浙江农业学报 ›› 2022, Vol. 34 ›› Issue (12): 2594-2602.DOI: 10.3969/j.issn.1004-1524.2022.12.02
收稿日期:
2021-09-26
出版日期:
2022-12-25
发布日期:
2022-12-26
通讯作者:
张雪松
作者简介:
*张雪松,E-mail: lntlzxs@163.com基金资助:
WU Hao(), ZHANG Xuesong(
), WANG Dan
Received:
2021-09-26
Online:
2022-12-25
Published:
2022-12-26
Contact:
ZHANG Xuesong
摘要:
为揭示高CO2浓度处理下,不同氮水平对冬小麦光合作用、生物量积累和产量的影响,利用开顶式气室(OTC),以冬小麦品种宁麦13为试验材料,开展不同CO2浓度(C,环境CO2浓度;T,高CO2浓度,比环境CO2浓度高200 μmol·mol-1)和氮水平(LN,低氮,90 kg·hm-2;HN,高氮,240 kg·hm-2)的交互试验,测定不同处理下不同生育期冬小麦的光合特性、叶片碳氮含量、地上部生物量和产量。结果表明,CO2浓度升高提高了冬小麦的净光合速率,在低氮水平下增幅为78.4%,在高氮水平下增幅为77.2%。在开花期和灌浆期,高氮水平对冬小麦地上部干物质量积累有明显促进作用。各处理中,C-LN的产量最低,T-HN的产量最高,且二者差异显著(P<0.05)。以上结果说明,在未来CO2浓度升高条件下,可通过增施适量的氮肥提升冬小麦的生物量和产量。
中图分类号:
吴浩, 张雪松, 王丹. 不同CO2浓度和氮水平对冬小麦光合和生长特性的影响[J]. 浙江农业学报, 2022, 34(12): 2594-2602.
WU Hao, ZHANG Xuesong, WANG Dan. Effects of different CO2 concentration and nitrogen rates on photosynthesis and growth of winter wheat[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2594-2602.
盆型 Pot type | 氮水平 N level | 不同时期的施用量 Application rate at different growth stages | ||
---|---|---|---|---|
播种期 Sowing stage | 返青期 Regreening stage | 拔节期 Jointing stage | ||
小号盆栽 | LN | 0.393 | 0.112 | 0.056 |
Small pot | HN | 1.050 | 0.300 | 0.150 |
中号盆栽 | LN | 0.890 | 0.254 | 0.127 |
Medium pot | HN | 2.360 | 0.674 | 0.337 |
大号盆栽 | LN | 1.280 | 0.366 | 0.183 |
Large pot | HN | 3.210 | 0.917 | 0.450 |
表1 试验期间尿素施用量
Table 1 Amount of urea applied during the test period g
盆型 Pot type | 氮水平 N level | 不同时期的施用量 Application rate at different growth stages | ||
---|---|---|---|---|
播种期 Sowing stage | 返青期 Regreening stage | 拔节期 Jointing stage | ||
小号盆栽 | LN | 0.393 | 0.112 | 0.056 |
Small pot | HN | 1.050 | 0.300 | 0.150 |
中号盆栽 | LN | 0.890 | 0.254 | 0.127 |
Medium pot | HN | 2.360 | 0.674 | 0.337 |
大号盆栽 | LN | 1.280 | 0.366 | 0.183 |
Large pot | HN | 3.210 | 0.917 | 0.450 |
图1 不同处理下冬小麦的叶片光合参数 同一时期柱上无相同字母的表示处理间差异显著(P<0.05)。下同。
Fig.1 Photosynthetic parameters of winter wheat leaves under different treatments Bars marked without the same letters indicated significant (P<0.05) difference within treatments at the same growth stage. The same as below.
年份 Year | 生育期 Growth stage | 处理 Treatment | 碳含量 Carbon content/(mg·g-1) | 氮含量 Nitrogen content/(mg·g-1) | C/N |
---|---|---|---|---|---|
2019 | 拔节期Jointing stage | C-LN | 37.81±0.32 a | 5.00±0.19 b | 7.61±0.35 a |
C-HN | 36.75±0.19 a | 5.57±0.01 a | 6.60±0.04 b | ||
T-LN | 37.11±0.28 a | 5.17±0.20 ab | 7.21±0.27 ab | ||
T-HN | 36.85±0.56 a | 4.99±0.10 b | 7.40±0.24 a | ||
孕穗—抽穗期 | C-LN | 37.58±0.45 b | 4.76±0.19 ab | 7.93±0.24 a | |
Booting-heading stage | C-HN | 37.40±0.17 b | 4.61±0.19 ab | 8.16±0.38 a | |
T-LN | 39.36±0.29 a | 5.10±0.18 a | 7.75±0.34 a | ||
T-HN | 36.58±0.57 b | 4.17±0.21 b | 8.86±0.52 a | ||
开花期Flowering stage | C-LN | 39.06±0.07 b | 3.97±0.10 a | 9.87±0.25 a | |
C-HN | 39.17±0.26 b | 4.03±0.29 a | 9.88±0.76 a | ||
T-LN | 41.29±0.41 a | 3.91±0.27 a | 9.76±0.58 a | ||
T-HN | 40.3±0.81 ab | 4.10±0.07 a | 9.84±0.22 a | ||
灌浆期Filling stage | C-LN | 38.69±0.44 a | 1.20±0.10 a | 29.80±0.49 a | |
C-HN | 36.40±0.49 b | 1.42±0.06 a | 24.88±0.25 b | ||
T-LN | 39.31±0.07 a | 1.22±0.04 a | 31.61±1.14 a | ||
T-HN | 38.09±0.67 a | 1.43±0.19 a | 24.07±0.74 b | ||
2020 | 开花期Flowering stage | C-LN | 41.75±0.56 a | 2.75±0.17 c | 15.44±0.78 a |
C-HN | 42.35±0.21 a | 4.39±0.07 a | 10.64±0.55 b | ||
T-LN | 41.92±0.07 a | 3.48±0.23 b | 12.34±0.82 b | ||
T-HN | 42.35±0.34 a | 3.62±0.18 b | 11.84±0.50 b | ||
灌浆期Filling stage | C-LN | 38.73±0.33 c | 1.67±0.01 b | 23.27±0.40 a | |
C-HN | 40.90±0.14 a | 2.92±0.12 a | 14.11±0.51 b | ||
T-LN | 39.88±0.09 b | 1.68±0.14 b | 24.76±2.12 a | ||
T-HN | 40.33±0.004 ab | 2.84±0.23 a | 14.77±1.24 b |
表2 不同处理下冬小麦叶片的碳、氮含量和碳氮比(C/N)
Table 2 Carbon and nitrogen content in winter wheat leaves and C/N ratio under different treatments
年份 Year | 生育期 Growth stage | 处理 Treatment | 碳含量 Carbon content/(mg·g-1) | 氮含量 Nitrogen content/(mg·g-1) | C/N |
---|---|---|---|---|---|
2019 | 拔节期Jointing stage | C-LN | 37.81±0.32 a | 5.00±0.19 b | 7.61±0.35 a |
C-HN | 36.75±0.19 a | 5.57±0.01 a | 6.60±0.04 b | ||
T-LN | 37.11±0.28 a | 5.17±0.20 ab | 7.21±0.27 ab | ||
T-HN | 36.85±0.56 a | 4.99±0.10 b | 7.40±0.24 a | ||
孕穗—抽穗期 | C-LN | 37.58±0.45 b | 4.76±0.19 ab | 7.93±0.24 a | |
Booting-heading stage | C-HN | 37.40±0.17 b | 4.61±0.19 ab | 8.16±0.38 a | |
T-LN | 39.36±0.29 a | 5.10±0.18 a | 7.75±0.34 a | ||
T-HN | 36.58±0.57 b | 4.17±0.21 b | 8.86±0.52 a | ||
开花期Flowering stage | C-LN | 39.06±0.07 b | 3.97±0.10 a | 9.87±0.25 a | |
C-HN | 39.17±0.26 b | 4.03±0.29 a | 9.88±0.76 a | ||
T-LN | 41.29±0.41 a | 3.91±0.27 a | 9.76±0.58 a | ||
T-HN | 40.3±0.81 ab | 4.10±0.07 a | 9.84±0.22 a | ||
灌浆期Filling stage | C-LN | 38.69±0.44 a | 1.20±0.10 a | 29.80±0.49 a | |
C-HN | 36.40±0.49 b | 1.42±0.06 a | 24.88±0.25 b | ||
T-LN | 39.31±0.07 a | 1.22±0.04 a | 31.61±1.14 a | ||
T-HN | 38.09±0.67 a | 1.43±0.19 a | 24.07±0.74 b | ||
2020 | 开花期Flowering stage | C-LN | 41.75±0.56 a | 2.75±0.17 c | 15.44±0.78 a |
C-HN | 42.35±0.21 a | 4.39±0.07 a | 10.64±0.55 b | ||
T-LN | 41.92±0.07 a | 3.48±0.23 b | 12.34±0.82 b | ||
T-HN | 42.35±0.34 a | 3.62±0.18 b | 11.84±0.50 b | ||
灌浆期Filling stage | C-LN | 38.73±0.33 c | 1.67±0.01 b | 23.27±0.40 a | |
C-HN | 40.90±0.14 a | 2.92±0.12 a | 14.11±0.51 b | ||
T-LN | 39.88±0.09 b | 1.68±0.14 b | 24.76±2.12 a | ||
T-HN | 40.33±0.004 ab | 2.84±0.23 a | 14.77±1.24 b |
年份 Year | 处理 Treatment | 分蘖数 Tiller number/m-2 | 籽粒数 Grain number/m-2 | 产量 Yield/(g·m-2) |
---|---|---|---|---|
2019 | C-LN | 280.50±17.82 a | 7 750±732 a | 199.38±16.79 b |
C-HN | 305.25±8.25 a | 7 308±251 a | 221.39±17.11 ab | |
T-LN | 305.25±49.27 a | 7 600±754 a | 220.58±15.93 ab | |
T-HN | 330.00±43.13 a | 8 229±638 a | 248.67±11.15 a | |
2020 | C-LN | 243.38±27.26 a | 2 597±530 b | 38.81±8.47 c |
C-HN | 251.63±52.77 a | 4 277±605 b | 97.92±11.51 b | |
T-LN | 247.50±26.09 a | 3 741±395 b | 69.18±3.74 bc | |
T-HN | 341.00±34.38 a | 6 375±1 102 a | 139.63±25.33 a |
表3 2019—2020年不同CO2浓度和氮处理对冬小麦产量构成的方差分析
Table 3 Analysis of variance of winter wheat yield structure in winter wheat leaves treated with different CO2 and nitrogen in 2019 and 2020
年份 Year | 处理 Treatment | 分蘖数 Tiller number/m-2 | 籽粒数 Grain number/m-2 | 产量 Yield/(g·m-2) |
---|---|---|---|---|
2019 | C-LN | 280.50±17.82 a | 7 750±732 a | 199.38±16.79 b |
C-HN | 305.25±8.25 a | 7 308±251 a | 221.39±17.11 ab | |
T-LN | 305.25±49.27 a | 7 600±754 a | 220.58±15.93 ab | |
T-HN | 330.00±43.13 a | 8 229±638 a | 248.67±11.15 a | |
2020 | C-LN | 243.38±27.26 a | 2 597±530 b | 38.81±8.47 c |
C-HN | 251.63±52.77 a | 4 277±605 b | 97.92±11.51 b | |
T-LN | 247.50±26.09 a | 3 741±395 b | 69.18±3.74 bc | |
T-HN | 341.00±34.38 a | 6 375±1 102 a | 139.63±25.33 a |
[1] | Intergovernmental Panel on Climate Change (IPCC). Climate change 2014: impacts, adaptation and vulnerability: contribution of working group Ⅱ to the fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge: Cambridge University Press, 2014. |
[2] | 徐玲, 赵天宏, 胡莹莹, 等. CO2浓度升高对春小麦光合作用和籽粒产量的影响[J]. 麦类作物学报, 2008, 28(5): 867-872. |
XU L, ZHAO T H, HU Y Y, et al. Effects of CO2 enrichment on photosynthesis and grain yield of spring wheat[J]. Journal of Triticeae Crops, 2008, 28(5): 867-872. (in Chinese with English abstract) | |
[3] | 于佳, 于显枫, 郭天文, 等. 施氮和大气CO2浓度升高对春小麦拔节期光合作用的影响[J]. 麦类作物学报, 2010, 30(4): 651-655. |
YU J, YU X F, GUO T W, et al. Effect of nitrogen application rate and elevated atmospheric CO2 concentration on photosynthesis of spring wheat at jointing stage[J]. Journal of Triticeae Crops, 2010, 30(4): 651-655. (in Chinese with English abstract) | |
[4] | 缪宇轩. CO2浓度升高对高、低应答水稻品种的生长生理与气体交换模型参数的影响[D]. 南京: 南京信息工程大学, 2021. |
MIAO Y X. Effects of elevated CO2 on the growth, physiology and gas exchange model parameters of more and less CO2-responsive rice cultivars[D]. Nanjing: Nanjing University of Information Science & Technology, 2021. (in Chinese with English abstract) | |
[5] | 韩雪, 王贺然, 郝兴宇, 等. 大气CO2浓度升高对冬小麦光合作用的影响[C]// 强化科技基础,推进气象现代化:第29届中国气象学会年. 北京: 中国气象学会, 2012: 68-75. |
[6] |
MITCHELL R A C, BLACK C R, BURKART S, et al. Photosynthetic responses in spring wheat grown under elevated CO2 concentrations and stress conditions in the European, multiple-site experiment ‘ESPACE-wheat’[J]. European Journal of Agronomy, 1999, 10(3/4): 205-214.
DOI URL |
[7] |
BAKER J, HARTWELL ALLEN L, BOOTE K, et al. Rice responses to drought under carbon dioxide enrichment 2: photosynthesis and evapotranspiration[J]. Global Change Biology, 1997, 3(2): 129-138.
DOI URL |
[8] |
WEIGEL H J, MANDERSCHEID R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: rotating barley, ryegrass, sugar beet and wheat[J]. European Journal of Agronomy, 2012, 43: 97-107.
DOI URL |
[9] |
BENCZE S, VEISZ O, BEDÖ Z. Effects of high atmospheric CO2 and heat stress on phytomass, yield and grain quality of winter wheat[J]. Cereal Research Communications, 2004, 32(1): 75-82.
DOI URL |
[10] | 陈法军, 吴刚, 戈峰. 春小麦对大气CO2浓度升高的响应及其对麦长管蚜生长发育和繁殖的影响[J]. 应用生态学报, 2006, 17(1): 91-96. |
CHEN F J, WU G, GE F. Responses of spring wheat to elevated CO2 and their effects on Sitobion avenae aphid growth, development and reproduction[J]. Chinese Journal of Applied Ecology, 2006, 17(1): 91-96. (in Chinese with English abstract) | |
[11] |
牛胤全, 史雨刚, 汤小莎, 等. 高CO2浓度、干旱及其互作对不同持绿型小麦幼苗的影响[J]. 应用生态学报, 2020, 31(7): 2407-2414.
DOI |
NIU Y Q, SHI Y G, TANG X S, et al. Effects of high CO2 concentration, drought, and their interaction on different stay-green wheat seedlings[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2407-2414. (in Chinese with English abstract) | |
[12] |
LI A G, TRENT A, WALL G W, et al. Free-air CO2 enrichment effects on rate and duration of apical development of spring wheat[J]. Crop Science, 1997, 37(3): 789-796.
DOI URL |
[13] | 杨连新, 王余龙, 李世峰, 等. 开放式空气二氧化碳浓度增高对小麦物质生产与分配的影响[J]. 应用生态学报, 2007, 18(2): 339-346. |
YANG L X, WANG Y L, LI S F, et al. Effects of free-air CO2 enrichment (FACE) on dry matter production and allocation in wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 339-346. (in Chinese with English abstract) | |
[14] | 李伏生, 康绍忠, 张富仓. CO2浓度升高、氮与土壤水分对春小麦生长及干物质积累的效应[J]. 中国生态农业学报, 2003, 11(2): 37-40. |
LI F S, KANG S Z, ZHANG F C. Effects of CO2 enrichment, nitrogen and soil moisture on growth and dry matter accumulation of spring wheat[J]. Chinese Journal of Eco-Agriculture, 2003, 11(2): 37-40. (in Chinese with English abstract) | |
[15] |
AMTHOR J S. Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration[J]. Field Crops Research, 2001, 73(1): 1-34.
DOI URL |
[16] |
LONG S P, AINSWORTH E A, LEAKEY A D B, et al. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006, 312(5782): 1918-1921.
DOI URL |
[17] |
WALL G W, GARCIA R L, KIMBALL B A, et al. Interactive effects of elevated carbon dioxide and drought on wheat[J]. Agronomy Journal, 2006, 98(2): 354-381.
DOI URL |
[18] |
MA H L, ZHU J G, XIE Z B, et al. Responses of rice and winter wheat to free-air CO2 enrichment (China FACE) at rice/wheat rotation system[J]. Plant and Soil, 2007, 294(1/2): 137-146.
DOI URL |
[19] |
DE KAUWE M G, MEDLYN B E, ZAEHLE S, et al. Forest water use and water use efficiency at elevated CO2: a model-data intercomparison at two contrasting temperate forest FACE sites[J]. Global Change Biology, 2013, 19(6): 1759-1779.
DOI URL |
[20] |
NAYYAR H, GUPTA D. Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants[J]. Environmental and Experimental Botany, 2006, 58(1/2/3): 106-113.
DOI URL |
[21] |
STITT M, KRAPP A. The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background[J]. Plant, Cell and Environment, 1999, 22(6): 583-621.
DOI URL |
[22] | 范金杰, 俞杨浏, 左强, 等. 大气CO2浓度升高对小麦蒸腾耗水与根系吸水的影响[J]. 农业工程学报, 2020, 36(3): 92-98. |
FAN J J, YU Y L, ZUO Q, et al. Effects of elevated CO2 concentration on transpiration and root-water-uptake of wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(3): 92-98. (in Chinese with English abstract) | |
[23] | 李靖涛, 居辉, 王宏富, 等. 不同水分条件下CO2浓度升高对冬小麦碳氮转运的影响[J]. 中国生态农业学报, 2015, 23(8): 954-963. |
LI J T, JU H, WANG H F, et al. Effects of elevated CO2 concentration on accumulation and translocation of carbon and nitrogen of winter wheat under different water conditions[J]. Chinese Journal of Eco-Agriculture, 2015, 23(8): 954-963. (in Chinese with English abstract) | |
[24] | 张英华, 张琪, 徐学欣, 等. 适宜微喷灌灌水频率及氮肥量提高冬小麦产量和水分利用效率[J]. 农业工程学报, 2016, 32(5): 88-95. |
ZHANG Y H, ZHANG Q, XU X X, et al. Optimal irrigation frequency and nitrogen application rate improving yield formation and water utilization in winter wheat under micro-sprinkling condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(5): 88-95. (in Chinese with English abstract) | |
[25] | 杨连新, 李世峰, 王余龙, 等. 开放式空气二氧化碳浓度增高对小麦产量形成的影响[J]. 应用生态学报, 2007, 18(1): 75-80. |
YANG L X, LI S F, WANG Y L, et al. Effects of free-air CO2 enrichment(FACE)on yield formation of wheat[J]. Chinese Journal of Applied Ecology, 2007, 18(1): 75-80. (in Chinese with English abstract) | |
[26] | 居辉, 姜帅, 李靖涛, 等. 北方冬麦区CO2浓度增高与氮肥互作对冬小麦生理特性和产量的影响[J]. 中国农业科学, 2015, 48(24): 4948-4956. |
JU H, JIANG S, LI J T, et al. Interactive effects of elevated CO2 and nitrogen on the physiology and yield of winter wheat in north winter wheat region of China[J]. Scientia Agricultura Sinica, 2015, 48(24): 4948-4956. (in Chinese with English abstract) | |
[27] | 韩雪, 郝兴宇, 王贺然, 等. FACE条件下冬小麦生长特征及产量构成的影响[J]. 中国农学通报, 2012, 28(36): 154-159. |
HAN X, HAO X Y, WANG H R, et al. Effect of free air CO2 enrichment (FACE) on the growth and grain yield of winter wheat[J]. Chinese Agricultural Science Bulletin, 2012, 28(36): 154-159. (in Chinese with English abstract) | |
[28] | 许育彬, 沈玉芳, 李世清. CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响[J]. 中国生态农业学报, 2013, 21(9): 1049-1056. |
XU Y B, SHEN Y F, LI S Q. Effects of elevated CO2 and nitrogen application on photosynthetic area and gain-leaf ratio of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1049-1056. (in Chinese with English abstract)
DOI URL |
[1] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[2] | 黄正, 张荣萍, 马鹏, 张琪, 周宁宁, 阿什日轨, 冯婷煜, 周林. 冬水田油菜秸秆还田和氮肥运筹对杂交稻干物质积累和产量的影响[J]. 浙江农业学报, 2023, 35(5): 983-991. |
[3] | 檀舒霞, 赵桃弟, 杨豪, 宁可君, 刘丽, 何庆元, 黄守程, 舒英杰. 遮阴对10个菜用大豆品种农艺性状、产量和硝态氮代谢的影响[J]. 浙江农业学报, 2023, 35(4): 729-735. |
[4] | 马义虎, 曾孝元, 何贤彪, 周奶弟, 陈剑. 浙东南地区优质稻产量与品质对不同播期气候因子的响应[J]. 浙江农业学报, 2023, 35(4): 736-751. |
[5] | 马新超, 轩正英, 谭占明, 周宇, 王旭峰. 温室沙培黄瓜生产效应的水氮耦合方案优化[J]. 浙江农业学报, 2023, 35(4): 809-820. |
[6] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
[7] | 王犇, 李宇星, 李哲, 姜沣溢, 黄正来, 樊永惠, 张文静, 马尚宇. 海藻糖处理对花后高温胁迫弱筋小麦生选6号产量形成及品质的影响[J]. 浙江农业学报, 2023, 35(1): 1-9. |
[8] | 王薇薇, 梅燚, 吴永成, 万红建, 陈长军, 郑青松, 郑佳秋. 玉米芯生物炭对辣椒连作土壤性质和辣椒生长的影响[J]. 浙江农业学报, 2023, 35(1): 156-163. |
[9] | 李永晖, 李捷, 冯丽丹, 何静, 张煦, 刘祥林. 不同植物免疫诱抗剂对枸杞鲜果产量、抗病性和贮藏能力的差异比较[J]. 浙江农业学报, 2023, 35(1): 164-174. |
[10] | 杨胜玲, 黄兴成, 李渝, 刘彦伶, 张雅蓉, 张艳, 张文安, 蒋太明. 长期有机无机肥配施对水稻生长、干物质积累及产量的影响[J]. 浙江农业学报, 2022, 34(9): 1815-1825. |
[11] | 李旺雄, 张洋, 唐中祺, 郁继华. 平衡施肥对设施基质栽培番茄生长、品质、矿质元素含量与产量的影响[J]. 浙江农业学报, 2022, 34(8): 1648-1660. |
[12] | 邹振浩, 孙业良, 赵玉宝, 李鑫, 张丽平, 张兰, 董春旺, 付建玉, 韩文炎, 颜鹏. 采摘花芽对春茶产量与品质的影响[J]. 浙江农业学报, 2022, 34(7): 1369-1376. |
[13] | 朱诗君, 金树权, 姚红燕, 徐志豪, 罗幼君, 陈若霞. 不同基肥及追肥配比对凤梨生长、产量和品质的影响[J]. 浙江农业学报, 2022, 34(6): 1217-1226. |
[14] | 朱铭, 刘琛, 林义成, 郭彬, 李华, 傅庆林. 不同调理剂组合对浙江红壤土壤肥力、微生物群落多样性和水稻产量的影响[J]. 浙江农业学报, 2022, 34(6): 1258-1267. |
[15] | 叶迎, 赵考诚, 马军, 祝轲, 庄恒扬. 播期和施氮量组合对水稻南粳9108产量和氮素利用的影响[J]. 浙江农业学报, 2022, 34(5): 879-886. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||