浙江农业学报 ›› 2024, Vol. 36 ›› Issue (1): 94-102.DOI: 10.3969/j.issn.1004-1524.20230188
        
               		寿伟松(
), 王铎, 沈佳, 许昕阳, 张跃建, 何艳军(
)
                  
        
        
        
        
    
收稿日期:2023-02-17
									
				
									
				
									
				
											出版日期:2024-01-25
									
				
											发布日期:2024-02-18
									
			作者简介:寿伟松(1972—),男,浙江绍兴人,硕士,副研究员,主要从事西甜瓜育种与栽培研究。E-mail: shouws@zaas.ac.cn
				
							通讯作者:
					* 何艳军,E-mail: hyj1009@163.com
							基金资助:
        
               		SHOU Weisong(
), WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun(
)
			  
			
			
			
                
        
    
Received:2023-02-17
									
				
									
				
									
				
											Online:2024-01-25
									
				
											Published:2024-02-18
									
			摘要:
蔗糖转运蛋白(SUTs)作为蔗糖主动转运的主要载体,在分配同化物从源到库组织的转运中起着关键作用。尽管SUTs的特性及其生物学功能已在高等植物中得到了深入研究,但该基因家族尚未在西瓜中进行鉴定。本研究在西瓜基因组中共鉴定了4个ClSUT基因,并对其基因和蛋白结构、保守基序、亚细胞定位、染色体分布、进化关系、启动子元件等进行了全面分析。基因结构分析表明,亚族Ⅰ的ClSUT3和ClSUT4基因均只含有一个内含子。所有ClSUT均被预测定位在质膜中,它们均含有一个保守的MFS-2结构域,并且含有与之对应的5个保守基序。系统发育分析发现拟南芥、水稻和西瓜中的SUT分为5个亚族,西瓜ClSUT与拟南芥SUT的亲缘关系更近,被聚类在亚族Ⅰ、亚族Ⅱ和亚族Ⅴ。还在西瓜ClSUT基因的启动子中鉴定到一些与激素和逆境响应相关的作用元件。此外,转录组数据表明,西瓜ClSUT基因的表达对渗透和盐胁迫呈现多样性,很可能参与西瓜对这些逆境的响应。
中图分类号:
寿伟松, 王铎, 沈佳, 许昕阳, 张跃建, 何艳军. 西瓜蔗糖转运蛋白SUT家族的鉴定及其在果实发育和逆境响应中的表达分析[J]. 浙江农业学报, 2024, 36(1): 94-102.
SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102.
| 基因名称 Gene name  |  基因ID Gene ID  |  染色体位置 Chromosome location  |  基因方向 Gene direction  |  氨基酸长度 Protein length/aa  |  等电点 Isoelectric point  |  蛋白分子量 Molecular weight/ku  |  亚细胞定位 Subcellular localization  | 
|---|---|---|---|---|---|---|---|
| ClSUT1 | Cla97C08G155070.1 | Chr08:23133250.. 23138158  |  - | 507 | 9.36 | 54.98 | 质膜 Plasma membrane  | 
| ClSUT2 | Cla97C09G183410.1 | Chr09:36640778.. 36646361  |  + | 604 | 5.67 | 64.78 | 质膜 Plasma membrane  | 
| ClSUT3 | Cla97C11G215990.1 | Chr11:13836471.. 13838050  |  - | 495 | 8.55 | 53.15 | 质膜 Plasma membrane  | 
| ClSUT4 | Cla97C11G216280.1 | Chr11:16625895.. 16627473  |  + | 495 | 8.84 | 53.25 | 质膜 Plasma membrane  | 
表1 西瓜ClSUT基因的基本信息
Table 1 The basic information of ClSUTs in watermelon
| 基因名称 Gene name  |  基因ID Gene ID  |  染色体位置 Chromosome location  |  基因方向 Gene direction  |  氨基酸长度 Protein length/aa  |  等电点 Isoelectric point  |  蛋白分子量 Molecular weight/ku  |  亚细胞定位 Subcellular localization  | 
|---|---|---|---|---|---|---|---|
| ClSUT1 | Cla97C08G155070.1 | Chr08:23133250.. 23138158  |  - | 507 | 9.36 | 54.98 | 质膜 Plasma membrane  | 
| ClSUT2 | Cla97C09G183410.1 | Chr09:36640778.. 36646361  |  + | 604 | 5.67 | 64.78 | 质膜 Plasma membrane  | 
| ClSUT3 | Cla97C11G215990.1 | Chr11:13836471.. 13838050  |  - | 495 | 8.55 | 53.15 | 质膜 Plasma membrane  | 
| ClSUT4 | Cla97C11G216280.1 | Chr11:16625895.. 16627473  |  + | 495 | 8.84 | 53.25 | 质膜 Plasma membrane  | 
																													图1 西瓜ClSUT的进化、保守基序和结构域分析 A,西瓜ClSUT进化分析;B,西瓜ClSUT保守基序分析;C,西瓜ClSUT保守结构域分析。
Fig.1 The phylogenetic, conserved motif, and domain analysis of ClSUTs in watermelon A, Phylogenetic tree of ClSUTs in watermelon; B, Conserved motifs of ClSUTs in watermelon; C, Conserved domains of ClSUTs in watermelon.
																													图6 西瓜ClSUT基因在西瓜PI296341-FR(A)和97103(B)果实不同发育时期的表达热图 DAP代表授粉后果实的天数。
Fig.6 Expression heatmap of ClSUTs in watermelon PI296341-FR(A) and 97103 (B) at different fruit developmental periods DAP represents days after pollination.
																													图7 西瓜ClSUT基因在渗透(A)和干旱(B)胁迫下的表达水平热图 CK,对照材料;OS,渗透胁迫下西瓜材料;Y34,干旱敏感西瓜材料;M20,抗旱西瓜材料。
Fig.7 The expression heatmap of ClSUT in different watermelon in response to osmotic (A) and drought (B) stress CK, Control; OS, Watermelon root tissue under osmotic stress; Y34, Non-drought resistant material; M20, Drought-resistant material.
| [1] | SLEWINSKI T L, BRAUN D M. Current perspectives on the regulation of whole-plant carbohydrate partitioning[J]. Plant Science, 2010, 178(4): 341-349. | 
| [2] | LALONDE S, WIPF D, FROMMER W B. Transport mechanisms for organic forms of carbon and nitrogen between source and sink[J]. Annual Review of Plant Biology, 2004, 55: 341-372. | 
| [3] | SUN Y, REINDERS A, LAFLEUR K R, et al. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5[J]. Plant and Cell Physiology, 2010, 51(1): 114-122. | 
| [4] | RIESMEIER J W, WILLMITZER L, FROMMER W B. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast[J]. The EMBO Journal, 1992, 11(13): 4705-4713. | 
| [5] | BARKER L, KÜHN C, WEISE A, et al. SUT2, a putative sucrose sensor in sieve elements[J]. The Plant Cell, 2000, 12(7): 1153-1164. | 
| [6] | AOKI N, HIROSE T, SCOFIELD G N, et al. The sucrose transporter gene family in rice[J]. Plant and Cell Physiology, 2003, 44(3): 223-232. | 
| [7] | WEISE A, BARKER L, KÜHN C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity localized in enucleate sieve elements of plants[J]. The Plant Cell, 2000, 12(8): 1345-1355. | 
| [8] | USHA B, BORDOLOI D, PARIDA A. Diverse expression of sucrose transporter gene family in Zea mays[J]. Journal of Genetics, 2015, 94(1): 151-154. | 
| [9] | HACKEL A, SCHAUER N, CARRARI F, et al. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 45(2): 180-192. | 
| [10] | PAYYAVULA R S, TAY K H C, TSAI C J, et al. The sucrose transporter family in Populus: the importance of a tonoplast PtaSUT4 to biomass and carbon partitioning[J]. The Plant Journal, 2011, 65(5): 757-770. | 
| [11] | LI F P, WU B D, QIN X W, et al. Molecular cloning and expression analysis of the sucrose transporter gene family from Theobroma cacao L[J]. Gene, 2014, 546(2): 336-341. | 
| [12] | ZHANG H P, ZHANG S J, QIN G H, et al. Molecular cloning and expression analysis of a gene for sucrose transporter from pear (Pyrus bretschneideri Rehd.) fruit[J]. Plant Physiology and Biochemistry, 2013, 73: 63-69. | 
| [13] | MILNE R J, BYRT C S, PATRICK J W, et al. Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes?[J]. Frontiers in Plant Science, 2013, 4: 223. | 
| [14] | DEOL K K, MUKHERJEE S, GAO F, et al. Identification and characterization of the three homeologues of a new sucrose transporter in hexaploid wheat (Triticum aestivum L.)[J]. BMC Plant Biology, 2013, 13: 181. | 
| [15] | SIVITZ A B, REINDERS A, WARD J M. Arabidopsis sucrose transporter AtSUC1 is important for pollen germination and sucrose-induced anthocyanin accumulation[J]. Plant Physiology, 2008, 147(1): 92-100. | 
| [16] | SRIVASTAVA A C, GANESAN S, ISMAIL I O, et al. Effective carbon partitioning driven by exotic phloem-specific regulatory elements fused to the Arabidopsis thaliana AtSUC2 sucrose-proton symporter gene[J]. BMC Plant Biology, 2009, 9: 7. | 
| [17] | CHINCINSKA I, GIER K, KRÜGEL U, et al. Photoperiodic regulation of the sucrose transporter StSUT4 affects the expression of circadian-regulated genes and ethylene production[J]. Frontiers in Plant Science, 2013, 4: 26. | 
| [18] | WANG Z, WEI P, WU M Z, et al. Analysis of the sucrose synthase gene family in tobacco: structure, phylogeny, and expression patterns[J]. Planta, 2015, 242(1): 153-166. | 
| [19] | REGMI K C, ZHANG S J, GAXIOLA R A. Apoplasmic loading in the rice phloem supported by the presence of sucrose synthase and plasma membrane-localized proton pyrophosphatase[J]. Annals of Botany, 2016, 117(2): 257-268. | 
| [20] | ZHANG R, NIU K J, MA H L. Identification and expression analysis of the SWEET gene family from Poa pratensis under abiotic stresses[J]. DNA and Cell Biology, 2020, 39(9): 1606-1620. | 
| [21] | SUN L X, DENG R L, LIU J W, et al. An overview of sucrose transporter (SUT) genes family in rice[J]. Molecular Biology Reports, 2022, 49(6): 5685-5695. | 
| [22] | RIESMEIER J W, WILLMITZER L, FROMMER W B. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning[J]. The EMBO Journal, 1994, 13(1): 1-7. | 
| [23] | KÜHN C, GROF C P. Sucrose transporters of higher plants[J]. Current Opinion in Plant Biology, 2010, 13(3): 287-297. | 
| [24] | DOIDY J, VAN TUINEN D, LAMOTTE O, et al. The Medicago truncatula sucrose transporter family: characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi[J]. Molecular Plant, 2012, 5(6): 1346-1358. | 
| [25] | WITTEK A, DREYER I, AL-RASHEID K A S, et al. The fungal UmSrt1 and maize ZmSUT1 sucrose transporters battle for plant sugar resources[J]. Journal of Integrative Plant Biology, 2017, 59(6): 422-435. | 
| [26] | CHEN W Q, DIAO W P, LIU H Q, et al. Molecular characterization of SUT Gene Family in Solanaceae with emphasis on expression analysis of pepper genes during development and stresses[J]. Bioengineered, 2022, 13(6): 14780-14798. | 
| [27] | YADAV U P, AYRE B G, BUSH D R. Transgenic approaches to altering carbon and nitrogen partitioning in whole plants: assessing the potential to improve crop yields and nutritional quality[J]. Frontiers in Plant Science, 2015, 6: 275. | 
| [28] | FROST C J, NYAMDARI B, TSAI C J, et al. The tonoplast-localized sucrose transporter in Populus(PtaSUT4) regulates whole-plant water relations, responses to water stress, and photosynthesis[J]. PLoS One, 2012, 7(8): e44467. | 
| [29] | MEHAN M R, FREIMER N B, OPHOFF R A. A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture[J]. Human Genomics, 2004, 1(5): 335-344. | 
| [30] | JIAN H J, LU K, YANG B, et al. Genome-wide analysis and expression profiling of the SUC and SWEET gene families of sucrose transporters in oilseed rape (Brassica napus L.)[J]. Frontiers in Plant Science, 2016, 7: 1464. | 
| [31] | LIAO W B, LI Y Y, LU C, et al. Expression of sucrose metabolism and transport genes in cassava petiole abscission zones in response to water stress[J]. Biologia Plantarum, 2017, 61(2): 219-226. | 
| [32] | XU Q Y, CHEN S Y, REN Y J, et al. Regulation of sucrose transporters and phloem loading in response to environmental cues[J]. Plant Physiology, 2018, 176(1): 930-945. | 
| [33] | IBRAHEEM O, DEALTRY G, ROUX S, et al. The effect of drought and salinity on the expressional levels of sucrose transporters in rice (Oryza sativa Nipponbare) cultivar plants[J]. Plant Omics, 2011, 4: 68-74. | 
| [34] | SAMEEULLAH M, SASAKI T, YAMAMOTO Y. Sucrose transporter NtSUT1 confers aluminum tolerance on cultured cells of tobacco (Nicotiana tabacum L.)[J]. Soil Science and Plant Nutrition, 2013, 59(5): 756-770. | 
| [35] | KARIYA K, SAMEEULLAH M, SASAKI T, et al. Overexpression of the sucrose transporter gene NtSUT1 alleviates aluminum-induced inhibition of root elongation in tobacco (Nicotiana tabacum L.)[J]. Soil Science and Plant Nutrition, 2017, 63(1): 45-54. | 
| [1] | 胡心柔, 王梅, 张雅芬, 蔡为明, 金群力. 非生物胁迫对灵芝生长发育及其响应机制的影响[J]. 浙江农业学报, 2025, 37(5): 1182-1190. | 
| [2] | 欧晋稳, 张古文, 冯志娟, 王斌, 卜远鹏, 徐钰, 茹磊, 刘娜, 龚亚明. 大豆海藻糖-6-磷酸磷酸酶基因GmTPP的鉴定及其在生长发育和非生物胁迫响应中的表达分析[J]. 浙江农业学报, 2024, 36(9): 2031-2041. | 
| [3] | 孙培媛, 冉彬, 王佳蕊, 李洪有. 苦荞FtDELLA基因的克隆与表达分析[J]. 浙江农业学报, 2024, 36(8): 1709-1718. | 
| [4] | 唐红, 关文志, 许晓军, 牛宝龙, 楼宝, 沈小明, 顾志敏. 三角鲂foxl2基因克隆和时空表达特征及EE2对其表达的影响[J]. 浙江农业学报, 2024, 36(8): 1789-1799. | 
| [5] | 袁晓, 蒋园园, 朱云娜, 曲姗姗, 王玉昆, 原远, 王斌. JAZ家族基因在采后黄瓜低温贮藏条件下的表达分析[J]. 浙江农业学报, 2024, 36(8): 1820-1831. | 
| [6] | 褚田芬, 雷玲, 李勤锋, 吴平, 洪文杰, 郑蔚然. 浙江省西瓜中农药残留风险评估[J]. 浙江农业学报, 2024, 36(5): 1153-1160. | 
| [7] | 张余, 金明伟, 任丽, 章毅颖, 赵洪, 刘昆, 邓姗, 褚云霞, 李寿国, 张靖立, 黄静艳, 陈海荣. 辣椒CaERF70的表达特征和转录自激活活性分析[J]. 浙江农业学报, 2024, 36(10): 2247-2256. | 
| [8] | 张思懿, 崔博文, 王佳玲, 蔺吉祥, 杨青杰. 非生物胁迫下植物根系的生理与分子响应研究进展[J]. 浙江农业学报, 2024, 36(10): 2391-2401. | 
| [9] | 张新业, 李文静, 朱姝, 孙艳香, 王聪艳, 闫训友, 周志国. 三种伞形科蔬菜作物棕榈酰基转移酶基因家族的鉴定与分析[J]. 浙江农业学报, 2023, 35(6): 1315-1327. | 
| [10] | 梁妃爽, 梁华芳, 黄佳宇, 王潘妹, 温崇庆. RNA干扰PhCatC1/2基因对波纹龙虾相关免疫基因表达的影响[J]. 浙江农业学报, 2023, 35(5): 1037-1047. | 
| [11] | 姚彦林, 马骊, 刘丽君, 蒲媛媛, 李学才, 王旺田, 方彦, 孙万仓, 武军艳. 白菜型油菜开花调控基因BrFT的生物信息学特性和表达分析[J]. 浙江农业学报, 2023, 35(5): 992-1000. | 
| [12] | 燕存尧, 贾凯, 闫会转, 高杰. 芜菁BrrLOX7基因克隆、表达及生物信息学分析[J]. 浙江农业学报, 2023, 35(4): 831-840. | 
| [13] | 吴娇, 龚成宇, 陈超群, 陈红旭, 刘俊宏, 唐文静, 初元琦, 杨文龙, 张瑶, 龚荣高. 不同海拔黄果柑果实有机酸代谢的生态响应[J]. 浙江农业学报, 2023, 35(4): 853-861. | 
| [14] | 董飞燕, 宋婧含, 张华东, 吴昊天, 李雅倩, 刘孟伟, 高春保, 方正武, 刘易科. 小麦TaPAT1-2D基因的克隆与表达分析[J]. 浙江农业学报, 2023, 35(1): 23-32. | 
| [15] | 郭春倩, 田洁. 大蒜己糖激酶基因AsHXK2的克隆及其参与根际促生菌缓解干旱胁迫的表达分析[J]. 浙江农业学报, 2022, 34(9): 1925-1934. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||