浙江农业学报 ›› 2024, Vol. 36 ›› Issue (6): 1217-1231.DOI: 10.3969/j.issn.1004-1524.20230861
吴国江(), 周伟, 李艳肖, 侯杰, 杨志强, 周亚星*(
)
收稿日期:
2023-07-13
出版日期:
2024-06-25
发布日期:
2024-07-02
作者简介:
吴国江(1997—),男,内蒙古呼和浩特人,硕士研究生,研究方向为作物遗传改良与种质创新。E-mail:2592406718@qq.com
通讯作者:
*周亚星,E-mail:zhouyaxing3@163.com
基金资助:
WU Guojiang(), ZHOU Wei, LI Yanxiao, HOU Jie, YANG Zhiqiang, ZHOU Yaxing*(
)
Received:
2023-07-13
Online:
2024-06-25
Published:
2024-07-02
摘要:
ZF-HD(zinc finger-homeodomain)是仅存在于植物中的转录因子家族,在植物的生长发育和逆境应答过程中发挥着重要作用。为分析ZF-HD基因家族成员在高粱基因组中的组成与潜在的生物学功能,利用生物信息学分析方法并结合高粱转录组数据,对高粱ZF-HD基因(SbZF-HD)及其编码氨基酸序列进行分析。结果表明:共有14个SbZF-HD基因不均匀地分布在高粱的8条染色体上,且基因结构各异;它们编码的氨基酸的基序组成较为相似,蛋白质的高级结构均以无规则卷曲为主。ZF-HD蛋白质的进化树分析结果表明,SbZF-HD与玉米的ZF-HD亲缘关系较近,与拟南芥的ZF-HD亲缘关系较远。SbZF-HD启动子区域中包含多个激素调控类元件、胁迫响应类元件和光响应元件。SbZF-HD基因组织表达分析显示,SbZF-HD基因有组织表达特异性,在根、叶和种子中的表达量较高。转录组分析表明,盐碱胁迫条件下,SbZF-HD2、SbZF-HD7、SbZF-HD8和SbZF-HD12这4个基因在2份盐碱耐性不同的酿造高粱材料中表现出相反的表达趋势,可能在高粱耐盐碱机制中发挥着重要作用。综上,SbZF-HD基因家族成员可能是高粱耐盐碱胁迫的关键调控基因,该研究为高粱耐盐碱转基因育种提供了基因资源。
中图分类号:
吴国江, 周伟, 李艳肖, 侯杰, 杨志强, 周亚星. 高粱ZF-HD基因家族鉴定与盐碱胁迫下的表达分析[J]. 浙江农业学报, 2024, 36(6): 1217-1231.
WU Guojiang, ZHOU Wei, LI Yanxiao, HOU Jie, YANG Zhiqiang, ZHOU Yaxing. Identification and expression analysis under saline-alkali stress of ZF-HD gene family in sorghum[J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1217-1231.
基因名称 Gene name | 序列ID Sequence ID | 氨基酸 数量 Amino acid number | 分子量 Molecular weight/ ku | 等电点 pI | 不稳定 系数 Instability index | 脂肪 系数 Aliphatic index | 亲水性指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | α-螺旋 α-Helix/ % | 延伸链 Extended strand/% | β-折叠 β-Sheet/ % | 无规则 卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SbZF-HD1 | Sobic. 001G112500.1 | 234 | 24.35 | 8.14 | 56.01 | 42.22 | -0.585 | 线粒体 Mitochondria | 26.50 | 5.56 | 7.26 | 60.68 |
SbZF-HD2 | Sobic. 002G201100.2 | 110 | 12.46 | 8.81 | 55.42 | 54.18 | -0.545 | 细胞核 Nucleus | 38.18 | 20.91 | 4.55 | 36.36 |
SbZF-HD3 | Sobic. 002G201400.1 | 381 | 39.39 | 7.75 | 69.35 | 55.28 | -0.504 | 细胞核 Nucleus | 22.05 | 11.29 | 5.25 | 61.42 |
SbZF-HD4 | Sobic. 002G231100.1 | 302 | 31.47 | 7.38 | 52.79 | 50.86 | -0.579 | 细胞核 Nucleus | 20.53 | 8.61 | 6.62 | 64.24 |
SbZF-HD5 | Sobic. 003G135101.1 | 265 | 29.29 | 11.69 | 84.56 | 54.34 | -0.817 | 细胞核 Nucleus | 38.49 | 9.43 | 2.64 | 49.43 |
SbZF-HD6 | Sobic. 004G266800.1 | 406 | 43.48 | 6.55 | 93.15 | 54.73 | -0.791 | 细胞核 Nucleus | 26.35 | 9.36 | 3.45 | 60.84 |
SbZF-HD7 | Sobic. 005G019800.1 | 98 | 10.14 | 6.49 | 59.24 | 33.16 | -0.661 | 细胞核 Nucleus | 20.41 | 13.27 | 9.18 | 57.14 |
SbZF-HD8 | Sobic. 005G086700.1 | 394 | 40.83 | 7.76 | 68.95 | 57.36 | -0.538 | 细胞核 Nucleus | 26.90 | 10.66 | 5.58 | 56.85 |
SbZF-HD9 | Sobic. 007G139000.1 | 127 | 13.31 | 7.92 | 73.21 | 49.37 | -0.156 | 叶绿体 Chloroplast | 31.50 | 16.54 | 7.87 | 44.09 |
SbZF-HD10 | Sobic. 007G139200.1 | 390 | 40.29 | 6.52 | 71.13 | 61.05 | -0.373 | 细胞质 Cytoplasm | 30.26 | 8.46 | 6.41 | 54.87 |
SbZF-HD11 | Sobic. 007G160400.1 | 311 | 31.80 | 6.80 | 46.00 | 55.02 | -0.430 | 细胞核 Nucleus | 19.61 | 11.90 | 6.75 | 61.74 |
SbZF-HD12 | Sobic. 008G020700.1 | 92 | 9.75 | 7.67 | 58.20 | 38.48 | -0.651 | 细胞核 Nucleus | 26.09 | 13.04 | 5.43 | 55.43 |
SbZF-HD13 | Sobic. 008G073200.1 | 328 | 34.72 | 9.15 | 70.83 | 54.27 | -0.789 | 细胞核 Nucleus | 16.77 | 9.76 | 6.10 | 67.38 |
SbZF-HD14 | Sobic. 009G244200.2 | 373 | 39.71 | 8.82 | 91.63 | 47.77 | -0.819 | 叶绿体 Chloroplast | 24.93 | 8.58 | 5.90 | 60.59 |
表1 高粱ZF-HD基因家族成员信息及其编码蛋白质的理化性质和二级结构
Table 1 Information of sorghum ZF-HD gene family members and physicochemical properties and secondary structure of their encoded proteins
基因名称 Gene name | 序列ID Sequence ID | 氨基酸 数量 Amino acid number | 分子量 Molecular weight/ ku | 等电点 pI | 不稳定 系数 Instability index | 脂肪 系数 Aliphatic index | 亲水性指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | α-螺旋 α-Helix/ % | 延伸链 Extended strand/% | β-折叠 β-Sheet/ % | 无规则 卷曲 Random coil/% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SbZF-HD1 | Sobic. 001G112500.1 | 234 | 24.35 | 8.14 | 56.01 | 42.22 | -0.585 | 线粒体 Mitochondria | 26.50 | 5.56 | 7.26 | 60.68 |
SbZF-HD2 | Sobic. 002G201100.2 | 110 | 12.46 | 8.81 | 55.42 | 54.18 | -0.545 | 细胞核 Nucleus | 38.18 | 20.91 | 4.55 | 36.36 |
SbZF-HD3 | Sobic. 002G201400.1 | 381 | 39.39 | 7.75 | 69.35 | 55.28 | -0.504 | 细胞核 Nucleus | 22.05 | 11.29 | 5.25 | 61.42 |
SbZF-HD4 | Sobic. 002G231100.1 | 302 | 31.47 | 7.38 | 52.79 | 50.86 | -0.579 | 细胞核 Nucleus | 20.53 | 8.61 | 6.62 | 64.24 |
SbZF-HD5 | Sobic. 003G135101.1 | 265 | 29.29 | 11.69 | 84.56 | 54.34 | -0.817 | 细胞核 Nucleus | 38.49 | 9.43 | 2.64 | 49.43 |
SbZF-HD6 | Sobic. 004G266800.1 | 406 | 43.48 | 6.55 | 93.15 | 54.73 | -0.791 | 细胞核 Nucleus | 26.35 | 9.36 | 3.45 | 60.84 |
SbZF-HD7 | Sobic. 005G019800.1 | 98 | 10.14 | 6.49 | 59.24 | 33.16 | -0.661 | 细胞核 Nucleus | 20.41 | 13.27 | 9.18 | 57.14 |
SbZF-HD8 | Sobic. 005G086700.1 | 394 | 40.83 | 7.76 | 68.95 | 57.36 | -0.538 | 细胞核 Nucleus | 26.90 | 10.66 | 5.58 | 56.85 |
SbZF-HD9 | Sobic. 007G139000.1 | 127 | 13.31 | 7.92 | 73.21 | 49.37 | -0.156 | 叶绿体 Chloroplast | 31.50 | 16.54 | 7.87 | 44.09 |
SbZF-HD10 | Sobic. 007G139200.1 | 390 | 40.29 | 6.52 | 71.13 | 61.05 | -0.373 | 细胞质 Cytoplasm | 30.26 | 8.46 | 6.41 | 54.87 |
SbZF-HD11 | Sobic. 007G160400.1 | 311 | 31.80 | 6.80 | 46.00 | 55.02 | -0.430 | 细胞核 Nucleus | 19.61 | 11.90 | 6.75 | 61.74 |
SbZF-HD12 | Sobic. 008G020700.1 | 92 | 9.75 | 7.67 | 58.20 | 38.48 | -0.651 | 细胞核 Nucleus | 26.09 | 13.04 | 5.43 | 55.43 |
SbZF-HD13 | Sobic. 008G073200.1 | 328 | 34.72 | 9.15 | 70.83 | 54.27 | -0.789 | 细胞核 Nucleus | 16.77 | 9.76 | 6.10 | 67.38 |
SbZF-HD14 | Sobic. 009G244200.2 | 373 | 39.71 | 8.82 | 91.63 | 47.77 | -0.819 | 叶绿体 Chloroplast | 24.93 | 8.58 | 5.90 | 60.59 |
图3 高粱ZF-HD家族成员的系统进化树(A)、基因结构(B)、结构域(C)和保守基序(D)
Fig.3 Phylogenetic tree (A), gene structure (B), domain (C) and conserved motif (D) of sorghum ZF-HD family members
图4 高粱、拟南芥、水稻、玉米和谷子ZF-HD蛋白质的系统进化树 Sb,高粱;AT,拟南芥;LOC Os,水稻;GRMZM,玉米;Seita.,谷子。
Fig.4 Phylogenetic tree of ZF-HD protein in sorghum, Arabidopsis, rice, maize and millet Sb, Sorghum; AT, Arabidopsis; LOC Os, Rice; GRMZM, Maize; Seita., Millet.
图6 高粱与拟南芥、玉米、水稻、谷子ZF-HD基因家族的共线性关系
Fig.6 The collinear relationship between sorghum and ZF-HD gene family in Arabidopsis, maize, rice and foxtail millet
图8 高粱ZF-HD基因家族成员在不同组织的表达水平 1,幼苗根;2,幼嫩根尖;3,根尖部营养组织;4,根底部营养组织;5,茎;6,幼苗叶片;7,芽;8,穗花芽分化;9,花序梗花芽分化;10,种子。
Fig.8 Expression level of ZF-HD gene family members in different tissues of Sorghum 1, Root bottom.juvenile; 2, Root top.juvenile; 3, Root top.vegetative; 4, Root bottom.vegetative; 5, Stem ; 6, Leaf blade.juvenile; 7, Shoot; 8, Panicle.floral initiation; 9, Peduncle.floral initiation; 10, Seed.
图9 高粱ZF-HD基因家族成员在盐碱胁迫下的表达 A,极耐盐碱酿造高粱924的ZF-HD基因家族成员在1/2Hoagland营养液(NYCK)、100 mmol·L-1盐碱(NYA)、200 mmol·L-1盐碱(NYB)胁迫下的表达模式;B,盐碱敏感酿造高粱661的ZF-HD基因家族成员在1/2Hoagland营养液(MYCK)、100 mmol·L-1盐碱(MYA)、200 mmol·L-1盐碱(MYB)胁迫下的表达模式。
Fig.9 Expression of ZF-HD family genes in sorghum under saline-alkali stress A shows the expression patterns of ZF-HD family genes in salt-tolerant brewing sorghum ‘924’ under 1/2 Hoagland nutrient solution (NYCK), 100 mmol·L-1 saline-alkaline (NYA) and 200 mmol·L-1 saline-alkaline (NYB) stress; B shows the expression pattern of ZF-HD family genes in saline-alkali sensitive brewing sorghum ‘661’ under the stress of 1/2Hoagland nutrient solution (MYCK), 100 mmol·L-1 saline-alkali (MYA), 200 mmol·L-1 saline-alkali (MYB).
[1] | 王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J]. 中国科学: 生命科学, 2021, 51(10): 1424-1434. |
WANG L, GUO Y, YANG S H. Designed breeding for adaptation of crops to environmental abiotic stresses[J]. Scientia Sinica(Vitae), 2021, 51(10): 1424-1434.(in Chinese with English abstract) | |
[2] | LONG L, ZHAO J R, GUO D D, et al. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance[J]. BMC Plant Biology, 2020, 20(1): 147. |
[3] | TAN Q K G, IRISH V F. The Arabidopsis zinc finger-homeodomain genes encode proteins with unique biochemical properties that are coordinately expressed during floral development[J]. Plant Physiology, 2006, 140(3): 1095-1108. |
[4] | TAKATSUJI H. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science[J]. Plant Molecular Biology, 1999, 39(6): 1073-1078. |
[5] | MACKAY J P, CROSSLEY M. Zinc fingers are sticking together[J]. Trends in Biochemical Sciences, 1998, 23(1): 1-4. |
[6] | ARIEL F D, MANAVELLA P A, DEZAR C A, et al. The true story of the HD-Zip family[J]. Trends in Plant Science, 2007, 12(9): 419-426. |
[7] | HU W, DEPAMPHILIS C W, MA H. Phylogenetic analysis of the plant-specific zinc finger-homeobox and mini zinc finger gene families[J]. Journal of Integrative Plant Biology, 2008, 50(8): 1031-1045. |
[8] | MA J J, ZHENG L W, ZHAO C D, et al. Genome-wide identification and expression analysis of half-size ABCG genes in Malus×domestica[J]. Horticultural Plant Journal, 2018, 4(2): 45-54. |
[9] | KHATUN K, NATH U K, ROBIN A H K, et al. Genome-wide analysis and expression profiling of zinc finger homeodomain (ZHD) family genes reveal likely roles in organ development and stress responses in tomato[J]. BMC Genomics, 2017, 18(1): 695. |
[10] | WANG W L, WU P, LI Y, et al. Genome-wide analysis and expression patterns of ZF-HD transcription factors under different developmental tissues and abiotic stresses in Chinese cabbage[J]. Molecular Genetics and Genomics, 2016, 291(3): 1451-1464. |
[11] | ABDULLAH M, CHENG X, CAO Y P, et al. Zinc finger-homeodomain transcriptional factors (ZHDs) in upland cotton (Gossypium hirsutum): genome-wide identification and expression analysis in fiber development[J]. Frontiers in Genetics, 2018, 9: 357. |
[12] | WINDHÖVEL A, HEIN I, DABROWA R, et al. Characterization of a novel class of plant homeodomain proteins that bind to the C4 phosphoenolpyruvate carboxylase gene of Flaveria trinervia[J]. Plant Molecular Biology, 2001, 45(2): 201-214. |
[13] | BARTH O, VOGT S, UHLEMANN R, et al. Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29[J]. Plant Molecular Biology, 2009, 69(1/2): 213-226. |
[14] | TRAN L S P, NAKASHIMA K, SAKUMA Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis[J]. The Plant Journal, 2007, 49(1): 46-63. |
[15] | PERRELLA G, DAVIDSON M L H, O’DONNELL L, et al. ZINC-FINGER interactions mediate transcriptional regulation of hypocotyl growth in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): E4503-E4511. |
[16] | FIGUEIREDO D D, BARROS P M, CORDEIRO A M, et al. Seven zinc-finger transcription factors are novel regulators of the stress responsive gene OsDREB1B[J]. Journal of Experimental Botany, 2012, 63(10): 3643-3656. |
[17] | SHI Y, PANG X Q, LIU W J, et al. SlZHD17 is involved in the control of chlorophyll and carotenoid metabolism in tomato fruit[J]. Horticulture Research, 2021, 8(1): 259. |
[18] | PARK H C, KIM M L, LEE S M, et al. Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter[J]. Nucleic Acids Research, 2007, 35(11): 3612-3623. |
[19] | ESPITIA-HERNÁNDEZ P, CHÁVEZ GONZÁLEZ M L, ASCACIO-VALDÉS J A, et al. Sorghum (Sorghum bicolor L.) as a potential source of bioactive substances and their biological properties[J]. Critical Reviews in Food Science and Nutrition, 2022, 62(8): 2269-2280. |
[20] | 王自力, 张北举, 李魁印, 等. 高粱种质资源表型性状多样性分析及综合评价[J]. 江苏农业科学, 2022, 50(18): 115-121. |
WANG Z L, ZHANG B J, LI K Y, et al. Diversity analysis and comprehensive evaluation of phenotypic traits of sorghum germplasm resources[J]. Jiangsu Agricultural Sciences, 2022, 50(18): 115-121. (in Chinese with English abstract) | |
[21] | WENDORF F, CLOSE A E, SCHILD R, et al. Saharan exploitation of plants 8, 000 years BP[J]. Nature, 1992, 359(6397): 721-724. |
[22] | HUANG R D. Research progress on plant tolerance to soil salinity and alkalinity in sorghum[J]. Journal of Integrative Agriculture, 2018, 17(4): 739-746. |
[23] | 吴国江, 周伟, 余忠浩, 等. 基于主成分、灰色关联和DTOPSIS分析的176份糯高粱种质资源综合评价[J]. 河南农业科学, 2023, 52(5): 40-51. |
WU G J, ZHOU W, YU Z H, et al. Comprehensive evaluation of 176 waxy Sorghum germplasm resources based on principal component, grey correlation and DTOPSIS analyses[J]. Journal of Henan Agricultural Sciences, 2023, 52(5): 40-51. (in Chinese with English abstract) | |
[24] | 崔江慧, 杨溥原, 常金华. 高粱GRF基因家族鉴定及在非生物胁迫下的表达分析[J]. 中国农业科技导报, 2021, 23(4): 37-46. |
CUI J H, YANG P Y, CHANG J H. Identification and expression analysis under abiotic stress of GRF gene family in Sorghum[J]. Journal of Agricultural Science and Technology, 2021, 23(4): 37-46. (in Chinese with English abstract) | |
[25] | PATERSON A H, BOWERS J E, BRUGGMANN R, et al. The Sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229): 551-556. |
[26] | ZHENG H X, GAO Y P, DANG Y Y, et al. Characterization of the m6A gene family in sorghum and its function in growth, development and stress resistance[J]. Industrial Crops and Products, 2023, 198: 116625. |
[27] | DU Q L, FANG Y P, JIANG J M, et al. Genome-wide identification and characterization of the JAZ gene family and its expression patterns under various abiotic stresses in Sorghum bicolor[J]. Journal of Integrative Agriculture, 2022, 21(12): 3540-3555. |
[28] | XIAO Q L, LIU T T, LING M, et al. Genome-wide identification of DOF gene family and the mechanism dissection of SbDof21 regulating starch biosynthesis in sorghum[J]. International Journal of Molecular Sciences, 2022, 23(20): 12152. |
[29] | GE H Q, XU J J, HUA M Z, et al. Genome-wide identification and analysis of ACP gene family in Sorghum bicolor(L.) Moench[J]. BMC Genomics, 2022, 23(1): 538. |
[30] | ZHANG A X, XU J J, XU X, et al. Genome-wide identification and characterization of the KCS gene family in sorghum [Sorghum bicolor(L.) Moench][J]. PeerJ, 2022, 10: e14156. |
[31] | LI Y Y, BAI B C, WEN F, et al. Genome-wide identification and expression analysis of HD-ZIP I gene subfamily in Nicotiana tabacum[J]. Genes, 2019, 10(8): 575. |
[32] | JAIN M, TYAGI A K, KHURANA J P. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa)[J]. Genomics, 2006, 88(3): 360-371. |
[33] | 李珊, 刘永琪, 朱垠豪, 等. 谷子ZF-HD基因家族的鉴定及生物信息学分析[J]. 山西农业大学学报(自然科学版), 2021, 41(5): 13-25. |
LI S, LIU Y Q, ZHU Y H, et al. Identification and bioinformatics analysis of ZF-HD gene family in Setaria italica[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2021, 41(5): 13-25. (in Chinese with English abstract) | |
[34] | NIU H L, XIA P L, HU Y F, et al. Genome-wide identification of ZF-HD gene family in Triticum aestivum: molecular evolution mechanism and function analysis[J]. PLoS One, 2021, 16(9): e0256579. |
[35] | ZHOU C Z, ZHU C, XIE S Y, et al. Genome-wide analysis of zinc finger motif-associated homeodomain (ZF-HD) family genes and their expression profiles under abiotic stresses and phytohormones stimuli in tea plants (Camellia sinensis)[J]. Scientia Horticulturae, 2021, 281: 109976. |
[36] | JAIN M, KHURANA P, TYAGI A K, et al. Genome-wide analysis of intronless genes in rice and Arabidopsis[J]. Functional & Integrative Genomics, 2008, 8(1): 69-78. |
[37] | HE K, LI C X, ZHANG Z Y, et al. Genome-wide investigation of the ZF-HD gene family in two varieties of alfalfa (Medicago sativa L.) and its expression pattern under alkaline stress[J]. BMC Genomics, 2022, 23(1): 150. |
[38] | 张莉, 荐红举, 杨博, 等. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析[J]. 作物学报, 2018, 44(2): 197-207. |
ZHANG L, JIAN H J, YANG B, et al. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L[J]. Acta Agronomica Sinica, 2018, 44(2): 197-207. (in Chinese with English abstract) | |
[39] | REN R, WANG H F, GUO C C, et al. Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms[J]. Molecular Plant, 2018, 11(3): 414-428. |
[40] | 陈凤琼, 陈秋森, 林佳昕, 等. 番茄DIR基因家族鉴定及其对非生物胁迫响应的分析[J]. 中国农业科学, 2022, 55(19): 3807-3824. |
CHEN F Q, CHEN Q S, LIN J X, et al. Genome-wide identification of DIR family genes in tomato and response to abiotic stress[J]. Scientia Agricultura Sinica, 2022, 55(19): 3807-3824. (in Chinese with English abstract) | |
[41] | XING L X, PENG K, XUE S, et al. Genome-wide analysis of zinc finger-homeodomain (ZF-HD) transcription factors in diploid and tetraploid cotton[J]. Functional & Integrative Genomics, 2022, 22(6): 1269-1281. |
[42] | XIAO J, HU R, GU T, et al. Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat[J]. BMC Genomics, 2019, 20(1): 287. |
[43] | BERG J M, SHI Y. The galvanization of biology: a growing appreciation for the roles of zinc[J]. Science, 1996, 271(5252): 1081-1085. |
[44] | ABU-ROMMAN S. Molecular cloning and expression analysis of zinc finger-homeodomain transcription factor TaZFHD1 in wheat[J]. South African Journal of Botany, 2014, 91: 32-36. |
[45] | JING X J, LI C Y, LUO C J, et al. Identification and characterization of ZF-HD genes in response to abscisic acid and abiotic stresses in maize[J]. Phyton, 2023, 92(3): 707-723. |
[1] | 宛燕, 周晓春, 房海灵, 林沂, 亓希武, 于盱, 陈泽群, 梁呈元. 金银花光形态建成因子LjCOP1基因克隆及表达模式分析[J]. 浙江农业学报, 2024, 36(6): 1290-1299. |
[2] | 李亚萍, 金福来, 黄宗贵, 张涛, 段晓婧, 姜武, 陶正明, 陈家栋. 铁皮石斛糖苷水解酶GH3基因家族鉴定及表达模式分析[J]. 浙江农业学报, 2024, 36(4): 790-799. |
[3] | 刘艺平, 张一琪, 苏少文, 刘红利, 贺丹, 孔德政. 不同品种荷花耐盐碱性评价及鉴定指标筛选[J]. 浙江农业学报, 2023, 35(1): 103-111. |
[4] | 梁成刚, 汪燕, 关志秀, 韦春玉, 邓娇, 黄娟, 孟子烨, 石桃雄. 苦荞蔗糖转运体家族FtSUCs的鉴定与生物信息学分析[J]. 浙江农业学报, 2022, 34(8): 1591-1598. |
[5] | 熊雪, 赵丽娜, 杨森林, SAMIAH Arif, 张屹东. 甜瓜CmCIPK家族全基因组鉴定和逆境条件下的表达分析[J]. 浙江农业学报, 2021, 33(9): 1625-1639. |
[6] | 刘秀慧, 邹桂花, 翟国伟, 刘合芹, 郑学强, 陈合云. 高粱种质资源出苗相关性状与SSR标记的关联分析[J]. 浙江农业学报, 2021, 33(6): 965-973. |
[7] | 石兆勇, 李珂, 王发园, 王旭刚, 徐晓峰. 纳米银和外源丛枝菌根真菌对甜高粱叶绿素荧光诱导动力学特性的影响[J]. 浙江农业学报, 2020, 32(2): 283-290. |
[8] | 钟静, 谭芬, 张洪权, 熊校勤, 黄丽霞. 玉米XYLPs基因家族表达模式及其蛋白结构分析[J]. 浙江农业学报, 2020, 32(10): 1741-1747. |
[9] | 杜军利, 武德功, 詹秋文, 黄保宏, 倪鹤. 不同光周期对高粱叶片和蚜虫体内营养物质含量和相关酶活性的影响[J]. 浙江农业学报, 2019, 31(7): 1119-1127. |
[10] | 赵文杰, 徐薇, 张景龙, 程爽, 郑甲成, 刘言龙, 殷世霞, 李杰勤, 詹秋文. 甜高粱生物学性状与SSR分子标记遗传多样性[J]. 浙江农业学报, 2019, 31(12): 1945-1954. |
[11] | 武德功, 杜军利, 黄保宏, 詹秋文, 毕亚玲, 黄伟东, 刘言龙. 温度对高粱蚜生命参数的影响[J]. 浙江农业学报, 2018, 30(9): 1541-1547. |
[12] | 周腰华, 李蔚青, 张淼, 潘荣光, 邹剑秋. 中国高粱贸易与美国高粱生产成本收益分析[J]. 浙江农业学报, 2017, 29(9): 1589-1594. |
[13] | 张青, 苗立祥, 张豫超, 杨肖芳, 蒋桂华. 草莓FabHLH3基因克隆表达分析与过量和干涉表达载体的构建[J]. 浙江农业学报, 2017, 29(2): 220-227. |
[14] | 俞晨良, 张成浩, 詹仪花, 董文其. 高粱Pht1基因家族的鉴定及其进化和表达分析[J]. 浙江农业学报, 2017, 29(1): 16-22. |
[15] | 冯琛, 王玲, 汤浩茹*, 肖婕. 草莓MYB类转录因子FaMYB5基因的克隆与表达分析[J]. 浙江农业学报, 2016, 28(8): 1351-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||