浙江农业学报 ›› 2023, Vol. 35 ›› Issue (11): 2611-2620.DOI: 10.3969/j.issn.1004-1524.20221626
林先玉1(
), 李紫倩1, 柏松1, 罗军1, 屈燕1,2,*(
)
收稿日期:2022-12-16
出版日期:2023-11-25
发布日期:2023-12-04
作者简介:林先玉(1995—),女,四川凉山人,硕士研究生,主要从事园林植物资源开发与利用研究。E-mail:1159688949@qq.com
通讯作者:
* 屈燕,E-mail:quyan@swfu.edu.cn
基金资助:
LIN Xianyu1(
), LI Ziqian1, BAI Song1, LUO Jun1, QU Yan1,2,*(
)
Received:2022-12-16
Online:2023-11-25
Published:2023-12-04
摘要:
为研究在干旱胁迫及复水过程中云南山茶抗氧化酶活性变化及关键基因的表达差异,本文以半年生云南山茶幼苗为材料,利用聚乙二醇(PEG-6000)对其进行干旱胁迫,测定云南山茶叶片过氧化物酶(POD)和超氧化物歧化酶(SOD)活性,并将对照组和重度干旱组的叶片进行转录组测序。结果表明:在胁迫期间,各处理组SOD活性持续上升,重度干旱胁迫下POD活性先上升后下降;在复水期间,POD、SOD活性都呈下降趋势,除轻度干旱胁迫组外其余两组POD和SOD活性均未能恢复到胁迫之前的水平。通过对关键基因差异表达分析发现,在重度干旱胁迫及复水过程中,33个抗氧化酶相关基因表达量与抗氧化酶活性有极显著相关性(P<0.01),19个显著相关(P<0.05)。POD相关基因均富集于苯丙烷类生物合成通路中,SOD相关基因主要富集于过氧化物酶体通路中,均为下调表达。在胁迫开始后相关基因表达量均发生了显著性变化,说明抗氧化酶相关基因在干旱胁迫及复水过程中参与了调控,积极响应干旱胁迫。
中图分类号:
林先玉, 李紫倩, 柏松, 罗军, 屈燕. 云南山茶在干旱-复水过程中抗氧化酶活性变化及关键基因差异表达分析[J]. 浙江农业学报, 2023, 35(11): 2611-2620.
LIN Xianyu, LI Ziqian, BAI Song, LUO Jun, QU Yan. Changes of antioxidant enzyme activity and differential expression of key genes in Camellia reticulata during drought-rehydration process[J]. Acta Agriculturae Zhejiangensis, 2023, 35(11): 2611-2620.
图1 云南山茶POD 和SOD活性变化 图上没有相同大写字母表示不同处理组同一时间点在0.05水平上差异显著(P<0.05);图上没有相同小写字母表示同一处理组不同时间点在0.05水平上差异显著(P<0.05)。下同。
Fig.1 Changes of POD and SOD activity in Camellia reticulata leaves The capital letters on the bars indicate significant differences at the 0.05 level among different treatment groups at the same time point (P<0.05). The lowercase letters on the bars indicate significant differences at the 0.05 level at different time points in the same treatment group (P<0.05). The same as below.
| 基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
|---|---|---|---|
| Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
| Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
| Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
| Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
| Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
| Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
| Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
| Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
| Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
| Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
| Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
| Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
| Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
| Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
| Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
| Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
| Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
| Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
| Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
| Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
| Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
| Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
| Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
| Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
| Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
| Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
表1 POD、SOD活性与其关键基因表达量的相关性分析
Table 1 Correlation analysis of POD and SOD activity and their key genes expression
| 基因ID及编号 Gene ID and number | 相关性 Correlation | 基因ID及编号 Gene ID and number | 相关性 Correlation |
|---|---|---|---|
| Cluster-23907.121858 CrPOD1 | -0.714** | Cluster-23907.193947 CrPOD27 | -0.778** |
| Cluster-23907.205799 CrPOD2 | -0.834** | Cluster-23907.191538 CrPOD28 | 0.850** |
| Cluster-23907.131313 CrPOD3 | -0.705* | Cluster-23907.186821 CrPOD29 | 0.816** |
| Cluster-23907.133854 CrPOD4 | -0.799** | Cluster-23907.130118 CrPOD30 | 0.676* |
| Cluster-23907.133898 CrPOD5 | -0.800** | Cluster-23907.135693 CrPOD31 | 0.769** |
| Cluster-23907.215532 CrPOD6 | -0.689* | Cluster-23907.226143 CrPOD32 | 0.605* |
| Cluster-23907.216128 CrPOD7 | -0.629* | Cluster-23907.135700 CrPOD33 | 0.621* |
| Cluster-23907.136199 CrPOD8 | -0.749** | Cluster-23907.229292 CrPOD34 | 0.843** |
| Cluster-23907.136924 CrPOD9 | -0.839** | Cluster-23907.172436 CrPOD35 | 0.765** |
| Cluster-23907.141902 CrPOD10 | -0.606* | Cluster-23907.247053 CrPOD36 | 0.639* |
| Cluster-23907.144090 CrPOD11 | -0.687* | Cluster-23907.26403 CrPOD37 | 0.805** |
| Cluster-23907.145111 CrPOD12 | -0.805** | Cluster-23907.177551 CrPOD38 | 0.746** |
| Cluster-23907.149843 CrPOD13 | 0.686* | Cluster-23907.86700 CrPOD39 | 0.688* |
| Cluster-23907.157313 CrPOD14 | -0.887** | Cluster-23907.89908 CrPOD40 | 0.675* |
| Cluster-23907.159841 CrPOD15 | -0.683* | Cluster-23907.97564 CrPOD41 | 0.738** |
| Cluster-23907.162853 CrPOD16 | -0.848** | Cluster-23907.185111 CrPOD42 | 0.626* |
| Cluster-23907.169530 CrPOD17 | -0.814** | Cluster-23907.154253 CrSOD1 | -0.918** |
| Cluster-23907.169635 CrPOD18 | -0.888** | Cluster-23907.154259 CrSOD2 | -0.631* |
| Cluster-23907.169636 CrPOD19 | -0.686* | Cluster-23907.154756 CrSOD3 | -0.837** |
| Cluster-23907.227562 CrPOD20 | -0.874** | Cluster-23907.156212 CrSOD4 | -0.762** |
| Cluster-23907.233931 CrPOD21 | -0.768** | Cluster-23907.158564 CrSOD5 | -0.864** |
| Cluster-23907.177905 CrPOD22 | -0.665* | Cluster-23907.170549 CrSOD6 | -0.847** |
| Cluster-23907.179414 CrPOD23 | -0.785** | Cluster-23907.183528 CrSOD7 | -0.789** |
| Cluster-23907.180565 CrPOD24 | -0.732** | Cluster-23907.187659 CrSOD8 | -0.843** |
| Cluster-23907.183161 CrPOD25 | -0.695* | Cluster-23907.204201 CrSOD9 | -0.808** |
| Cluster-23907.80759 CrPOD26 | -0.706* | Cluster-23907.210282 CrSOD10 | -0.742** |
| 基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
|---|---|
| Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
| R:TGGGTGGCTTGTGTTCCATT | |
| Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
| R:ATCAAATCCCCGACGTTGGT | |
| Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
| R:ACATTCATTCCGCCTCAGCA | |
| Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
| R:TCACGAAGTTTGCGGAGGAA | |
| Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
| R:TTCAGAGCCTTGCCGAGAAG | |
| Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
| R:CTCCGAGAGTGTTCCAGAGC | |
| Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
| R:AGAGAACCAGCTTCGTTGGG | |
| Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
| R:ACCGAATTTCTCCTGCCCTG | |
| Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
| R:GAGGTGCCAGAGGATGATGG |
表2 qRT-PCR 引物序列
Table 2 qRT-PCR primer sequences
| 基因ID Gene ID | 引物序列 Primer sequence(5'-3') |
|---|---|
| Cluster-23907.105087 | F:GGTGAGAAGCGACCAATGGA |
| R:TGGGTGGCTTGTGTTCCATT | |
| Cluster-23907.21994 | F:CGGGAAGCTGAGATGGAAGG |
| R:ATCAAATCCCCGACGTTGGT | |
| Cluster-23907.22854 | F:TCTCCTTGGTGTAGCTCCGA |
| R:ACATTCATTCCGCCTCAGCA | |
| Cluster-23907.128010 | F:GCTTGAACGAGCCTTTCACC |
| R:TCACGAAGTTTGCGGAGGAA | |
| Cluster-23907.131185 | F:CCATCAACTCTGGCGTCACT |
| R:TTCAGAGCCTTGCCGAGAAG | |
| Cluster-23907.35810 | F:CGTTCTCTCCGTTGCCTTCT |
| R:CTCCGAGAGTGTTCCAGAGC | |
| Cluster-23907.43736 | F:GCCGGAGTTTCCTTTGAGGA |
| R:AGAGAACCAGCTTCGTTGGG | |
| Cluster-23907.45879 | F:TGGCGTGGAAGTTCATCCTC |
| R:ACCGAATTTCTCCTGCCCTG | |
| Cluster-23907.42603 | F:GGGAACAATGAGGGCTCACA |
| R:GAGGTGCCAGAGGATGATGG |
| [1] | 金钱荣, 龚彩艳, 金鸿龚. 云南山茶的园林美学价值研究[J]. 内蒙古林业调查设计, 2010, 33(2): 3-4, 7. |
| JIN Q R, GONG C Y, JIN H G. Study on the landscape aesthetic value of Camellia yunnanensis[J]. Inner Mongolia Forestry Investigation and Design, 2010, 33(2): 3-4, 7. (in Chinese) | |
| [2] | 陈蕴. 云南山茶花栽培技术[J]. 中国园艺文摘, 2017, 33(6): 167-168. |
| CHEN Y. Cultivation techniques of camellia in Yunnan[J]. Chinese Horticulture Abstracts, 2017, 33(6): 167-168. (in Chinese) | |
| [3] | 杨桂英, 王兵益, 何瀚, 等. 从叶片解剖结构探讨云南山茶不同倍性的耐旱潜力[J]. 西南农业学报, 2015, 28(6): 2714-2719. |
| YANG G Y, WANG B Y, HE H, et al. Drought resistance potential of different ploidy of Camellia reticulata from leaf anatomic traits view[J]. Southwest China Journal of Agricultural Sciences, 2015, 28(6): 2714-2719. (in Chinese with English abstract) | |
| [4] | 赖金莉, 李欣欣, 薛磊, 等. 植物抗旱性研究进展[J]. 江苏农业科学, 2018, 46(17): 23-27. |
| LAI J L, LI X X, XUE L, et al. Research progress on drought resistance of plants[J]. Jiangsu Agricultural Sciences, 2018, 46(17): 23-27. (in Chinese) | |
| [5] | 姜宗庆, 李成忠, 余乐, 等. 干旱胁迫对薄壳山核桃叶片丙二醛含量和3种抗氧化酶活性的影响[J]. 上海农业学报, 2019, 35(1): 7-10. |
| JIANG Z Q, LI C Z, YU L, et al. Effects of drought stress on MDA content and 3 antioxidant enzymes activities in leaves of Carya illinoensis[J]. Acta Agriculturae Shanghai, 2019, 35(1): 7-10. (in Chinese with English abstract) | |
| [6] | 林宇丰, 李魏, 戴良英. 抗氧化酶在植物抗旱过程中的功能研究进展[J]. 作物研究, 2015, 29(3): 326-330. |
| LIN Y F, LI W, DAI L Y. Research progress of antioxidant enzymes functioning in plant drought resistant process[J]. Crop Research, 2015, 29(3): 326-330. (in Chinese with English abstract) | |
| [7] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
| [8] | 赵世杰, 许长成, 邹琦, 等. 植物组织中丙二醛测定方法的改进[J]. 植物生理学通讯, 1994, 30(3): 207-210. |
| ZHAO S J, XU C C, ZOU Q, et al. Improvement of determination method of malondialdehyde in plant tissues[J]. Plant Physiology Communications, 1994, 30(3): 207-210. (in Chinese) | |
| [9] | 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报, 2017, 33(3): 220-226. |
| CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ROS signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226. (in Chinese with English abstract) | |
| [10] | 连玲, 许惠滨, 何炜, 等. PEG模拟干旱胁迫对水稻抗氧化酶基因表达的影响[J]. 福建农业学报, 2019, 34(3): 255-263. |
| LIAN L, XU H B, HE W, et al. Expression of antioxidant enzyme genes in rice under PEG-simulated drought-stress[J]. Fujian Journal of Agricultural Sciences, 2019, 34(3): 255-263. (in Chinese with English abstract) | |
| [11] | 陈爱萍, 隋晓青, 王玉祥, 等. 干旱胁迫及复水对伊犁绢蒿幼苗生长及生理特性的影响[J]. 草地学报, 2020, 28(5): 1216-1225. |
| CHEN A P, SUI X Q, WANG Y X, et al. Effects of drought and re-watering on growth and physiological characteristics of Seriphidium transiliense seedlings[J]. Acta Agrestia Sinica, 2020, 28(5): 1216-1225. (in Chinese with English abstract) | |
| [12] | 崔婷茹, 于慧敏, 李会彬, 等. 干旱胁迫及复水对狼尾草幼苗生理特性的影响[J]. 草业科学, 2017, 34(4): 788-793. |
| CUI T R, YU H M, LI H B, et al. Effect of drought stress and rewatering on physiological characteristics of Pennisetum alopecuroides seedlings[J]. Pratacultural Science, 2017, 34(4): 788-793. (in Chinese with English abstract) | |
| [13] | 孙继亮, 李六林, 陶书田, 等. 干旱胁迫和复水对梨幼树生理特性的影响[J]. 应用与环境生物学报, 2012, 18(2): 218-223. |
| SUN J L, LI L L, TAO S T, et al. Effects of drought stress and rewatering on physiological characteristics of pear seedling[J]. Chinese Journal of Applied and Environmental Biology, 2012, 18(2): 218-223. (in Chinese with English abstract) | |
| [14] | 弓萌萌, 张瑞禹, 刘洋, 等. 干旱胁迫对红树莓幼苗生长及根系酶活性变化的影响[J]. 经济林研究, 2022, 40(2): 232-240. |
| GONG M M, ZHANG R Y, LIU Y, et al. Effects of drought stress on growth and root antioxidant enzymes activities in red raspberry seedlings[J]. Non-Wood Forest Research, 2022, 40(2): 232-240. (in Chinese with English abstract) | |
| [15] | 安钰, 张清云, 李生兵, 等. 干旱胁迫及复水对甘草叶片抗氧化酶活性和光合特性的影响[J]. 宁夏农林科技, 2021, 62(7): 1-5. |
| AN Y, ZHANG Q Y, LI S B, et al. Effects of drought stress and rehydration on antioxidant enzyme activity and photosynthetic characteristic of Glycyrrhiza uralensis fisch[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2021, 62(7): 1-5. (in Chinese with English abstract) | |
| [16] | 赵英, 吴敏, 邓平, 等. 干旱与复水对2种蟛蜞菊生长及生理生化特性的影响[J]. 西北农林科技大学学报(自然科学版), 2021, 49(4): 113-122. |
| ZHAO Y, WU M, DENG P, et al. Effects of drought and rewatering on growth and physiology characteristics of Wedelia chinensis and Wedelia trilobata[J]. Journal of Northwest A & F University (Natural Science Edition), 2021, 49(4): 113-122. (in Chinese with English abstract) | |
| [17] | 何凤, 吕庚鑫, 孟益德, 等. 干旱胁迫及复水对杜仲苗激素含量的影响[J]. 植物生理学报, 2021, 57(12): 2279-2290. |
| HE F, LYU G X, MENG Y D, et al. Effects of drought stress and rehydration on hormone contents of Eucommia ulmoides seedling[J]. Plant Physiology Journal, 2021, 57(12): 2279-2290. (in Chinese with English abstract) | |
| [18] | XU L X, HAN L B, HUANG B R. Antioxidant enzyme activities and gene expression patterns in leaves of Kentucky bluegrass in response to drought and post-drought recovery[J]. Journal of the American Society for Horticultural Science, 2011, 136(4): 247-255. |
| [19] | 曾令霜, 李培英, 孙宗玖, 等. 两类新疆狗牙根抗旱基因型抗氧化酶保护系统及其基因表达差异分析[J]. 草业学报, 2022, 31(7): 122-132. |
| ZENG L S, LI P Y, SUN Z J, et al. Analysis of antioxidant enzyme protection systems and gene expression differences in two Xinjiang bermudagrass genotypes with contrasting drought resistance[J]. Acta Prataculturae Sinica, 2022, 31(7): 122-132. (in Chinese with English abstract) | |
| [20] | 高娅楠, 韩烈保, 许立新. 乙烯利对干旱胁迫下草地早熟禾抗氧化酶基因表达的影响[J]. 草地学报, 2021, 29(10): 2200-2213. |
| GAO Y N, HAN L B, XU L X. Effects of ethephon on the antioxidant enzyme genes expression of Poa pratensis under drought stress[J]. Acta Agrestia Sinica, 2021, 29(10): 2200-2213. (in Chinese with English abstract) | |
| [21] | 陈果, 曲衍杰, 任桓质, 等. VpSBP3基因负向调控转基因拟南芥盐胁迫抗性[J]. 青岛农业大学学报(自然科学版), 2021, 38(1): 7-14. |
| CHEN G, QU Y J, REN H Z, et al. VpSBP3 gene negatively regulates salt stress resistance in transgenic Arabidopsis thaliana[J]. Journal of Qingdao Agricultural University (Natural Science), 2021, 38(1): 7-14. (in Chinese with English abstract) | |
| [22] | 尚军, 吴旺泽, 马永贵. 植物苯丙烷代谢途径[J]. 中国生物化学与分子生物学报, 2022, 38(11): 1467-1476. |
| SHANG J, WU W Z, MA Y G. Phenylpropanoid metabolism pathway in plants[J]. Chinese Journal of Biochemistry and Molecular Biology, 2022, 38(11): 1467-1476. (in Chinese with English abstract) | |
| [23] | DIZHBITE T, TELYSHEVA G, JURKJANE V, et al. Characterization of the radical scavenging activity of lignins: natural antioxidants[J]. Bioresource Technology, 2004, 95(3): 309-317. |
| [1] | 张均, 张博, 胡碧博, 刘京亮, 张晓宇, 李春阳, 熊盛婷, 郭彬彬, 王秀存, 马超. 小麦SWEET和SUT家族基因鉴定与表达分析[J]. 浙江农业学报, 2025, 37(9): 1825-1839. |
| [2] | 李宇静, 黄倩茹, 张爱冬, 吴雪霞, 朱栋幸, 肖凯. 茄子SmMYB13基因在干旱胁迫响应中的功能[J]. 浙江农业学报, 2025, 37(8): 1666-1679. |
| [3] | 吴坤霖, 刘瑞玲, 房祥军, 王冠楠, 牛犇, 陈慧芝, 陈杭君, 吴伟杰, 郜海燕. 热泵联合远红外后程干燥茭白及其复水特性分析[J]. 浙江农业学报, 2025, 37(4): 909-919. |
| [4] | 任元龙, 马蓉, 王晓卓, 张雪艳. 叶面喷施褪黑素对甘蓝幼苗干旱胁迫的缓解作用[J]. 浙江农业学报, 2025, 37(2): 338-348. |
| [5] | 闵江艳, 唐卓磊, 杨雪, 黄小燕, 黄凯丰, 何佩云. 不同干旱-复水模式对苦荞生长与产量的影响[J]. 浙江农业学报, 2024, 36(9): 2000-2009. |
| [6] | 李飞, 苏甜甜, 苏康杰, 徐可, 马力, 刘子明. 螺旋藻和红球藻对斑马鱼生长性能、抗氧化酶、磷酸酶和热休克蛋白的影响[J]. 浙江农业学报, 2024, 36(7): 1511-1518. |
| [7] | 何昌熙, 郑建波, 马建波, 贾永义, 刘士力, 蒋文枰, 迟美丽, 程顺, 李飞. 翘嘴鲌Runx2b基因的克隆与表达特征分析[J]. 浙江农业学报, 2024, 36(5): 1024-1031. |
| [8] | 杨明凤, 吉春容, 刘勇, 白书军, 陈雪, 刘爱琳. 花铃期持续干旱胁迫对棉花生长与土壤干旱阈值的影响[J]. 浙江农业学报, 2024, 36(4): 738-747. |
| [9] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
| [10] | 邵雪, 牛犇, 房祥军, 吴伟杰, 吴来春, 郜海燕, 陈杭君. 方便粥的干燥方式优选与风味优化[J]. 浙江农业学报, 2024, 36(4): 894-904. |
| [11] | 宋鹏, 李理想, 江厚龙, 王茹, 李慧, 赵鹏宇, 张均, 秦平伟, 任江波, 陈庆明. 施用侧孢短芽孢杆菌对烤后烟叶钾含量及烟株生理特征的影响[J]. 浙江农业学报, 2024, 36(3): 494-502. |
| [12] | 彭佳诚, 吴越, 徐洁皓, 夏美文, 齐天鹏, 徐海圣. 日本沼虾桩蛋白基因的克隆与镉胁迫对其表达的影响[J]. 浙江农业学报, 2024, 36(2): 247-253. |
| [13] | 虎丽霞, 张婧, 高彦强, 毛尔晔, 韩康宁, 杨滟, 颉建明. 长时间镁胁迫对芹菜叶绿素荧光特性与抗氧化能力的影响[J]. 浙江农业学报, 2024, 36(2): 295-307. |
| [14] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. |
| [15] | 刘筱琳, 孙婷婷, 杨捷, 何恒斌. 天香百合、药百合黄酮醇合成酶FLS基因克隆和表达分析[J]. 浙江农业学报, 2024, 36(2): 344-357. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||