓敏娟;鲍烈明;彭建斐;胡张华. 拟南芥SWR1复合体亚单位编码基因ARP6和SWC6的水稻同源基因功能研究[J]. , 2010, 22(3): 0-275. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 523
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 564
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||