浙江农业学报 ›› 2025, Vol. 37 ›› Issue (3): 621-632.DOI: 10.3969/j.issn.1004-1524.20231348
赵嘉豪1,2(), 徐杏2, 周卫东2,*(
), 杨华3, 赵喜红1, 汪雯3,*(
)
收稿日期:
2023-11-29
出版日期:
2025-03-25
发布日期:
2025-04-02
作者简介:
赵嘉豪(1999—),男,河南郑州人,硕士,主要从事水环境中微生物检测和杀灭研究。E-mail:febmystery@163.com
通讯作者:
* 汪雯,E-mail: ww_hi1018@163.com基金资助:
ZHAO Jiahao1,2(), XU Xing2, ZHOU Weidong2,*(
), YANG Hua3, ZHAO Xihong1, WANG Wen3,*(
)
Received:
2023-11-29
Online:
2025-03-25
Published:
2025-04-02
摘要:
生猪养殖废水中含有大量可能的致病菌和抗生素耐药基因(ARGs)。为此,从某生猪养殖场废水生化出水口、猪场附近农田沟渠、猪场内地下水储水罐和池塘中采集样本(分别简记为MW、IW、UW、PW),分析猪场废水和周边水环境中水质、细菌群落和代表性ARGs的特征,并利用16S rRNA测序和实时荧光定量PCR分析了细菌群落和代表性ARGs的丰度。结果表明,MW的化学需氧量、氨氮含量、总磷含量显著(P<0.05)高于其他样本,ARGs总丰度最高;UW的水质最好,菌群的多样性和丰富度最低。从4种水体中均检出不动杆菌属(Acinetobacter)、梭状芽孢杆菌属(Clostridium_sensu_stricto_1)和假单胞菌属(Pseudomonas)等致病菌,且MW和IW中的主要ARGs均为四环素类(tetQ和tetW)和大环内酯类(ermB)耐药基因。典型相关分析的结果表明,猪废水菌群中的菌属为主要的ARGs宿主,其相对丰度与多种检测的ARGs的丰度呈显著正相关。综上所述,MW的高污染指数、多样致病菌和高丰度的ARGs可能对周边水环境构成严重威胁。因此,猪场废水处理需严格执行相关排放标准,且废水最终的深度消毒也必不可少。
中图分类号:
赵嘉豪, 徐杏, 周卫东, 杨华, 赵喜红, 汪雯. 猪场废水与周边水环境中细菌和耐药基因的特征[J]. 浙江农业学报, 2025, 37(3): 621-632.
ZHAO Jiahao, XU Xing, ZHOU Weidong, YANG Hua, ZHAO Xihong, WANG Wen. Characteristics of bacteria community and antibiotic resistance genes in piggery wastewater and surrounding water environment[J]. Acta Agriculturae Zhejiangensis, 2025, 37(3): 621-632.
参数Parameter | UW | IW | PW | MW |
---|---|---|---|---|
Tur/NTU | 0.1±0.1 c | 0.7±0.1 b | 0.7±0.1 b | 43.5±1.3 a |
CODCr/(mg·L-1) | — | 49±3 b | 53±5 b | 430±14 a |
CODMn/(mg·L1) | 5.37±0.20 | — | — | — |
NH3-N含量NH3-N content/(mg·L-1) | 1.1±0.1 c | 6.9±0.2 b | 3.9±0.1 b | 46.7±0.8 a |
总磷含量Total P content/(mg·L-1) | 0.03±0.01 c | 0.95±0.03 b | 1.06±0.03 b | 19.69±0.11 a |
$\mathrm{NO}_3^{-}$含量$\mathrm{NO}_3^{-}$ content/(mg·L-1) | 0.09±0.01 d | 2.71±0.01 a | 1.10±0.07 b | 0.54±0.03 c |
$\mathrm{SO}_4^{2-}$含量$\mathrm{SO}_4^{2-}$ content/(mg·L-1) | 0.46±0.01 d | 8.76±0.25 c | 36.28±0.52 b | 126.18±7.35 a |
K含量K content/(mg·L-1) | 8.9±0.1 d | 10.9±0.2 c | 11.8±0.1 b | 60.5±0.6 a |
Na含量Na content/(mg·L-1) | 72±1 c | 178±1 b | 179±2 b | 195±1 a |
Ca含量Ca content/(mg·L-1) | 25.5±1.3 d | 46.2±1.2 b | 31.5±0.8 c | 161.6±3.4 a |
Mg含量Mg content/(mg·L-1) | 7.7±0.1 d | 14.4±0 b | 13.7±0.1 c | 23.9±0.2 a |
Fe含量Fe content/(mg·L-1) | — | — | — | 8.90±0.84 |
Cu含量Cu content/(mg·L-1) | — | — | — | 0.63±0.02 |
Zn含量Zn content/(mg·L-1) | — | — | — | 4.25±0.04 |
Pb含量Pb content/(mg·L-1) | — | — | — | 0.02±0.01 |
表1 各水样的水质参数
Table 1 Water quality parameters of water samples
参数Parameter | UW | IW | PW | MW |
---|---|---|---|---|
Tur/NTU | 0.1±0.1 c | 0.7±0.1 b | 0.7±0.1 b | 43.5±1.3 a |
CODCr/(mg·L-1) | — | 49±3 b | 53±5 b | 430±14 a |
CODMn/(mg·L1) | 5.37±0.20 | — | — | — |
NH3-N含量NH3-N content/(mg·L-1) | 1.1±0.1 c | 6.9±0.2 b | 3.9±0.1 b | 46.7±0.8 a |
总磷含量Total P content/(mg·L-1) | 0.03±0.01 c | 0.95±0.03 b | 1.06±0.03 b | 19.69±0.11 a |
$\mathrm{NO}_3^{-}$含量$\mathrm{NO}_3^{-}$ content/(mg·L-1) | 0.09±0.01 d | 2.71±0.01 a | 1.10±0.07 b | 0.54±0.03 c |
$\mathrm{SO}_4^{2-}$含量$\mathrm{SO}_4^{2-}$ content/(mg·L-1) | 0.46±0.01 d | 8.76±0.25 c | 36.28±0.52 b | 126.18±7.35 a |
K含量K content/(mg·L-1) | 8.9±0.1 d | 10.9±0.2 c | 11.8±0.1 b | 60.5±0.6 a |
Na含量Na content/(mg·L-1) | 72±1 c | 178±1 b | 179±2 b | 195±1 a |
Ca含量Ca content/(mg·L-1) | 25.5±1.3 d | 46.2±1.2 b | 31.5±0.8 c | 161.6±3.4 a |
Mg含量Mg content/(mg·L-1) | 7.7±0.1 d | 14.4±0 b | 13.7±0.1 c | 23.9±0.2 a |
Fe含量Fe content/(mg·L-1) | — | — | — | 8.90±0.84 |
Cu含量Cu content/(mg·L-1) | — | — | — | 0.63±0.02 |
Zn含量Zn content/(mg·L-1) | — | — | — | 4.25±0.04 |
Pb含量Pb content/(mg·L-1) | — | — | — | 0.02±0.01 |
图1 各水样中细菌群落的Chao1指数和香农指数 “*”和“**”分别表示差异显著(P<0.05)和极显著(P<0.01)。
Fig.1 Chao1 index and Shannon index of bacteria in water samples “*” and “*” indicate significant difference at P<0.05 and P<0.01 level, respectively.
菌门Phylum | UW | IW | PW | MW |
---|---|---|---|---|
变形菌门Proteobacteria | 90.79 | 66.02 | 45.94 | 12.20 |
厚壁菌门Firmicutes | 2.75 | 18.36 | 12.23 | 72.03 |
放线菌门Actinobacteria | 3.50 | 4.57 | 28.42 | 3.83 |
拟杆菌门Bacteroidota | 1.00 | 3.44 | 5.07 | 6.08 |
未定义菌门 | 1.67 | 1.62 | 3.86 | 1.49 |
unidentified_Bacteria | ||||
弯曲菌门Campylobacterota | <0.01 | 2.89 | 1.09 | 0.70 |
纤细菌门Gracilibacteria | 1.25 | <0.01 | <0.01 | — |
广古菌门Euryarchaeota | 0.01 | 0.0 1 | <0.01 | 2.19 |
表2 各水样中门水平上的细菌相对丰度
Table 2 Relative abundance of bacteria at the phylum level in water samples
菌门Phylum | UW | IW | PW | MW |
---|---|---|---|---|
变形菌门Proteobacteria | 90.79 | 66.02 | 45.94 | 12.20 |
厚壁菌门Firmicutes | 2.75 | 18.36 | 12.23 | 72.03 |
放线菌门Actinobacteria | 3.50 | 4.57 | 28.42 | 3.83 |
拟杆菌门Bacteroidota | 1.00 | 3.44 | 5.07 | 6.08 |
未定义菌门 | 1.67 | 1.62 | 3.86 | 1.49 |
unidentified_Bacteria | ||||
弯曲菌门Campylobacterota | <0.01 | 2.89 | 1.09 | 0.70 |
纤细菌门Gracilibacteria | 1.25 | <0.01 | <0.01 | — |
广古菌门Euryarchaeota | 0.01 | 0.0 1 | <0.01 | 2.19 |
图5 基于典型相关分析(CCA)的水样中细菌群落和环境因子的关系 $\mathrm{NO}_3^{-}$, $\mathrm{NO}_3^{-}$含量;Na, Na含量;$\mathrm{SO}_4^{2-}$, $\mathrm{SO}_4^{2-}$含量;Ca, Ca含量;K, K含量;TP,总磷含量;Mg, Mg含量;NH3-N, NH3-N含量;Tur,浊度;CODCr,化学需氧量。
Fig.5 Influence of environmental factors on bacterial communities based on canonical correspondence analysis $\mathrm{SO}_4^{2-}$, $\mathrm{SO}_4^{2-}$ content; Na, Na content; $\mathrm{SO}_4^{2-}$, $\mathrm{SO}_4^{2-}$ content; Ca, Ca content; K, K content; TP, Total P content; Mg, Mg content; NH3-N, NH3-N content; Tur, Turbidity; CODCr, Chemical oxygen demand.
参数 Parameter | CCA1 | CCA2 | R2 | P值 P value |
---|---|---|---|---|
K含量K content | 0.475 32 | -0.879 82 | 0.967 16 | 0.008 0 |
Na含量Na content | -0.23 02 | -0.973 14 | 0.561 16 | 0.005 0 |
Ca含量Ca content | 0.511 41 | -0.859 33 | 0.991 39 | 0.000 5 |
Mg含量Mg content | 0.247 545 | -0.968 88 | 0.939 28 | 0.000 5 |
$\mathrm{SO}_4^{2-}$含量 | 0.596 55 | -0.802 57 | 0.879 73 | 0.011 0 |
$\mathrm{SO}_4^{2-}$ content | ||||
$\mathrm{NO}_3^{-}$含量 | 0.662 42 | 0.749 14 | 0.515 97 | 0.025 4 |
$\mathrm{NO}_3^{-}$ content | ||||
总磷含量 | 0.274 27 | -0.961 65 | 0.934 11 | 0.000 5 |
Total P content | ||||
CODCr | 0.429 35 | -0.903 14 | 0.963 41 | 0.008 0 |
NH3-N含量 | 0.391 81 | -0.920 05 | 0.971 83 | 0.007 0 |
Tur | 0.446 05 | -0.895 01 | 0.970 48 | 0.005 5 |
表3 环境因子对细菌群落影响的显著性分析结果
Table 3 Results of significance analysis of environmental factors to bacteria communities
参数 Parameter | CCA1 | CCA2 | R2 | P值 P value |
---|---|---|---|---|
K含量K content | 0.475 32 | -0.879 82 | 0.967 16 | 0.008 0 |
Na含量Na content | -0.23 02 | -0.973 14 | 0.561 16 | 0.005 0 |
Ca含量Ca content | 0.511 41 | -0.859 33 | 0.991 39 | 0.000 5 |
Mg含量Mg content | 0.247 545 | -0.968 88 | 0.939 28 | 0.000 5 |
$\mathrm{SO}_4^{2-}$含量 | 0.596 55 | -0.802 57 | 0.879 73 | 0.011 0 |
$\mathrm{SO}_4^{2-}$ content | ||||
$\mathrm{NO}_3^{-}$含量 | 0.662 42 | 0.749 14 | 0.515 97 | 0.025 4 |
$\mathrm{NO}_3^{-}$ content | ||||
总磷含量 | 0.274 27 | -0.961 65 | 0.934 11 | 0.000 5 |
Total P content | ||||
CODCr | 0.429 35 | -0.903 14 | 0.963 41 | 0.008 0 |
NH3-N含量 | 0.391 81 | -0.920 05 | 0.971 83 | 0.007 0 |
Tur | 0.446 05 | -0.895 01 | 0.970 48 | 0.005 5 |
图6 属水平上细菌与耐药基因的共现模式 蓝色圆圈的大小与菌属丰度成正比,红色线条代表正相关,蓝色线条代表负相关。
Fig.6 Co-occurrence patterns of antibiotic resistance genes and bacterial communities at genus level The size of blue node is proportional to the concentrations of the bacterial genera. The links in red and blue represent positive and negative associations, respectively.
[1] | 张维理, 武淑霞, 冀宏杰, 等. 中国农业面源污染形势估计及控制对策I:21世纪初期中国农业面源污染的形势估计[J]. 中国农业科学, 2004, 37(7): 1008-1017. |
ZHANG W L, WU S X, JI H J, et al. Estimation of agricultural non-point source pollution in China and the alleviating strategies I: estimation of agricultural non-point source pollution in China in early 21 century[J]. Scientia Agricultura Sinica, 2004, 37(7): 1008-1017. (in Chinese with English abstract) | |
[2] | FANG H, HAN L X, ZHANG H P, et al. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils[J]. Journal of Hazardous Materials, 2018, 357: 53-62. |
[3] | 马健, 洪文娟, 张文杰, 等. 畜禽粪便的危害及处理技术[J]. 畜牧与兽医, 2019, 51(2): 135-140. |
MA J, HONG W J, ZHANG W J, et al. Harm by and disposition of livestock and poultry manure[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(2): 135-140. (in Chinese with English abstract) | |
[4] | 卫丹, 万梅, 刘锐, 等. 嘉兴市规模化养猪场沼液水质调查研究[J]. 环境科学, 2014, 35(7): 2650-2657. |
WEI D, WAN M, LIU R, et al. Study on the quality of digested piggery wastewater in large-scale farms in Jiaxing[J]. Environmental Science, 2014, 35(7): 2650-2657. (in Chinese with English abstract) | |
[5] | CHENG W X, CHEN H, SU C, et al. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China[J]. Environment International, 2013, 61: 1-7. |
[6] | SUI Q W, ZHANG J Y, CHEN M X, et al. Distribution of antibiotic resistance genes (ARGs) in anaerobic digestion and land application of swine wastewater[J]. Environmental Pollution, 2016, 213: 751-759. |
[7] | JIA S Y, ZHANG X X, MIAO Y, et al. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water[J]. Water Research, 2017, 124: 259-268. |
[8] | FENG W, SHUM C, ZHONG M, et al. Groundwater storage changes in China from satellite gravity: an overview[J]. Remote Sensing, 2018, 10(5): 674. |
[9] | YUAN Q B, ZHAI Y F, MAO B Y, et al. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters[J]. Ecotoxicology and Environmental Safety, 2018, 161: 251-259. |
[10] | YANG Y W, LIU Z X, XING S C, et al. The correlation between antibiotic resistance gene abundance and microbial community resistance in pig farm wastewater and surrounding rivers[J]. Ecotoxicology and Environmental Safety, 2019, 182: 109452. |
[11] | LIU C, LI X H, ZHENG S N, et al. Effects of wastewater treatment and manure application on the dissemination of antimicrobial resistance around swine feedlots[J]. Journal of Cleaner Production, 2021, 280: 123794. |
[12] | WANG B, SONG L, LI W J, et al. Distribution and migration of antibiotic resistance genes, as well as their correlation with microbial communities in swine farm and its surrounding environments[J]. Environmental Pollution, 2023, 316: 120618. |
[13] | GAO F Z, ZOU H Y, WU D L, et al. Swine farming elevated the proliferation of Acinetobacter with the prevalence of antibiotic resistance genes in the groundwater[J]. Environment International, 2020, 136: 105484. |
[14] | XU X, ZHOU W D, XIE C Q, et al. Airborne bacterial communities in the poultry farm and their relevance with environmental factors and antibiotic resistance genes[J]. Science of the Total Environment, 2022, 846: 157420. |
[15] | 张智怡. ICP-AES法同时测定地表水中多种元素的含量[J]. 皮革制作与环保科技, 2023, 4(22): 54-55. |
ZHANG Z Y. Simultaneous determination of multiple elements in surface water by ICP-AES[J]. Leather Manufacture and Environmental Technology, 2023, 4(22): 54-55. (in Chinese with English abstract) | |
[16] | 张庆利, 史学正, 黄标, 等. 南京东郊蔬菜种植基地地表水氮、磷、重金属含量及影响因素[J]. 农村生态环境, 2004, 20(4): 56-59. |
ZHANG Q L, SHI X Z, HUANG B, et al. Concentrations of nitrogen, phosphorus, heavy metals and their affecting factors in the surface water of peri-urban vegetable bases of Nanjing City[J]. Rural Eco-environment, 2004, 20(4): 56-59. (in Chinese with English abstract) | |
[17] | ZHAO Y, LI J W, LIU Q Y, et al. Fast start-up and stable operation of mainstream anammox without inoculation in an A2/O process treating low COD/N real municipal wastewater[J]. Water Research, 2023, 231: 119598. |
[18] | LESAULNIER C C, HERBOLD C W, PELIKAN C, et al. Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters[J]. Microbiome, 2017, 5(1): 126. |
[19] | KASALICKÝ V, ZENG Y H, PIWOSZ K, et al. Aerobic anoxygenic photosynthesis is commonly present within the genus Limnohabitans[J]. Applied and Environmental Microbiology, 2017, 84(1): e02116-e02117. |
[20] | EILERS K G, LAUBER C L, KNIGHT R, et al. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil[J]. Soil Biology and Biochemistry, 2010, 42(6): 896-903. |
[21] | 李垒, 孟庆义, 叶飞, 等. 密云水库入库河流水体总细菌和反硝化菌群落组成与结构[J]. 水生态学杂志, 2018, 39(6): 44-51. |
LI L, MENG Q Y, YE F, et al. Microbial community structures of total bacteria and denitrifying bacteria in the tributaries of Miyun Reservoir[J]. Journal of Hydroecology, 2018, 39(6): 44-51. (in Chinese with English abstract) | |
[22] | WADA M, ZHANG D, DO H K, et al. Co-inoculation of Capitella sp. I with its synergistic bacteria enhances degradation of organic matter in organically enriched sediment below fish farms[J]. Marine Pollution Bulletin, 2008, 57(1/2/3/4/5): 86-93. |
[23] | ZHOU Y Q, ZHANG J J, WANG L, et al. Characterization of the bacterial community in the ecosystem of sea cucumber (Apostichopus japonicus) culture ponds: correlation and specificity in multiple media[J]. Water, 2022, 14(9): 1386. |
[24] | YU H, FENG S B, QIU H S, et al. Interaction between the hydrochemical environment, dissolved organic matter, and microbial communities in groundwater: a case study of a vegetable cultivation area in Huaibei Plain, China[J]. Science of the Total Environment, 2023, 895: 165166. |
[25] | 薛银刚, 刘菲, 孙萌, 等. 太湖竺山湾春季浮游细菌群落结构及影响因素[J]. 环境科学, 2018, 39(3): 1151-1158. |
XUE Y G, LIU F, SUN M, et al. Community structure and influencing factors of bacterioplankton in spring in Zhushan Bay, Lake Taihu[J]. Environmental Science, 2018, 39(3): 1151-1158. (in Chinese with English abstract) | |
[26] | HUANG Z J, KONG F L, LI Y, et al. Advanced treatment of effluent from municipal wastewater treatment plant by strengthened ecological floating bed[J]. Bioresource Technology, 2020, 309: 123358. |
[27] | NAVARRO-NOYA Y E, SUÁREZ-ARRIAGA M C, ROJAS-VALDES A, et al. Pyrosequencing analysis of the bacterial community in drinking water wells[J]. Microbial Ecology, 2013, 66(1): 19-29. |
[28] | ZHENG M M, SHAO S S, CHEN Y Z, et al. Metagenomics analysis of microbial community distribution in large-scale and step-by-step purification system of swine wastewater[J]. Environmental Pollution, 2022, 313: 120137. |
[29] | CHEN Q Q, WANG J P, ZHANG H F, et al. Microbial community and function in nitrogen transformation of ectopic fermentation bed system for pig manure composting[J]. Bioresource Technology, 2021, 319: 124155. |
[30] | LI B Y, XIA Z Y, GOU M, et al. Production of volatile fatty acid from fruit waste by anaerobic digestion at high organic loading rates: performance and microbial community characteristics[J]. Bioresource Technology, 2022, 346: 126648. |
[31] | SUI Q W, JIANG C, YU D W, et al. Performance of a sequencing-batch membrane bioreactor (SMBR) with an automatic control strategy treating high-strength swine wastewater[J]. Journal of Hazardous Materials, 2018, 342: 210-219. |
[32] | LIANG C Y, WEI D, ZHANG S Y, et al. Removal of antibiotic resistance genes from swine wastewater by membrane filtration treatment[J]. Ecotoxicology and Environmental Safety, 2021, 210: 111885. |
[33] | 李中浤, 杜彩丽, 陈素华, 等. 一体化A-2/O-MBR系统中抗性基因分布及去除效果研究[J]. 中国环境科学, 2021, 41(9): 4135-4141. |
LI Z H, DU C L, CHEN S H, et al. Study on the distribution and removal effect of resistance genes in integrated system of A2/O-MBR[J]. China Environmental Science, 2021, 41(9): 4135-4141. (in Chinese with English abstract) | |
[34] | LIU H, LI Z Q, QIANG Z M, et al. The elimination of cell-associated and non-cell-associated antibiotic resistance genes during membrane filtration processes: a review[J]. Science of the Total Environment, 2022, 833: 155250. |
[35] | 苏志国, 张衍, 代天娇, 等. 环境中抗生素抗性基因与Ⅰ型整合子的研究进展[J]. 微生物学通报, 2018, 45(10): 2217-2233. |
SU Z G, ZHANG Y, DAI T J, et al. Antibiotic resistance genes and class 1 integron in the environment: research progress[J]. Microbiology China, 2018, 45(10): 2217-2233. (in Chinese with English abstract) | |
[36] | GUO M T, YUAN Q B, YANG J. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater[J]. Environmental Science & Technology, 2015, 49(9): 5771-5778. |
[37] | ENGERING A, HOGERWERF L, SLINGENBERGH J. Pathogen-host-environment interplay and disease emergence[J]. Emerging Microbes & Infections, 2013, 2(2): e5. |
[38] | LIU J Y, GU J, WANG X J, et al. Evaluating the effects of coal gasification slag on the fate of antibiotic resistant genes and mobile genetic elements during anaerobic digestion of swine manure[J]. Bioresource Technology, 2019, 271: 24-29. |
[39] | ZHANG R J, WANG X M, ALI A, et al. Single-step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ 3 via facultative anaerobic microbially induced calcium precipitation: kinetics, mechanism, and characterization[J]. Bioresource Technology, 2022, 361: 127707. |
[40] | ZHOU G X, QIU X W, WU X Y, et al. Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite[J]. Journal of Hazardous Materials, 2021, 408: 124883. |
[41] | WANG Q Z, GU J, WANG X J, et al. Effects of nano-zerovalent iron on antibiotic resistance genes and mobile genetic elements during swine manure composting[J]. Environmental Pollution, 2020, 258: 113654. |
[42] | WEN Q X, YANG L, ZHAO Y Q, et al. Insight into effects of antibiotics on reactor performance and evolutions of antibiotic resistance genes and microbial community in a membrane reactor[J]. Chemosphere, 2018, 197: 420-429. |
[1] | 朱小梅, 邢锦城, 洪立洲, 王建红, 刘冲, 董静, 孙果丽, 何苏南. 不同施氮处理下黑麦草翻压还田对滩涂盐渍土碳氮与细菌群落结构的影响[J]. 浙江农业学报, 2025, 37(1): 159-168. |
[2] | 王静鸽, 吉小凤, 吴静, 杨华, 唐标, 丁保安. 磺胺间甲氧嘧啶对蛋鸡粪便菌群结构的影响[J]. 浙江农业学报, 2022, 34(2): 284-292. |
[3] | 张珏锋, 俞叶飞, 李芳, 钟海英, 陈建明. 采用MiSeq测序技术分析3种飞虱中肠内容物的菌群结构[J]. 浙江农业学报, 2020, 32(12): 2192-2200. |
[4] | 杨华, 马艳, 刘秀婷, 吕文涛, 卢立志, 肖英平. 即食鸭制品大肠埃希菌污染状况、毒力基因和耐药特征分析[J]. 浙江农业学报, 2020, 32(10): 1841-1848. |
[5] | 常江, 罗怡, 唐标, 张玲, 戴贤君, 裘罕琦, 杨华, 夏效东. 一株分离自鸡肉样品的多重耐药大肠埃希菌的全基因组测序及耐药性研究[J]. 浙江农业学报, 2019, 31(8): 1249-1256. |
[6] | 彭珂楠, 周雪珂, 殷鑫欢, 李飞, 蔡瑶, 曾喻兵, 江朝源, 张儒博, 杨泽晓, 徐志文, 朱玲. 四川地区猪源致病性大肠埃希菌分子分群、生物被膜形成能力及耐药性研究[J]. 浙江农业学报, 2019, 31(10): 1599-1607. |
[7] | 王佩佩, 杨华, 戴贤君, 桂国弘, 肖英平. 家禽屠宰场环境和屠宰器械表面微生物菌群结构和耐药基因分析[J]. 浙江农业学报, 2018, 30(7): 1249-1258. |
[8] | 朱凝瑜, 郑晓叶, 曹飞飞, 李杨阳, 郑天伦. 鳖源嗜水气单胞菌的耐药性研究[J]. 浙江农业学报, 2017, 29(9): 1445-1450. |
[9] | 蒙正群, 冷依伊, 任梅渗, 刘亚东, 王印, 姚学萍, 杨泽晓. 一株牛源肺炎克雷伯氏菌的分离鉴定与耐药基因型检测[J]. 浙江农业学报, 2017, 29(4): 534-541. |
[10] | 何祥祥, 杨华, 戴宝玲, 夏效东, 肖英平. 冷鲜鸡污染微生物磺胺类和喹诺酮类耐药基因分析[J]. 浙江农业学报, 2017, 29(4): 555-559. |
[11] | 王信, 程亮. 青藏高原5种类型土壤细菌群落结构差异[J]. 浙江农业学报, 2017, 29(11): 1882-1889. |
[12] | 赵佩文, 王新, 吴逸飞, 姚晓红, 柳永, 孙宏, 葛向阳, 汤江武. 不同碳源促进污染水体氮素转化的微生态过程[J]. 浙江农业学报, 2016, 28(11): 1915-1921. |
[13] | 马小雪,王腊春*. 引江调水对平原河网区水环境质量的影响[J]. 浙江农业学报, 2015, 27(6): 1048-. |
[14] | 张振兴1,2,张文钊1,杨会翠1,2,陈春兰1,魏文学1,*. 水稻分蘖期根系对根际细菌丰度和群落结构的影响[J]. 浙江农业学报, 2015, 27(12): 2045-. |
[15] | 陈海涛. 太湖流域近20年水环境承载力动态评价[J]. 浙江农业学报, 2015, 27(12): 2186-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||