Acta Agriculturae Zhejiangensis ›› 2020, Vol. 32 ›› Issue (12): 2211-2217.DOI: 10.3969/j.issn.1004-1524.2020.12.12
• Quality and Safety of Agriculturel Products • Previous Articles Next Articles
YU Xinru(), HE Hongmei, WANG Xiangyun, LI Yanjie, XU Lingying, ZHAO Xueping, ZHANG Changpeng*(
)
Received:
2020-05-14
Online:
2020-12-25
Published:
2020-12-25
Contact:
ZHANG Changpeng
CLC Number:
YU Xinru, HE Hongmei, WANG Xiangyun, LI Yanjie, XU Lingying, ZHAO Xueping, ZHANG Changpeng. Deposition and residue of acetamiprid under protected celery cultivation[J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2211-2217.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2020.12.12
样品 Sample | 添加水平 Spike level/(mg·kg-1) | 回收率Recovery/% | 平均回收率 Average recovery/% | 相对标准偏差 RSD/% | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
芹菜叶 | 0.05 | 107.2 | 104.2 | 99.2 | 95.2 | 98.0 | 104.7 | 101.4 | 4.6 |
Celery leaf | 0.10 | 101.4 | 100.4 | 107.5 | 105.2 | 93.8 | 93.1 | 100.2 | 5.8 |
1.00 | 103.5 | 112.0 | 97.1 | 98.8 | 93.3 | 110.4 | 102.5 | 7.3 | |
芹菜茎 | 0.05 | 81.1 | 81.2 | 83.8 | 87.3 | 81.9 | 88.3 | 83.9 | 3.7 |
Celery stem | 0.10 | 82.2 | 89.6 | 95.7 | 87.9 | 105.0 | 100.7 | 93.5 | 9.1 |
1.00 | 87.2 | 96.2 | 92.8 | 92.5 | 90.2 | 99.2 | 93.0 | 4.6 | |
芹菜根 | 0.05 | 106.5 | 98.2 | 93.6 | 94.5 | 93.5 | 98.3 | 97.4 | 5.0 |
Celery root | 0.10 | 101.5 | 100.5 | 96.3 | 100.5 | 100.6 | 101.3 | 100.1 | 1.9 |
1.00 | 99.7 | 96.9 | 98.8 | 90.4 | 94.8 | 101.4 | 97.0 | 4.1 | |
土壤Soil | 0.02 | 85.4 | 89.6 | 92.9 | 103.8 | 89.4 | 90.7 | 92.0 | 6.8 |
0.20 | 81.2 | 80.6 | 94.9 | 97.2 | 96.3 | 94.7 | 90.8 | 8.5 | |
1.00 | 86.0 | 96.3 | 96.8 | 95.4 | 102.5 | 89.2 | 94.4 | 6.2 |
Table 1 Recoveries and relative standard deviations of acetamiprid
样品 Sample | 添加水平 Spike level/(mg·kg-1) | 回收率Recovery/% | 平均回收率 Average recovery/% | 相对标准偏差 RSD/% | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||
芹菜叶 | 0.05 | 107.2 | 104.2 | 99.2 | 95.2 | 98.0 | 104.7 | 101.4 | 4.6 |
Celery leaf | 0.10 | 101.4 | 100.4 | 107.5 | 105.2 | 93.8 | 93.1 | 100.2 | 5.8 |
1.00 | 103.5 | 112.0 | 97.1 | 98.8 | 93.3 | 110.4 | 102.5 | 7.3 | |
芹菜茎 | 0.05 | 81.1 | 81.2 | 83.8 | 87.3 | 81.9 | 88.3 | 83.9 | 3.7 |
Celery stem | 0.10 | 82.2 | 89.6 | 95.7 | 87.9 | 105.0 | 100.7 | 93.5 | 9.1 |
1.00 | 87.2 | 96.2 | 92.8 | 92.5 | 90.2 | 99.2 | 93.0 | 4.6 | |
芹菜根 | 0.05 | 106.5 | 98.2 | 93.6 | 94.5 | 93.5 | 98.3 | 97.4 | 5.0 |
Celery root | 0.10 | 101.5 | 100.5 | 96.3 | 100.5 | 100.6 | 101.3 | 100.1 | 1.9 |
1.00 | 99.7 | 96.9 | 98.8 | 90.4 | 94.8 | 101.4 | 97.0 | 4.1 | |
土壤Soil | 0.02 | 85.4 | 89.6 | 92.9 | 103.8 | 89.4 | 90.7 | 92.0 | 6.8 |
0.20 | 81.2 | 80.6 | 94.9 | 97.2 | 96.3 | 94.7 | 90.8 | 8.5 | |
1.00 | 86.0 | 96.3 | 96.8 | 95.4 | 102.5 | 89.2 | 94.4 | 6.2 |
Fig.2 Mass fraction of acetamiprid in different parts of celery and soil under protected cultivation A, B, Zhejiang; C, D, Shandong. A, C, Recommended high dose (27 g·hm-2); B, D, Recommended low dose (18 g·hm-2).
试验点 Location | 剂量 Dose/(g·hm-2) | t | 芹菜叶 Celery leaf | 芹菜茎 Celery stem | 芹菜根 Celery root | 土壤 Soil |
---|---|---|---|---|---|---|
Zhejiang | 27 | 2 h | 2.840 0±0.250 0 | 0.120 0±0.016 0 | 0.028 0±0.013 0 | 0.003 5±0.000 2 |
1 d | 4.080 0±0.610 0 | 0.100 0±0.002 9 | 0.200 0±0.032 0 | 0.001 8±0.000 5 | ||
3 d | 4.110 0±0.420 0 | 0.110 0±0.016 0 | 0.160 0±0.031 0 | — | ||
5 d | 2.910 0±0.240 0 | 0.047 0±0.002 2 | 0.084 0±0.010 0 | — | ||
7 d | 2.570 0±0.420 0 | 0.030 0±0.002 1 | 0.031 0±0.006 4 | — | ||
14 d | 2.670 0±0.320 0 | 0.011 0±0.001 1 | 0.014 0±0.001 6 | — | ||
21 d | 1.890 0±0.230 0 | 0.006 8±0.001 7 | 0.009 4±0.001 4 | — | ||
18 | 2 h | 1.160 0±0.100 0 | 0.059 0±0.004 8 | 0.039 0±0.001 3 | 0.006 0±0.000 6 | |
1 d | 1.890 0±0.310 0 | 0.072 0±0.012 0 | 0.067 0±0.005 9 | 0.000 6±0.000 1 | ||
3 d | 2.400 0±0.480 0 | 0.042 0±0.004 0 | 0.048 0±0.006 9 | 0.000 3±0.000 4 | ||
5 d | 1.580 0±0.210 0 | 0.017 0±0.001 4 | 0.017 0±0.000 2 | — | ||
7 d | 1.860 0±0.190 0 | 0.014 0±0.002 4 | 0.012 0±0.002 2 | — | ||
14 d | 1.110 0±0.210 0 | 0.002 0±0.000 1 | 0.004 5±0.000 1 | — | ||
21 d | 0.870 0±0.093 0 | 0.001 8±0.000 5 | 0.003 7±0.000 5 | — | ||
Shandong | 27 | 2 h | 1.790 0±0.200 0 | 0.046 0±0.009 0 | 0.061 0±0.003 1 | 0.000 5±0.000 1 |
1 d | 0.950 0±0.055 0 | 0.022 0±0.004 3 | 0.022 0±0.003 5 | 0.000 4±0.000 2 | ||
3 d | 0.680 0±0.078 0 | 0.016 0±0.005 7 | 0.009 2±0.000 6 | — | ||
5 d | 0.630 0±0.008 0 | 0.007 8±0.002 9 | 0.008 0±0.000 2 | — | ||
7 d | 0.420 0±0.068 0 | 0.004 7±0.000 3 | 0.005 3±0.000 2 | — | ||
14 d | 0.150 0±0.021 0 | 0.001 2±0.000 1 | 0.003 5±0.000 2 | — | ||
21 d | 0.039 0±0.018 0 | 0.000 6±0.000 1 | 0.001 7±0.000 2 | — | ||
18 | 2 h | 1.000 0±0.020 0 | 0.017 0±0.003 9 | 0.002 8±0.000 3 | 0.001 1±0.001 6 | |
1 d | 0.520 0±0.057 0 | 0.013 0±0.003 4 | 0.007 5±0.000 9 | — | ||
3 d | 0.400 0±0.045 0 | 0.004 7±0.001 4 | 0.005 9±0.001 3 | — | ||
5 d | 0.590 0±0.073 0 | 0.005 3±0.000 7 | 0.003 6±0.000 5 | — | ||
7 d | 0.330 0±0.091 0 | 0.004 7±0.000 8 | 0.003 5±0.000 9 | — | ||
14 d | 0.100 0±0.008 0 | 0.001 3±0.000 4 | 0.002 8±0.000 6 | — | ||
21 d | 0.210 0±0.081 0 | 0.000 9±0.000 1 | 0.001 7±0.000 3 | — |
Table 2 Acetamiprid residues in different parts of celery and soil under protected cultivation mg·kg-1
试验点 Location | 剂量 Dose/(g·hm-2) | t | 芹菜叶 Celery leaf | 芹菜茎 Celery stem | 芹菜根 Celery root | 土壤 Soil |
---|---|---|---|---|---|---|
Zhejiang | 27 | 2 h | 2.840 0±0.250 0 | 0.120 0±0.016 0 | 0.028 0±0.013 0 | 0.003 5±0.000 2 |
1 d | 4.080 0±0.610 0 | 0.100 0±0.002 9 | 0.200 0±0.032 0 | 0.001 8±0.000 5 | ||
3 d | 4.110 0±0.420 0 | 0.110 0±0.016 0 | 0.160 0±0.031 0 | — | ||
5 d | 2.910 0±0.240 0 | 0.047 0±0.002 2 | 0.084 0±0.010 0 | — | ||
7 d | 2.570 0±0.420 0 | 0.030 0±0.002 1 | 0.031 0±0.006 4 | — | ||
14 d | 2.670 0±0.320 0 | 0.011 0±0.001 1 | 0.014 0±0.001 6 | — | ||
21 d | 1.890 0±0.230 0 | 0.006 8±0.001 7 | 0.009 4±0.001 4 | — | ||
18 | 2 h | 1.160 0±0.100 0 | 0.059 0±0.004 8 | 0.039 0±0.001 3 | 0.006 0±0.000 6 | |
1 d | 1.890 0±0.310 0 | 0.072 0±0.012 0 | 0.067 0±0.005 9 | 0.000 6±0.000 1 | ||
3 d | 2.400 0±0.480 0 | 0.042 0±0.004 0 | 0.048 0±0.006 9 | 0.000 3±0.000 4 | ||
5 d | 1.580 0±0.210 0 | 0.017 0±0.001 4 | 0.017 0±0.000 2 | — | ||
7 d | 1.860 0±0.190 0 | 0.014 0±0.002 4 | 0.012 0±0.002 2 | — | ||
14 d | 1.110 0±0.210 0 | 0.002 0±0.000 1 | 0.004 5±0.000 1 | — | ||
21 d | 0.870 0±0.093 0 | 0.001 8±0.000 5 | 0.003 7±0.000 5 | — | ||
Shandong | 27 | 2 h | 1.790 0±0.200 0 | 0.046 0±0.009 0 | 0.061 0±0.003 1 | 0.000 5±0.000 1 |
1 d | 0.950 0±0.055 0 | 0.022 0±0.004 3 | 0.022 0±0.003 5 | 0.000 4±0.000 2 | ||
3 d | 0.680 0±0.078 0 | 0.016 0±0.005 7 | 0.009 2±0.000 6 | — | ||
5 d | 0.630 0±0.008 0 | 0.007 8±0.002 9 | 0.008 0±0.000 2 | — | ||
7 d | 0.420 0±0.068 0 | 0.004 7±0.000 3 | 0.005 3±0.000 2 | — | ||
14 d | 0.150 0±0.021 0 | 0.001 2±0.000 1 | 0.003 5±0.000 2 | — | ||
21 d | 0.039 0±0.018 0 | 0.000 6±0.000 1 | 0.001 7±0.000 2 | — | ||
18 | 2 h | 1.000 0±0.020 0 | 0.017 0±0.003 9 | 0.002 8±0.000 3 | 0.001 1±0.001 6 | |
1 d | 0.520 0±0.057 0 | 0.013 0±0.003 4 | 0.007 5±0.000 9 | — | ||
3 d | 0.400 0±0.045 0 | 0.004 7±0.001 4 | 0.005 9±0.001 3 | — | ||
5 d | 0.590 0±0.073 0 | 0.005 3±0.000 7 | 0.003 6±0.000 5 | — | ||
7 d | 0.330 0±0.091 0 | 0.004 7±0.000 8 | 0.003 5±0.000 9 | — | ||
14 d | 0.100 0±0.008 0 | 0.001 3±0.000 4 | 0.002 8±0.000 6 | — | ||
21 d | 0.210 0±0.081 0 | 0.000 9±0.000 1 | 0.001 7±0.000 3 | — |
[1] | 滕宏飞. 高效农业发展的现状及思路与对策[J]. 中国农村小康科技, 2008(4):17-21. |
TENG H F. The status quo, thinking and countermeasures of efficient agricultural development[J]. Chinese Countryside Well-Off Technology, 2008(4):17-21.(in Chinese) | |
[2] | 刘晓明. 大棚蔬菜生产实现机械化作业的可行性[J]. 农机科技推广, 2014(3):40. |
LIU X M. Feasibility of mechanized operation in greenhouse vegetable production[J]. Agriculture Machinery Technology Extension, 2014(3):40. (in Chinese) | |
[3] | 陈正法, 张茜茜, 梁称福. 我国日光温室的种植模式及其发展对策[J]. 江西农业科技, 2000(1):34-36. |
CHEN Z F, ZHANG Q Q, LIANG C F. Planting model and development strategies of solar greenhouse in China[J]. Jiangxi Agricultural Science & Technology, 2000(1):34-36. (in Chinese) | |
[4] | 张大为. 水肥一体化技术对冬暖大棚黄瓜生产的影响[J]. 农业工程技术, 2018,38(17):20-21. |
ZHANG D W. Effect of integrated water and fertilizer technology on cucumber production in greenhouse[J]. Agricultural Engineering Technology, 2018,38(17):20-21. (in Chinese) | |
[5] | 云祥瑞, 董玉秋, 张军. 温室内的生态环境条件与露地环境条件相比有哪些不同[J]. 吉林蔬菜, 2014(4):34. |
YUN X R, DONG Y Q, ZHANG J. What are the differences between the eco-environmental conditions in the greenhouse and the open-field environmental conditions[J]. Jilin Vegetable, 2014(4):34.(in Chinese) | |
[6] |
ALONSO-AYUSO M, QUEMADA M, VANCLOOSTER M, et al. Assessing cover crop management under actual and climate change conditions[J]. The Science of the Total Environment, 2018,621:1330-1341.
DOI URL PMID |
[7] | 涂美艳, 江国良, 杜晋城, 等. 大棚内外温湿度对枇杷春梢和果实生长发育的影响[J]. 西南农业学报, 2011,24(6):2336-2341. |
TU M Y, JIANG G L, DU J C, et al. Effects of air temperature and relative humidity on growth and development of spring shoot and fruit of loquat[J]. Southwest China Journal of Agricultural Sciences, 2011,24(6):2336-2341.(in Chinese with English abstract) | |
[8] | 白云明. 设施农业土壤中百菌清和毒死蜱的时空变化特征及其影响机制[D]. 杭州: 浙江工业大学, 2012. |
BAI Y M. Spatial and temporal distribution of chlorothalonil and chlorpyrifos in the facility soil and their effect mechanism[D]. Hangzhou: Zhejiang University of Technology, 2012.(in Chinese with English abstract) | |
[9] | 尚子帅. 保护地和露地蔬菜上四种农药残留消解的比较研究[D]. 杭州: 浙江大学, 2012. |
SHANG Z S. Residue dissipation of four pesticides on vegetables in comparison with the greenhouse and the field[D]. Hangzhou: Zhejiang University, 2012.(in Chinese with English abstract) | |
[10] | 刘淑芹, 王连刚, 张永志. 保护地番茄主要病害及其防治技术[J]. 中国果菜, 2010,30(4):51-53. |
LIU S Q, WANG L G, ZHANG Y Z. The main tomato diseases in protected fields and their control techniques[J]. China Fruit & Vegetable, 2010,30(4):51-53. (in Chinese) | |
[11] | 杨江龙. 不同种植方式蔬菜中农药残留的差异及污染控制研究[J]. 环境污染与防治, 2014,36(9):70-73. |
YANG J L. Difference research of pesticides residues in vegetables planting under different patterns and its environmental pollution control[J]. Environmental Pollution & Control, 2014,36(9):70-73.(in Chinese with English abstract) | |
[12] | ARIAS-ESTÉVEZ M, LÓPEZ-PERIAGO E, MARTÍNEZ-CARBALLO E, et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources[J]. Agriculture, Ecosystems & Environment, 2008,123(4):247-260. |
[13] | 黄旗. 啶虫脒对烟蚜防效与农药残留检测方法及残留降解规律[D]. 北京: 中国农业科学院, 2013. |
HUANG Q. The pesticide residue degradation, detection and control efficiency to aphid of acetamiprid[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.(in Chinese with English abstract) | |
[14] |
CLOYD R A, BETHKE J A. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments[J]. Pest Management Science, 2011,67(1):3-9.
URL PMID |
[15] |
GUPTA M, SHANKER A. Persistence of acetamiprid in tea and its transfer from made tea to infusion[J]. Food Chemistry, 2008,111(4):805-810.
DOI URL |
[16] | 李喆. 新烟碱类杀虫剂的环境残留及风险评价研究[D]. 杭州: 浙江工业大学, 2017. |
LI Z. The environmental residue and risk assessment of neonicotinoid insecticides[D]. Hangzhou: Zhejiang University of Technology, 2017.(in Chinese with English abstract) | |
[17] | 王贤鞠. 蔬菜农药残留现状及潜在风险分析[J]. 北京农业, 2015(9):34. |
WANG X J. Analysis of current situation and potential risk of vegetable pesticide residues[J]. Beijing Agriculture, 2015(9):34.(in Chinese) | |
[18] | 丁悦, 孙星, 汪佳蕾, 等. 露地和大棚条件下啶虫脒在黄瓜和土壤中的残留及消解动态[J]. 农药学学报, 2014,16(1):110-114. |
DING Y, SUN X, WANG J L, et al. Residue and dissipation of acetamiprid in cucumber and soil under open field and greenhouse conditions[J]. Chinese Journal of Pesticide Science, 2014,16(1):110-114.(in Chinese with English abstract) | |
[19] | 黄兰淇, 马琳, 占绣萍, 等. 露地和大棚条件下噻虫嗪和啶虫脒在青菜中的残留及消解动态[J]. 农药, 2018,57(1):42-45. |
HUANG L Q, MA L, ZHAN X P, et al. Residue and decline study of thiamethoxam and acetamiprid in pakchoi under open field and greenhouse conditions[J]. Agrochemicals, 2018,57(1):42-45.(in Chinese with English abstract) | |
[20] | 乔琳. 新烟碱类杀虫剂在金银花种植与加工过程中的降解及安全性评价[D]. 合肥: 安徽农业大学, 2014. |
QIAO L. Dissipation behaviors and safety evaluations of selected neonicotinoid insecticides during Lonicera japonica planting and brewing process[D]. Hefei: Anhui Agricultural University, 2014.(in Chinese with English abstract) | |
[21] | 成婧, 王美玲, 朱绍华, 等. 固相萃取-高效液相色谱-串联质谱法测定茶叶中啶虫脒、吡虫啉和氟虫腈残留量[J]. 食品安全质量检测学报, 2016,7(1):131-137. |
CHENG J, WANG M L, ZHU S H, et al. Determination of imidacloprid, acetamiprid and fipronil residues in tea by high performance liquid chromatography-tandem mass spectrometry coupled with solid-phase extraction[J]. Journal of Food Safety & Quality, 2016,7(1):131-137.(in Chinese with English abstract) | |
[22] |
CHAKROUN S, EZZI L, GRISSA I, et al. Hematological, biochemical, and toxicopathic effects of subchronic acetamiprid toxicity in Wistar rats[J]. Environmental Science and Pollution Research, 2016,23(24):25191-25199.
DOI URL PMID |
[23] | 王静, 朱九生, 高海燕, 等. 7种农药对家蚕的毒性评价及中毒症状学观察[J]. 生态毒理学报, 2010,5(1):57-62. |
WANG J, ZHU J S, GAO H Y, et al. Toxicological evaluation of seven pesticides to Bombyx mori and observation of toxicosis symptoms[J]. Asian Journal of Ecotoxicology, 2010,5(1):57-62.(in Chinese with English abstract) | |
[24] | 庾琴, 秦曙, 王霞, 等. 温度、光照及生物因子对啶虫脒和吡虫啉在油菜叶面消解的影响[J]. 农药学学报, 2006,8(2):147-151. |
YU Q, QIN S, WANG X, et al. Dissipation of acetamiprid and imidacloprid under different temperature, light and biological factors on phyllosphere of Brassica chinensis[J]. Chinese Journal of Pesticide Science, 2006,8(2):147-151.(in Chinese with English abstract) | |
[25] | 唐红霞, 温广月, 孙强, 等. 杀虫环和啶虫脒在普通白菜中的残留及消解动态[J]. 上海农业学报, 2020,36(3):96-101. |
TANG H X, WEN G Y, SUN Q, et al. Residues and dissipation dynamics of thiocyclam and acetamiprid in pakchoi[J]. Acta Agriculturae Shanghai, 2020,36(3):96-101.(in Chinese with English abstract) |
[1] | TIAN Pei, ZHAO Huiyu, LIU Zhiwei, WANG Jiao, DI Shanshan, XU Hao, WANG Zhiwei, WANG Xinquan, QI Peipei. Analysis and risk assessment of cyromazine and its metabolites in bayberry [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 534-540. |
[2] | WU Chengjie, REN Lantian, HAO Bing, SHAO Qingqin, WANG Hong, CHEN Feng, DAI Gaofeng, MEI Shiyuan, ZHANG Congjun. Effect of crop residue compost replacing part of chemical fertilizer and nitrification inhibitor on greenhouse gas emission of winter wheat [J]. , 2020, 32(7): 1233-1240. |
[3] | LI Qian, XU Zhiyang, RUAN Wenquan. Improvement of methane production potential by post-treatment of vinegar residue with Phanerochaete chrysosporium [J]. , 2020, 32(5): 904-911. |
[4] | SHEN Di, CHEN Longzheng, LU Xiaohua, TAO Jianping, FENG Gucheng, LIU Jiexia, FENG Kai, YIN Lian, DING Xu, JIA Lili, XU Zhisheng, LIU Huiji, XIONG Aisheng. Resources evaluation of 29 celery varieties for autumn-winter cultivation in southern Jiangsu [J]. , 2020, 32(4): 653-660. |
[5] | WANG Di, DI Shanshan, WANG Xinquan, ZHANG Changpeng, WANG Xiangyun, WANG Meng. Degradation of carbosulfan after its application in different growth stage of cowpea [J]. , 2020, 32(11): 2050-2058. |
[6] | BAI Ling, SONG Feiyue, JI Mengmeng, DENG Yun, RUAN Wenquan. Effects of different bulking agents on compost of straw biogas residue [J]. , 2020, 32(1): 124-133. |
[7] | YANG Mei, LUO Fengjian, ZHOU Li, LOU Zhengyun, ZHANG Xinzhong, SUN Hezhi, WANG Xinru, CHEN Zongmao. International comparative analysis of current pesticide residues standards in tea and responding suggestion [J]. , 2020, 32(1): 168-175. |
[8] | ZOU Chuan, GUO Bin, LIN Yicheng, FU Qinglin, LIU Chen, DING Nengfei, LI Ningyu, LI Hua. Effects of humic acid particles with different sizes on available cadmium in soil [J]. , 2019, 31(4): 616-623. |
[9] | ZHANG Lijun, ZHANG Hu, XU Mingfei, LIN Chunmian, WU Huizhen, XU Jie, QIAN Mingrong. Dynamics of 5 fungicides residue in grape brewing fermentation process [J]. , 2019, 31(1): 149-154. |
[10] | FANG Qi, ZHANG Jun, ZHOU Jinyun. Effect of processing on carbendazim residue in canned citrus [J]. , 2018, 30(9): 1599-1603. |
[11] | YU Youyi, YANG Lu, LIAO Xiang, CHENG Ping, WU Shengli, LI Hong. Residual degradation dynamics of lambda-cyhalothrin and cypermethrin in apple and its removal method [J]. , 2018, 30(8): 1376-1381. |
[12] | LUO Yuanjun, PU Yulin, LONG Gaofei, YE Chun, ZHU Bo. Effects of fertilization on soil active organic carbon and carbon pool management index [J]. , 2018, 30(8): 1389-1397. |
[13] | YUAN Weidong, LU Na, SONG Jiling, CHEN Qing, YAN Jing, WANG Weike, KANG Xueping, WANG Shiheng. Impact of burning and water corruption of crop residues on environment [J]. , 2018, 30(6): 1022-1028. |
[14] | LI Zhen, SUN Caixia, DAI Fen, ZHENG Weiran, YU Guoguang, YAO Jiarong, WANG Qiang. New requirements for grapes of national food safety standard GB 2763-2016 [J]. , 2018, 30(5): 840-847. |
[15] | ZHENG Xiang, JIANG Liangbo, DENG Bangliang, LIU Qian, LIU Xishuai, ZHENG Liya, GUO Xiaomin, LIU Yuanqiu, ZHANG Ling. Effects of enhanced UV-B radiation and nitrogen deposition on chlorophyll fluorescence parameters of invasive plant Triadica sebifera [J]. , 2018, 30(2): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||