浙江农业学报 ›› 2025, Vol. 37 ›› Issue (8): 1817-1824.DOI: 10.3969/j.issn.1004-1524.20240115
• 综述 • 上一篇
收稿日期:2024-01-30
									
				
									
				
									
				
											出版日期:2025-08-25
									
				
											发布日期:2025-09-03
									
			作者简介:刘岩(1976—),女,河南焦作人,博士,副研究员,主要从事桑树遗传育种研究。E-mail:mayanly@sina.com
				
							通讯作者:
					*吕志强,E-mail:13958131715@139.com
							基金资助:
        
               		LIU Yan(
), LIN Tianbao, LYU Zhiqiang(
)
			  
			
			
			
                
        
    
Received:2024-01-30
									
				
									
				
									
				
											Online:2025-08-25
									
				
											Published:2025-09-03
									
			Contact:
					LYU Zhiqiang   
							摘要:
棉子糖家族寡糖(RFOs)是植物重要碳水化合物贮运成分,肌醇半乳糖苷合成酶(GolS)作为RFOs生物合成的关键限速酶,参与影响碳储存、韧皮部运输、渗透调节及逆境信号传导,在生长发育和逆境胁迫响应中也发挥重要作用。本文结合近些年国内外关于植物肌醇半乳糖苷合成酶基因家族特性、生物学功能等研究近况,阐述GolS家族基因在影响植物同化物运输、种子发育、生物及非生物胁迫响应中的作用,分析未来可进一步探究GolS基因的表达调控机制,挖掘其在作物品种改良和抗逆育种中的应用潜力,为农业生产提供理论支持和技术参考。
中图分类号:
刘岩, 林天宝, 吕志强. 植物肌醇半乳糖苷合成酶家族基因功能的研究进展[J]. 浙江农业学报, 2025, 37(8): 1817-1824.
LIU Yan, LIN Tianbao, LYU Zhiqiang. Research progress on the function of galactinol synthase gene family in plants[J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1817-1824.
| [1] | PETERBAUER T, RICHTER A. Biochemistry and physiology of raffinose family oligosaccharides and galactosyl cyclitols in seeds[J]. Seed Science Research, 2001, 11: 185-197. | 
| [2] | CASTILLO E M, DE LUMEN B O, REYES P S, et al. Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes[J]. Journal of Agricultural and Food Chemistry, 1990, 38(2): 351-355. | 
| [3] | AYRE B G, KELLER F, TURGEON R. Symplastic continuity between companion cells and the translocation stream: long-distance transport is controlled by retention and retrieval mechanisms in the phloem[J]. Plant Physiology, 2003, 131(4): 1518-1528. | 
| [4] | SHEEN J, ZHOU L, JANG J C. Sugars as signaling molecules[J]. Current Opinion in Plant Biology, 1999, 2(5): 410-418. | 
| [5] | SENGUPTA S, MUKHERJEE S, BASAK P, et al. Significance of galactinol and raffinose family oligosaccharide synthesis in plants[J]. Frontiers in Plant Science, 2015, 6: 656. | 
| [6] | 张古文, 胡齐赞, 徐盛春, 等. 菜用大豆籽粒发育过程中蔗糖积累及相关酶活性的研究[J]. 浙江农业学报, 2012, 24(6): 1015-1020. | 
| ZHANG G W, HU Q Z, XU S C, et al. Study on sucrose accumulation and enzyme activities involved in sucrose metabolism in developing seeds of vegetable soybean[J]. Acta Agriculturae Zhejiangensis, 2012, 24(6): 1015-1020. (in Chinese with English abstract) | |
| [7] | SENGUPTA S, MUKHERJEE S, PARWEEN S, et al. Galactinol synthase across evolutionary diverse taxa: Functional preference for higher plants?[J]. FEBS Letters, 2012, 586(10): 1488-1496. | 
| [8] | YIN Y B, CHEN H L, HAHN M G, et al. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8[J]. Plant Physiology, 2010, 153(4): 1729-1746. | 
| [9] | DAI H, ZHU Z, WANG Z, et al. Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation[J]. Horticulture Research, 2022, 9: uhab063. | 
| [10] | TAJI T, OHSUMI C, IUCHI S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal, 2002, 29(4): 417-426. | 
| [11] | YOU J, WANG Y Y, ZHANG Y J, et al. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame[J]. Scientific Reports, 2018, 8(1): 4331. | 
| [12] | FALAVIGNA V D S, PORTO D D, MIOTTO Y E, et al. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy[J]. Journal of Experimental Botany, 2018, 69(5): 1247-1259. | 
| [13] | FAN Y H, YU M N, LIU M, et al. Genome-wide identification, evolutionary and expression analyses of the GALACTINOL SYNTHASE gene family in rapeseed and tobacco[J]. International Journal of Molecular Sciences, 2017, 18(12): 2768. | 
| [14] | ZHOU J, YANG Y, YU J, et al. Responses of Populus trichocarpa galactinol synthase genes to abiotic stresses[J]. Journal of Plant Research, 2014, 127(2): 347-358. | 
| [15] | JING Q K, CHEN A R, LV Z Y, et al. Systematic analysis of galactinol synthase and raffinose synthase gene families in potato and their expression patterns in development and abiotic stress responses[J]. Genes, 2023, 14(7): 1344. | 
| [16] | ZHOU Y, LIU Y, WANG S S, et al. Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors[J]. Journal of Agricultural and Food Chemistry, 2017, 65(13): 2751-2759. | 
| [17] | HANNAH M A, ZUTHER E, BUCHEL K, et al. Transport and metabolism of raffinose family oligosaccharides in transgenic potato[J]. Journal of Experimental Botany, 2006, 57(14): 3801-3811. | 
| [18] | MCCASKILL A, TURGEON R. Phloem loading in Verbascum phoeniceum L. depends on the synthesis of raffinose-family oligosaccharides[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49): 19619-19624. | 
| [19] | MA S, SUN L L, SUI X L, et al. Phloem loading in cucumber: combined symplastic and apoplastic strategies[J]. The Plant Journal, 2019, 98(3): 391-404. | 
| [20] | 韦玉霞. 园艺作物中棉子糖系列寡糖(RFO)研究进展[J]. 园艺与种苗, 2017, 37(9): 46-48. | 
| WEI Y X. Research progress of raffinose family oligosaccharides(RFO) in horticultural crops[J]. Horticulture & Seed, 2017, 37(9): 46-48. (in Chinese with English abstract) | |
| [21] | 张瑞腾, 吕建春, 周梦迪, 等. 甜瓜肌醇半乳糖苷合成酶基因CmGAS1的表达与功能分析[J]. 园艺学报, 2018, 45(10): 1929-1940. | 
| ZHANG R T, LÜ J C, ZHOU M D, et al. Expression and function analysis of CmGAS1 in melon[J]. Acta Horticulturae Sinica, 2018, 45(10): 1929-1940. (in Chinese with English abstract) | |
| [22] | JING Y, LANG S R, WANG D M, et al. Functional characterization of galactinol synthase and raffinose synthase in desiccation tolerance acquisition in developing Arabidopsis seeds[J]. Journal of Plant Physiology, 2018, 230: 109-121. | 
| [23] | LI X, ZHUO J J, JING Y, et al. Expression of a GALACTINOL SYNTHASE gene is positively associated with desiccation tolerance of Brassica napus seeds during development[J]. Journal of Plant Physiology, 2011, 168(15): 1761-1770. | 
| [24] | SALVI P, SAXENA S C, PETLA B P, et al. Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation[J]. Scientific Reports, 2016, 6: 35088. | 
| [25] | LE H, NGUYEN N H, TA D T, et al. CRISPR/Cas9-mediated knockout of galactinol synthase-encoding genes reduces raffinose family oligosaccharide levels in soybean seeds[J]. Frontiers in Plant Science, 2020, 11: 612942. | 
| [26] | GANGOLA M P, JAISWAL S, KANNAN U, et al. Galactinol synthase enzyme activity influences raffinose family oligosaccharides (RFO) accumulation in developing chickpea (Cicer arietinum L.) seeds[J]. Phytochemistry, 2016, 125: 88-98. | 
| [27] | JANG J H, SHANG Y, KANG H K, et al. Arabidopsis galactinol synthases 1 (AtGOLS1) negatively regulates seed germination[J]. Plant Science, 2018, 267: 94-101. | 
| [28] | UNDA F, KIM H, HEFER C, et al. Altering carbon allocation in hybrid poplar (Populus alba × grandidentata) impacts cell wall growth and development[J]. Plant Biotechnology Journal, 2017, 15(7): 865-878. | 
| [29] | 范洁. 木薯肌醇半乳糖苷合成酶基因MeGolS5的抗旱功能研究[D]. 海口: 海南大学, 2015. | 
| FAN J. Study on drought resistance of cassava inositol galactoside synthase gene MeGolS5[D]. Haikou: Hainan University, 2015. (in Chinese with English abstract) | |
| [30] | 张军, 邱爽, 何佳琦, 等. 大豆GmGolS基因植物表达载体构建及烟草遗传转化[J]. 齐齐哈尔大学学报(自然科学版), 2020, 36(6): 22-25. | 
| ZHANG J, QIU S, HE J Q, et al. Plant expression vector construction and tobacco genetic transformation of soybean GmGolS gene[J]. Journal of Qiqihar University(Natural Science Edition), 2020, 36(6): 22-25. (in Chinese with English abstract) | |
| [31] | 刘爱丽, 魏梦园, 黎冬华, 等. 芝麻肌醇半乳糖苷合成酶基因SiGolS6的克隆及功能分析[J]. 中国农业科学, 2020, 53(17): 3432-3442. | 
| LIU A L, WEI M Y, LI D H, et al. Cloning and function analysis of sesame galactinol synthase gene SiGolS6 in Arabidopsis[J]. Scientia Agricultura Sinica, 2020, 53(17): 3432-3442. (in Chinese with English abstract) | |
| [32] | SHIKAKURA Y, OGUCHI T, YU X, et al. Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field[J]. Transgenic Research, 2022, 31(4): 579-591. | 
| [33] | SELVARAJ M G, ISHIZAKI T, VALENCIA M, et al. Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field[J]. Plant Biotechnology Journal, 2017, 15(11): 1465-1477. | 
| [34] | LIU Y D, ZHANG L, CHEN L J, et al. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus[J]. Scientific Reports, 2016, 6: 36113. | 
| [35] | 孙海伟. 沙冬青肌醇半乳糖苷合成酶(AmGS)基因转化类茶植物红叶石楠的研究[D]. 泰安: 山东农业大学, 2012. | 
| SUN H W. Study on transformation of ammopiptanthus mongolicus galactosidase (AmGS) gene into tea-like plant Photinia rubra[D]. Taian: Shandong Agricultural University, 2012. (in Chinese with English abstract) | |
| [36] | SONG J, LIU J, WENG M L, et al. Cloning of galactinol synthase gene from Ammopiptanthus mongolicus and its expression in transgenic Photinia serrulata plants[J]. Gene, 2013, 513(1): 118-127. | 
| [37] | 王海波, 邹竹荣, 龚明. 小桐子肌醇半乳糖苷合成酶3的基因克隆及其生物信息学分析和功能初步验证[J]. 生物技术通报, 2015, 31(7): 91-100. | 
| WANG H B, ZOU Z R, GONG M. Gene cloning, bioinformatic analysis and preliminary functional characterization of gene encoding galactinol synthase 3 in Jatropha curcas[J]. Biotechnology Bulletin, 2015, 31(7): 91-100. (in Chinese with English abstract) | |
| [38] | 贺飞燕, 徐建飞, 简银巧, 等. 过表达肌醇半乳糖苷合成酶基因(ScGolS1)提高转基因马铃薯的耐寒性[C]// 马铃薯产业与种业创新(2022)专题资料汇编, 2022:261-262. | 
| [39] | SHIMOSAKA E, OZAWA K. Overexpression of cold-inducible wheat galactinol synthase confers tolerance to chilling stress in transgenic rice[J]. Breeding Science, 2015, 65(5): 363-371. | 
| [40] | ZUTHER E, BÜCHEL K, HUNDERTMARK M, et al. The role of raffinose in the cold acclimation response of Arabidopsis thaliana[J]. FEBS Letters, 2004, 576(1/2): 169-173. | 
| [41] | 赵小萌. 棉子糖寡糖提高番茄幼苗高温抗性的作用研究[D]. 沈阳: 沈阳农业大学, 2019. | 
| ZHAO X M. Effect of raffinose oligosaccharide on improving high temperature resistance of tomato seedlings[D]. Shenyang: Shenyang Agricultural University, 2019. (in Chinese with English abstract) | |
| [42] | 靳娟, 刘晶, 杨磊, 等. 酸枣肌醇半乳糖苷合成酶ZjGolS2基因的克隆及表达分析[J]. 分子植物育种, 2021, 19(13): 4327-4333. | 
| JIN J, LIU J, YANG L, et al. Cloning and expression analysis of ZjGolS2 in wild jujube(Ziziphus jujuba Mill.var.Spinosa)[J]. Molecular Plant Breeding, 2021, 19(13): 4327-4333. (in Chinese with English abstract) | |
| [43] | 沈阳, 贾博为, 王金玉, 等. 拟南芥肌醇半乳糖苷酶AtGolS2基因在非生物胁迫应答中的功能分析[J]. 分子植物育种, 2021, 19(11): 3588-3597. | 
| SHEN Y, JIA B W, WANG J Y, et al. Functional analysis of Arabidopsis thaliana galactinol synthase AtGolS2 in response to abiotic stress[J]. Molecular Plant Breeding, 2021, 19(11): 3588-3597. (in Chinese with English abstract) | |
| [44] | SUN Z B, QI X Y, WANG Z L, et al. Overexpression of TsGOLS2, a galactinol synthase, in Arabidopsis thaliana enhances tolerance to high salinity and osmotic stresses[J]. Plant Physiology and Biochemistry, 2013, 69: 82-89. | 
| [45] | KONG W L, GONG Z Y, ZHONG H, et al. Expansion and evolutionary patterns of glycosyltransferase family 8 in Gramineae crop genomes and their expression under salt and cold stresses in Oryza sativa ssp. japonica[J]. Biomolecules, 2019, 9(5): 188. | 
| [46] | LI N, ZHANG Z H, CHEN Z J, et al. Comparative transcriptome analysis of two contrasting Chinese cabbage (Brassica rapa L.) genotypes reveals that ion homeostasis is a crucial biological pathway involved in the rapid adaptive response to salt stress[J]. Frontiers in Plant Science, 2021, 12: 683891. | 
| [47] | MARTINS C P S, FERNANDES D, GUIMARÃES V M, et al. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS 6 in stress tolerance[J]. PLoS One, 2022, 17(9): e0274791. | 
| [48] | WANG Y G, LIU H H, WANG S P, et al. Overexpression of a common wheat gene GALACTINOL SYNTHASE3 enhances tolerance to zinc in Arabidopsis and rice through the modulation of reactive oxygen species production[J]. Plant Molecular Biology Reporter, 2016, 34(4): 794-806. | 
| [49] | SALVI P, KAMBLE N U, MAJEE M. Stress-inducible galactinol synthase of chickpea (CaGolS) is implicated in heat and oxidative stress tolerance through reducing stress-induced excessive reactive oxygen species accumulation free[J]. Plant and Cell Physiology, 2018, 59(1): 155-166. | 
| [50] | VINSON C C, MOTA A P Z, PORTO B N, et al. Characterization of raffinose metabolism genes uncovers a wild Arachis galactinol synthase conferring tolerance to abiotic stresses[J]. Scientific Reports, 2020, 10(1): 15258. | 
| [51] | KIM M S, CHO S M, KANG E Y, et al. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization[J]. Molecular Plant-Microbe Interactions, 2008, 21(12): 1643-1653. | 
| [52] | WANG D H, LIU Z X, QIN Y, et al. Mulberry MnGolS2 mediates resistance to Botrytis cinerea on transgenic plants[J]. Genes, 2023, 14(10): 1912. | 
| [53] | PHILIPPE R N, RALPH S G, MANSFIELD S D, et al. Transcriptome profiles of hybrid poplar (Populus trichocarpa×deltoides) reveal rapid changes in undamaged, systemic sink leaves after simulated feeding by forest tent caterpillar (Malacosoma disstria)[J]. New Phytologist, 2010, 188(3): 787-802. | 
| [54] | CAO T, LAHIRI I, SINGH V, et al. Metabolic engineering of raffinose-family oligosaccharides in the phloem reveals alterations in carbon partitioning and enhances resistance to green peach aphid[J]. Frontiers in Plant Science, 2013, 4: 263. | 
| [55] | TAKANASHI K, SHITAN N, SUGIYAMA A, et al. Galactinol synthase gene of Coptis japonica is involved in berberine tolerance[J]. Bioscience, Biotechnology, and Biochemistry , 2008, 72(2): 398-405. | 
| [56] | SPRENGER N, KELLER F. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases[J]. The Plant Journal, 2000, 21(3): 249-258. | 
| [57] | HINCHA D K, ZUTHER E, HEYER A G. The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions[J]. Biochimica et Biophysica Acta, 2003, 1612(2): 172-177. | 
| [58] | PANIKULANGARA T J, EGGERS-SCHUMACHER G, WUNDERLICH M, et al. Galactinol synthase1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis[J]. Plant Physiology, 2004, 136(2): 3148-3158. | 
| [59] | WANG Z, ZHU Y, WANG L L, et al. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter[J]. Planta, 2009, 230(6): 1155-1166. | 
| [1] | 王忠, 杨洪兵, 杨帆, 陈亦凡, 侯晓敏. 细胞膜透性Δ电导率量化检测法研究初探[J]. 浙江农业学报, 2025, 37(6): 1344-1352. | 
| [2] | 曾洪学, 屈兴红. 低温胁迫对3份葛种质萌发过程中脯氨酸和抗坏血酸-谷胱甘肽循环代谢的影响[J]. 浙江农业学报, 2024, 36(7): 1558-1568. | 
| [3] | 牛钰, 李晶, 王俊文, 李瑞瑞, 田强, 武玥, 郁继华. 高等植物花青素生物合成、调控、生物活性及其检测的研究进展[J]. 浙江农业学报, 2024, 36(4): 978-996. | 
| [4] | 田晓明, 向光锋, 牟村, 吕浩, 马涛, 朱路, 彭静, 张敏, 何艳. 四种红豆属植物耐旱性综合评价[J]. 浙江农业学报, 2024, 36(2): 308-324. | 
| [5] | 莘晓月, 刘鹏. 激素调控种子休眠与萌发分子机制研究进展[J]. 浙江农业学报, 2023, 35(6): 1485-1496. | 
| [6] | 冯金林, 席晓宇, 赵世凤. 拟南芥N末端乙酰转移酶Naa50参与调控根细胞有丝分裂[J]. 浙江农业学报, 2022, 34(12): 2603-2609. | 
| [7] | 朱森林, 梅忠, 邢承华. 缺磷抑制拟南芥对镉的吸收[J]. 浙江农业学报, 2020, 32(5): 804-809. | 
| [8] | 郭妮, 刘亚敏, 周文颖, 刘玉民, 张盛楠. 外源草酸缓解马尾松根系铝毒[J]. 浙江农业学报, 2019, 31(7): 1086-1095. | 
| [9] | 李明雨, 王焱, 梁丹妮, 姚亚妮, 兰剑. 22份苜蓿种质萌发期耐盐性综合评价[J]. 浙江农业学报, 2019, 31(5): 746-755. | 
| [10] | 叶子飘, 尹建华, 陈先茂, 安婷, 段世华. 几个杂交水稻品种蜡熟期剑叶光合特性研究[J]. 浙江农业学报, 2019, 31(3): 355-364. | 
| [11] | 林义成, 傅庆林, 郭彬, 刘琛, 丁能飞. 盐胁迫对红叶石楠花青素含量及抗氧化系统的影响[J]. 浙江农业学报, 2018, 30(6): 970-977. | 
| [12] | 何雄, 肖尚月, 金图南, 罗海波, 孙金才. 鲜切竹笋伤害信号的初步研究[J]. 浙江农业学报, 2018, 30(6): 992-998. | 
| [13] | 张趁华, 郑红英, 严丹侃, 韩科雷, 彭杰军, 鲁宇文, 林林, 章东方, 陈剑平, 燕飞. 侵染蚕豆ClYVV的鉴定及其衍生的小干扰RNA的深度测序鉴定研究[J]. 浙江农业学报, 2018, 30(3): 406-412. | 
| [14] | 董静, 邢锦城, 洪立洲, 王茂文, 朱小梅, 刘冲, 温祝桂, 赵宝泉, 丁海荣. NaCl胁迫对马齿苋幼苗生长及体内离子分布的影响[J]. 浙江农业学报, 2017, 29(2): 236-243. | 
| [15] | 李冬月, 原文霞, 郑超, 王栩鸣, 周洁, 严成其, 陈剑平. bZIP转录因子在植物激素介导的抗病抗逆途径中的作用[J]. 浙江农业学报, 2017, 29(1): 168-175. | 
| 阅读次数 | ||||||
| 
												        	全文 | 
											        	
												        	 | 
													|||||
| 
												        	摘要 | 
												        
															 | 
													|||||