浙江农业学报 ›› 2023, Vol. 35 ›› Issue (5): 1161-1167.DOI: 10.3969/j.issn.1004-1524.2023.05.20
肖立涵1,2(), 辛美果1,*(
), 卢文静2, 叶沁2, 张岑2, 肖朝耿2, 谌迪2,*(
)
收稿日期:
2022-04-12
出版日期:
2023-05-25
发布日期:
2023-06-01
作者简介:
肖立涵(1998—),男,广东潮汕人,硕士研究生,研究方向为食品营养与功能。E-mail: 957607991@qq.com
通讯作者:
*辛美果,E-mail: 1684577665@qq.com;谌迪,E-mail: cd0sindy@163.com
基金资助:
XIAO Lihan1,2(), XIN Meiguo1,*(
), LU Wenjing2, YE Qin2, ZHANG Cen2, XIAO Chaogeng2, CHEN Di2,*(
)
Received:
2022-04-12
Online:
2023-05-25
Published:
2023-06-01
摘要:
为研究贮藏温度和贮藏时间对蜂王浆品质的影响,以椴树浆、油菜浆、洋槐浆3种不同来源的蜂王浆为原料,通过测定其总蛋白、10-羟基-2-癸烯酸(10-HDA)、游离糖、游离氨基酸和游离脂肪酸含量,同时分析其羟自由基和DPPH自由基清除能力的变化规律。结果表明,不同蜜源蜂王浆之间总蛋白含量和10-HDA含量存在显著差异,短期贮藏不会导致其发生显著变化,但会导致油菜浆中葡萄糖和果糖等单糖含量的升高以及蔗糖含量的显著减少(P<0.05)。不同花粉源蜂王浆中氨基酸和游离脂肪酸组成类似,短期贮藏后油菜浆中的谷氨酸、棕榈酸、油酸、亚油酸和α-亚麻酸显著增加,椴树浆中丙氨酸、油酸及洋槐浆中亮氨酸和组氨酸则出现降低的现象。3种不同来源的蜂王浆的羟自由基和DPPH自由基清除能力在贮藏后显著降低(P<0.05)。本研究可以为蜂王浆在化学成分及抗氧化活性变化等方面的品质评价提供理论参考。
中图分类号:
肖立涵, 辛美果, 卢文静, 叶沁, 张岑, 肖朝耿, 谌迪. 不同贮藏条件对3种花粉源蜂王浆品质的影响[J]. 浙江农业学报, 2023, 35(5): 1161-1167.
XIAO Lihan, XIN Meiguo, LU Wenjing, YE Qin, ZHANG Cen, XIAO Chaogeng, CHEN Di. Effects of different storage conditions on quality of royal jelly from three pollen sources[J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1161-1167.
图1 不同花粉源蜂王浆中总蛋白及10-HDA含量 *与#分别表示贮藏前后与其他2种蜂王浆存在差异显著。下同。
Fig.1 Contents of total protein and 10-HDA in royal jelly from different pollen sources * and # respectively indicate significant differences from the other two kinds of royal jelly. The same as below.
氨基酸种类 Amino acid type | 椴树浆Linden tree/(g·kg-1) | 油菜浆Cole/(g·kg-1) | 洋槐浆Robinia/(g·kg-1) | |||
---|---|---|---|---|---|---|
贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | |
天门冬氨酸Aspartic acid | 0.145 | 0.151 | 0.150 | 00.153 | 0.162 | 0.166 |
苏氨酸Threonine | 0 | 0 | 0 | 0 | 0 | 0 |
丝氨酸Serine | 0.010 | 0.009 | 0.009 | 0.009 | 0.007 | 0.007 |
谷氨酸Glutamic acid | 0.428 | 0.439 | 0.094 | 0.462 | 0.431 | 0.437 |
甘氨酸Glycine | 0.024 | 0.023 | 0.025 | 0.024 | 0.025 | 0.024 |
丙氨酸Alanine | 0.021 | 0.016 | 0.020 | 0.019 | 0.024 | 0.024 |
缬氨酸Valine | 0.023 | 0.022 | 0.026 | 0.029 | 0.036 | 0.037 |
蛋氨酸Methionine | 0 | 0 | 0 | 0 | 0 | 0 |
异亮氨酸Isoleucine | 0.020 | 0.021 | 0.021 | 0.022 | 0.018 | 0.017 |
亮氨酸Leucine | 0.017 | 0.016 | 0.018 | 0.016 | 0.017 | 0.015 |
酪氨酸Tyrosine | 0 | 0 | 0 | 0 | 0 | 0 |
苯丙氨酸Phenylalanine | 0 | 0 | 0 | 0 | 0 | 0 |
组氨酸Histidine | 0.100 | 0.091 | 0.102 | 0.092 | 0.125 | 0.117 |
赖氨酸Lysine | 2.899 | 2.873 | 2.699 | 2.680 | 2.259 | 2.253 |
精氨酸Arginine | 0.265 | 0.265 | 0.267 | 0.273 | 0.255 | 0.253 |
脯氨酸Proline | 3.516 | 3.584 | 3.646 | 3.675 | 4.226 | 4.256 |
表1 不同花粉源蜂王浆贮藏前后氨基酸含量分析
Table 1 Analysis of amino acid contents of royal jelly from different pollen sources before and after storage
氨基酸种类 Amino acid type | 椴树浆Linden tree/(g·kg-1) | 油菜浆Cole/(g·kg-1) | 洋槐浆Robinia/(g·kg-1) | |||
---|---|---|---|---|---|---|
贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | |
天门冬氨酸Aspartic acid | 0.145 | 0.151 | 0.150 | 00.153 | 0.162 | 0.166 |
苏氨酸Threonine | 0 | 0 | 0 | 0 | 0 | 0 |
丝氨酸Serine | 0.010 | 0.009 | 0.009 | 0.009 | 0.007 | 0.007 |
谷氨酸Glutamic acid | 0.428 | 0.439 | 0.094 | 0.462 | 0.431 | 0.437 |
甘氨酸Glycine | 0.024 | 0.023 | 0.025 | 0.024 | 0.025 | 0.024 |
丙氨酸Alanine | 0.021 | 0.016 | 0.020 | 0.019 | 0.024 | 0.024 |
缬氨酸Valine | 0.023 | 0.022 | 0.026 | 0.029 | 0.036 | 0.037 |
蛋氨酸Methionine | 0 | 0 | 0 | 0 | 0 | 0 |
异亮氨酸Isoleucine | 0.020 | 0.021 | 0.021 | 0.022 | 0.018 | 0.017 |
亮氨酸Leucine | 0.017 | 0.016 | 0.018 | 0.016 | 0.017 | 0.015 |
酪氨酸Tyrosine | 0 | 0 | 0 | 0 | 0 | 0 |
苯丙氨酸Phenylalanine | 0 | 0 | 0 | 0 | 0 | 0 |
组氨酸Histidine | 0.100 | 0.091 | 0.102 | 0.092 | 0.125 | 0.117 |
赖氨酸Lysine | 2.899 | 2.873 | 2.699 | 2.680 | 2.259 | 2.253 |
精氨酸Arginine | 0.265 | 0.265 | 0.267 | 0.273 | 0.255 | 0.253 |
脯氨酸Proline | 3.516 | 3.584 | 3.646 | 3.675 | 4.226 | 4.256 |
脂肪酸种类 Fatty acid type | 椴树浆Linden tree/(g·kg-1) | 油菜浆Cole/(g·kg-1) | 洋槐浆Robinia/(g·kg-1) | |||
---|---|---|---|---|---|---|
贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | |
辛酸Caprylic acid | 0.001 950 | 0.001 910 | 0.002 130 | 0.002 220 | 0.001 570 | 0.001 550 |
癸酸Capric acid | 0.000 833 | 0.000 900 | 0.000 706 | 0.000 878 | 0.000 780 | 0.001 020 |
棕榈酸Palmitic acid | 0.015 900 | 0.014 200 | 0.014 300 | 0.020 500 | 0.013 700 | 0.014 200 |
硬脂酸Stearic acid | — | — | — | 0.007 130 | — | — |
油酸Oleic acid | 0.011 700 | 0.007 870 | 0.006 980 | 0.010 300 | 0.008 220 | 0.007 990 |
亚油酸Linoleic acid | 0.004 060 | 0.006 380 | 0.004 500 | 0.005 600 | 0.004 550 | 0.004 440 |
α-亚麻酸α-linolenic acid | 0.004 120 | 0.004 980 | 0.003 050 | 0.004 280 | 0.004 290 | 0.004 440 |
二十二碳酸 | 0.022 500 | 0.024 600 | 0.030 600 | 0.036 500 | 0.034 400 | 0.030 900 |
Behenic acid(C22:0) |
表2 不同花粉源蜂王浆贮藏前后脂肪酸含量分析
Table 2 Analysis of fat acid contents of royal jelly from different pollen sources before and after storage
脂肪酸种类 Fatty acid type | 椴树浆Linden tree/(g·kg-1) | 油菜浆Cole/(g·kg-1) | 洋槐浆Robinia/(g·kg-1) | |||
---|---|---|---|---|---|---|
贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | 贮藏前 Before storage | 贮藏后 After storage | |
辛酸Caprylic acid | 0.001 950 | 0.001 910 | 0.002 130 | 0.002 220 | 0.001 570 | 0.001 550 |
癸酸Capric acid | 0.000 833 | 0.000 900 | 0.000 706 | 0.000 878 | 0.000 780 | 0.001 020 |
棕榈酸Palmitic acid | 0.015 900 | 0.014 200 | 0.014 300 | 0.020 500 | 0.013 700 | 0.014 200 |
硬脂酸Stearic acid | — | — | — | 0.007 130 | — | — |
油酸Oleic acid | 0.011 700 | 0.007 870 | 0.006 980 | 0.010 300 | 0.008 220 | 0.007 990 |
亚油酸Linoleic acid | 0.004 060 | 0.006 380 | 0.004 500 | 0.005 600 | 0.004 550 | 0.004 440 |
α-亚麻酸α-linolenic acid | 0.004 120 | 0.004 980 | 0.003 050 | 0.004 280 | 0.004 290 | 0.004 440 |
二十二碳酸 | 0.022 500 | 0.024 600 | 0.030 600 | 0.036 500 | 0.034 400 | 0.030 900 |
Behenic acid(C22:0) |
[1] | 朱作艺, 张玉, 王君虹, 等. 蜂王浆蛋白肽的制备及其降血糖和抗氧化活性研究[J]. 食品工业科技, 2020, 41(17): 45-50, 57. |
ZHU Z Y, ZHANG Y, WANG J H, et al. Preparation, hypoglycemic and antioxidative activity of peptide from royal jelly protein[J]. Science and Technology of Food Industry, 2020, 41(17): 45-50, 57. (in Chinese with English abstract) | |
[2] |
GUO J Y, WANG Z X, CHEN Y X, et al. Active components and biological functions of royal jelly[J]. Journal of Functional Foods, 2021, 82: 104514.
DOI URL |
[3] | 游蒙蒙, 陶凌晨, 王康莉, 等. 2020年国内外蜂王浆研究概况[J]. 中国蜂业, 2021, 72(3): 54-59. |
YOU M M, TAO L C, WANG K L, et al. Research status of royal jelly in 2020[J]. Apiculture of China, 2021, 72(3): 54-59. (in Chinese with English abstract) | |
[4] | 郑星, 杨昊, 赵亚周, 等. 蜂王浆辅助治疗阿尔兹海默症的研究进展[J]. 中国蜂业, 2021, 72(7): 55-59. |
ZHENG X, YANG H, ZHAO Y Z, et al. Advances in royal jelly adjuvant treatment for Alzheimer’s disease[J]. Apiculture of China, 2021, 72(7): 55-59. (in Chinese with English abstract) | |
[5] |
RAMADAN M F, AL-GHAMDI A. Bioactive compounds and health-promoting properties of royal jelly: a review[J]. Journal of Functional Foods, 2012, 4(1): 39-52.
DOI URL |
[6] |
CHEN D, XIN X X, QIAN H C, et al. Evaluation of the major royal jelly proteins as an alternative to fetal bovine serum in culturing human cell lines[J]. Journal of Zhejiang University Science B, 2016, 17(6): 476-483.
DOI URL |
[7] | 李建科, 胡菡, 孟丽峰, 等. 蜂王浆新鲜度研究进展[C]. 河南: 2019中国蜂业博览会暨全国蜂产品市场信息交流会, 2019: 29-36. |
[8] | 郭城, 吴卫成, 谌迪, 等. 基于ATR-FTIR结合CARS算法测定蜂王浆中水溶性蛋白质和总糖含量[J]. 中国食品学报, 2021, 21(11): 183-190. |
GUO C, WU W C, CHEN D, et al. Determination of water-soluble protein and total sugar in royal jelly based on attenuated total reflection mid-infrared spectroscopy and CARS algorithm[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 183-190. (in Chinese with English abstract) | |
[9] |
谌迪, 肖朝耿, 盛玲冬, 等. 不同采收时期蜂王浆抗氧化活性研究[J]. 核农学报, 2020, 34(7): 1491-1496.
DOI |
CHEN D, XIAO C G, SHENG L D, et al. Antioxidant activity of royal jelly in different collection times[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(7): 1491-1496. (in Chinese with English abstract) | |
[10] |
RAMANATHAN A N K G, NAIR A J, SUGUNAN V S, et al. A review on royal jelly proteins and peptides[J]. Journal of Functional Foods, 2018, 44: 255-264.
DOI URL |
[11] |
QIU W J, CHEN X, TIAN Y Q, et al. Protection against oxidative stress and anti-aging effect in Drosophila of royal jelly-collagen peptide[J]. Food and Chemical Toxicology, 2020, 135: 110881.
DOI URL |
[12] | 谌迪. 王浆主蛋白的抗衰老功能及分子机理研究[D]. 杭州: 浙江大学, 2017. |
CHEN D. Anti-aging function and molecular mechanism of the major roval jelly proteins[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract) | |
[13] |
WYTRYCHOWSKI M, CHENAVAS S, DANIELE G, et al. Physicochemical characterisation of French royal jelly: comparison with commercial royal jellies and royal jellies produced through artificial bee-feeding[J]. Journal of Food Composition and Analysis, 2013, 29(2): 126-133.
DOI URL |
[14] |
YANG X H. Determination of 10-HDA in royal jelly by ATR-FTMIR and NIR spectral combining with data fusion strategy[J]. Optik, 2020, 203: 164052.
DOI URL |
[15] |
MA C, MA B B, LI J K, et al. Changes in chemical composition and antioxidant activity of royal jelly produced at different floral periods during migratory beekeeping[J]. Food Research International, 2022, 155: 111091.
DOI URL |
[16] |
YILMAZ M T, TATLISU N B, TOKER O S, et al. Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: correlations with HPLC-RID results[J]. Food Research International, 2014, 64: 634-646.
DOI PMID |
[17] |
SUT S, DALL’ACQUA S, POLONIATO G, et al. Preliminary evaluation of quince (Cydonia oblonga Mill.) fruit as extraction source of antioxidant phytoconstituents for nutraceutical and functional food applications[J]. Journal of the Science of Food and Agriculture, 2019, 99(3): 1046-1054.
DOI URL |
[18] | 王俊红, 高歌, 张圆圆, 等. 顶空-气相色谱法测定反刍动物瘤胃液中挥发性脂肪酸含量[J]. 浙江大学学报(农业与生命科学版), 2021, 47(5): 667-672. |
WANG J H, GAO G, ZHANG Y Y, et al. Determination of the volatile fatty acid contents in rumen fluid of ruminants by headspace-gas chromatograph method[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2021, 47(5): 667-672. (in Chinese with English abstract) | |
[19] |
PARK M J, KIM B Y, DENG Y J, et al. Antioxidant capacity of major royal jelly proteins of honeybee (Apis mellifera) royal jelly[J]. Journal of Asia-Pacific Entomology, 2020, 23(2): 445-448.
DOI URL |
[20] |
CAIXETA D C, TEIXEIRA R R, PEIXOTO L G, et al. Adaptogenic potential of royal jelly in liver of rats exposed to chronic stress[J]. PLoS One, 2018, 13(1): e0191889.
DOI URL |
[21] |
CHEN D, LIU F, WAN J B, et al. Effect of major royal jelly proteins on spatial memory in aged rats: metabolomics analysis in urine[J]. Journal of Agricultural and Food Chemistry, 2017, 65(15): 3151-3159.
DOI PMID |
[22] |
荀利杰, 黄新球, 李琼艳, 等. 不同蜂花粉对西方蜜蜂蜂王浆主蛋白基因表达及蜂王浆产量、质量和组成的影响[J]. 动物营养学报, 2020, 32(2): 856-869.
DOI |
XUN L J, HUANG X Q, LI Q Y, et al. Effects of different bee pollens on expression of major royal jelly protein genes and yield, quality and composition of royal jelly of Apis mellifera[J]. Chinese Journal of Animal Nutrition, 2020, 32(2): 856-869. (in Chinese with English abstract) | |
[23] |
LEWKOWSKI O, MUREŞAN C I, DOBRITZSCH D, et al. The effect of diet on the composition and stability of proteins secreted by honey bees in honey[J]. Insects, 2019, 10(9): 282.
DOI URL |
[24] | 路璐, 李露, 庞倩, 等. 不同糖饲料对蜂王浆主要成分含量的影响[J]. 中国蜂业, 2015, 66(10): 21-23. |
LU L, LI L, PANG Q, et al. Effects of different sugar diets on the main components of royal jelly[J]. Apiculture of China, 2015, 66(10): 21-23. (in Chinese with English abstract) | |
[25] |
张文文, 庞倩, 王康, 等. 基于GC-QTOF-MS代谢组学技术研究饲喂不同糖饲料对蜜蜂所产蜂王浆中代谢物组成成分的影响[J]. 食品科学, 2019, 40(4): 272-278.
DOI |
ZHANG W W, PANG Q, WANG K, et al. Effects of different dietary sugars for honeybees on metabolite composition in royal jelly investigated by GC-QTOF-MS-based metabonomics[J]. Food Science, 2019, 40(4): 272-278. (in Chinese with English abstract)
DOI |
|
[26] |
XIN X X, CHEN Y, CHEN D, et al. Supplementation with major royal-jelly proteins increases lifespan, feeding, and fecundity in Drosophila[J]. Journal of Agricultural and Food Chemistry, 2016, 64(29): 5803-5812.
DOI URL |
[1] | 岳宗伟, 李嘉骁, 孙向阳, 刘国梁, 李素艳, 王晨晨, 查贵超, 魏宁娴. 化肥有机肥配施对土壤性质、樱桃果实品质和产量的影响[J]. 浙江农业学报, 2023, 35(9): 2192-2201. |
[2] | 张博, 刘泽慈, 汪洁, 李兆壮, 李录山, 胡琳莉, 郁继华. 不同农业废弃物肥料化配方对露地甘蓝生长、产量及品质的影响[J]. 浙江农业学报, 2023, 35(8): 1782-1792. |
[3] | 张宁, 陶荣浩, 刘佩诗, 胡含秀, 高琳琳, 郭龙, 祝尊友, 马友华. 不同种类有机肥配施化肥对茶叶生长、品质和土壤肥力的影响[J]. 浙江农业学报, 2023, 35(8): 1844-1852. |
[4] | 王迪, 杨汉梅, 李阳倩, 贾梦婷, 邹亮, 杨帆. 苦荞麦“品、质、效、用”的多维评价及其活性成分高值化利用的研究进展[J]. 浙江农业学报, 2023, 35(8): 1960-1974. |
[5] | 田玉刚, 万素梅, 林皎, 陈国栋, 李浩, 胡宇凯, 李燕芳, 胡守林, 毛廷勇, 赵书珍. 不同地膜类型与灌溉量对棉花光合参数和产量、品质的影响[J]. 浙江农业学报, 2023, 35(7): 1523-1531. |
[6] | 卜远鹏, 刘娜, 张古文, 冯志娟, 王斌, 龚亚明, 许林英. 菜用大豆种质资源的农艺性状多样性评价及核心种质与食味品质评价体系的构建[J]. 浙江农业学报, 2023, 35(6): 1307-1314. |
[7] | 柴冠群, 周玮, 梁红, 范菲菲, 朱大雁, 范成五. 叶面喷施锌肥和柠檬酸对辣椒产量、品质与Cd吸收转运的影响[J]. 浙江农业学报, 2023, 35(5): 1069-1079. |
[8] | 马义虎, 曾孝元, 何贤彪, 周奶弟, 陈剑. 浙东南地区优质稻产量与品质对不同播期气候因子的响应[J]. 浙江农业学报, 2023, 35(4): 736-751. |
[9] | 王金凤, 周琦, 吕玉龙, 陈卓梅. 间作景观树种对茶园生态系统与茶叶生产的影响[J]. 浙江农业学报, 2023, 35(3): 523-533. |
[10] | 王龙威, 白俊艳, 贾小平, 雷莹, 陈梦柯, 樊红灯, 卢小宁, 何豫涵, 曾凡林, 张容恺. 鹌鹑GnRH-1基因多态性与蛋品质的关联分析[J]. 浙江农业学报, 2023, 35(3): 565-574. |
[11] | 冷猛, 姚地慧, 龙凯, 赵海燕, 杨茂发, 于晓飞. 不同温度对益蝽过冷却点和冰点的影响[J]. 浙江农业学报, 2023, 35(3): 624-629. |
[12] | 林勇, 代伟伟, 鲍恩财, 王强, 柏宗春, 夏礼如, 张姚, 孙玉伦, 欧阳礼虎. 层叠式笼养肉鸭舍夏季风机运行模式优化与计算流体力学分析[J]. 浙江农业学报, 2023, 35(3): 666-675. |
[13] | 孙楠, 闫国超, 何勇, 朱祝军. 葫芦科作物叶片硅含量测定方法的优化[J]. 浙江农业学报, 2023, 35(2): 338-345. |
[14] | 黄秋伟, 毛立彦, 檀小辉, 王丽萍, 刘功德, 彭继飞, 龙凌云. 贮藏温度对广西旱藕采后重要品质的影响[J]. 浙江农业学报, 2023, 35(2): 346-354. |
[15] | 清源, 方志荣, 姚昕, 尹胜. 不同贮藏温度下印度块菌净菜品质变化及其货架期研究[J]. 浙江农业学报, 2023, 35(11): 2698-2709. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||