Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (12): 2381-2389.DOI: 10.3969/j.issn.1004-1524.2021.12.18
• Food Science • Previous Articles Next Articles
FAN Simin1,2(), MU Honglei2, GAO Haiyan2,*(
), CHEN Hangjun2, FANG Xiangjun2, WU Weijie2
Received:
2021-03-26
Online:
2021-12-25
Published:
2022-01-10
Contact:
GAO Haiyan
CLC Number:
FAN Simin, MU Honglei, GAO Haiyan, CHEN Hangjun, FANG Xiangjun, WU Weijie. Study on alkaline deastringency of hickory kernel[J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2381-2389.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.12.18
项目Item | 评分标准Grading standard | 分值Score |
---|---|---|
口感Taste | 无苦涩味,且无异味No astringency, and no peculiar taste | 3~5 |
略有苦涩味,可以忍受Slight astringency, bearable | 1~<3 | |
苦涩味较重,难以下咽Heavy astringency, difficult to swallow | 0~<1 | |
形态Appearance | 仁颗粒完整,整体无碎粒Kernel granules are complete, without finely divided particles | 2~3 |
仁部分颗粒完整,有较少碎粒Part of kernel granules are complete with a little divided particles | 1~<2 | |
颗粒不完整,碎粒较多Kernel granules are incomplete with much divided particles | 0~<1 | |
色泽Color | 褐色,整体颜色均匀The color is brown and uniform | 1~2 |
颜色较深、颜色不均匀The color is dark and uneven | 0~<1 |
Table 1 Sensory score standard of hickory kernel
项目Item | 评分标准Grading standard | 分值Score |
---|---|---|
口感Taste | 无苦涩味,且无异味No astringency, and no peculiar taste | 3~5 |
略有苦涩味,可以忍受Slight astringency, bearable | 1~<3 | |
苦涩味较重,难以下咽Heavy astringency, difficult to swallow | 0~<1 | |
形态Appearance | 仁颗粒完整,整体无碎粒Kernel granules are complete, without finely divided particles | 2~3 |
仁部分颗粒完整,有较少碎粒Part of kernel granules are complete with a little divided particles | 1~<2 | |
颗粒不完整,碎粒较多Kernel granules are incomplete with much divided particles | 0~<1 | |
色泽Color | 褐色,整体颜色均匀The color is brown and uniform | 1~2 |
颜色较深、颜色不均匀The color is dark and uneven | 0~<1 |
水平 Level | (A)脱涩温度 Deastrinency temperature/℃ | (B)脱涩时间 Deastrinency time/min | (C)NaHCO3质量分数 NaHCO3 mass fraction/% | (D)固液比 Solid-liquid ratio/(g·mL-1) |
---|---|---|---|---|
-1 | 55 | 60 | 3 | 1:10 |
0 | 60 | 80 | 4 | 1:20 |
1 | 65 | 100 | 5 | 1:30 |
Table 2 Factors and levels of response surface test
水平 Level | (A)脱涩温度 Deastrinency temperature/℃ | (B)脱涩时间 Deastrinency time/min | (C)NaHCO3质量分数 NaHCO3 mass fraction/% | (D)固液比 Solid-liquid ratio/(g·mL-1) |
---|---|---|---|---|
-1 | 55 | 60 | 3 | 1:10 |
0 | 60 | 80 | 4 | 1:20 |
1 | 65 | 100 | 5 | 1:30 |
试验号 Test No. | A℃ | B/min | C/% | D/(g· mL-1) | 响应值 Response value | 试验号 Test No. | A/℃ | B/min | C/% | D/(g· mL-1) | 响应值 Response value |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 55 | 80 | 4 | 1:30 | 68.60 | 16 | 65 | 80 | 5 | 1:20 | 70.27 |
2 | 65 | 100 | 4 | 1:20 | 71.53 | 17 | 60 | 60 | 3 | 1:20 | 69.43 |
3 | 65 | 80 | 3 | 1:20 | 69.24 | 18 | 60 | 80 | 4 | 1:20 | 71.20 |
4 | 65 | 60 | 4 | 1:20 | 69.46 | 19 | 55 | 100 | 4 | 1:20 | 73.05 |
5 | 60 | 100 | 3 | 1:20 | 71.97 | 20 | 60 | 60 | 5 | 1:20 | 69.40 |
6 | 55 | 80 | 5 | 1:20 | 69.44 | 21 | 60 | 80 | 4 | 1:20 | 68.49 |
7 | 55 | 60 | 4 | 1:20 | 70.37 | 22 | 60 | 60 | 3 | 1:10 | 71.89 |
8 | 60 | 80 | 4 | 1:20 | 69.89 | 23 | 60 | 100 | 3 | 1:30 | 71.92 |
9 | 60 | 80 | 5 | 1:30 | 74.21 | 24 | 65 | 80 | 4 | 1:30 | 68.46 |
10 | 60 | 80 | 4 | 1:20 | 69.82 | 25 | 55 | 80 | 3 | 1:20 | 68.89 |
11 | 55 | 80 | 4 | 1:10 | 69.45 | 26 | 60 | 100 | 5 | 1:20 | 69.40 |
12 | 60 | 80 | 3 | 1:10 | 69.97 | 27 | 60 | 100 | 4 | 1:10 | 68.12 |
13 | 65 | 80 | 4 | 1:10 | 68.48 | 28 | 60 | 80 | 5 | 1:10 | 70.87 |
14 | 55 | 80 | 5 | 1:20 | 69.40 | 29 | 60 | 80 | 3 | 1:30 | 72.20 |
15 | 55 | 60 | 4 | 1:30 | 70.24 |
Table 3 Design and results of response surface test
试验号 Test No. | A℃ | B/min | C/% | D/(g· mL-1) | 响应值 Response value | 试验号 Test No. | A/℃ | B/min | C/% | D/(g· mL-1) | 响应值 Response value |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 55 | 80 | 4 | 1:30 | 68.60 | 16 | 65 | 80 | 5 | 1:20 | 70.27 |
2 | 65 | 100 | 4 | 1:20 | 71.53 | 17 | 60 | 60 | 3 | 1:20 | 69.43 |
3 | 65 | 80 | 3 | 1:20 | 69.24 | 18 | 60 | 80 | 4 | 1:20 | 71.20 |
4 | 65 | 60 | 4 | 1:20 | 69.46 | 19 | 55 | 100 | 4 | 1:20 | 73.05 |
5 | 60 | 100 | 3 | 1:20 | 71.97 | 20 | 60 | 60 | 5 | 1:20 | 69.40 |
6 | 55 | 80 | 5 | 1:20 | 69.44 | 21 | 60 | 80 | 4 | 1:20 | 68.49 |
7 | 55 | 60 | 4 | 1:20 | 70.37 | 22 | 60 | 60 | 3 | 1:10 | 71.89 |
8 | 60 | 80 | 4 | 1:20 | 69.89 | 23 | 60 | 100 | 3 | 1:30 | 71.92 |
9 | 60 | 80 | 5 | 1:30 | 74.21 | 24 | 65 | 80 | 4 | 1:30 | 68.46 |
10 | 60 | 80 | 4 | 1:20 | 69.82 | 25 | 55 | 80 | 3 | 1:20 | 68.89 |
11 | 55 | 80 | 4 | 1:10 | 69.45 | 26 | 60 | 100 | 5 | 1:20 | 69.40 |
12 | 60 | 80 | 3 | 1:10 | 69.97 | 27 | 60 | 100 | 4 | 1:10 | 68.12 |
13 | 65 | 80 | 4 | 1:10 | 68.48 | 28 | 60 | 80 | 5 | 1:10 | 70.87 |
14 | 55 | 80 | 5 | 1:20 | 69.40 | 29 | 60 | 80 | 3 | 1:30 | 72.20 |
15 | 55 | 60 | 4 | 1:30 | 70.24 |
Fig. 5 Response surface diagram of comprehensive score of various factors A, Deastringency temperature; B, Deastringency time; C, NaHCO3 mass fraction; D, Solid-liquid ratio.
Fig. 6 Content of free phenol of hickory kernel under different treatments CK, Without deastringency; T1, Boiling-water deastringency; T2, Alkaline deastringency. Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
[1] | 郭传友, 黄坚钦, 方炎明. 山核桃研究综述及展望[J]. 经济林研究, 2004, 22(1): 61-63. |
GUO C Y, HUANG J Q, FANG Y M. Review and perspective of research on Carya cathayensis[J]. Economic Forest Researches, 2004, 22(1): 61-63.(in Chinese with English abstract) | |
[2] | 葛林梅, 郜海燕, 穆宏磊, 等. 山核桃加工过程脂肪酸氧化及抗氧化能力变化研究[J]. 中国粮油学报, 2014, 29(1): 61-65. |
GE L M, GAO H Y, MU H L, et al. The effect of processing on fatty acid oxidation and antioxidant ability of walnut (Carya cathayensis Sarg.)[J]. Journal of the Chinese Cereals and Oils Association, 2014, 29(1): 61-65. (in Chinese with English abstract) | |
[3] | 裴璞花, 安传相, 刘晓燕, 等. 酶解核桃蛋白制备降血压肽的工艺优化[J]. 食品研究与开发, 2018, 39(14): 69-75. |
PEI P H, AN C X, LIU X Y, et al. Enzymatic preparation of antihypertensive peptides from walnut protein[J]. Food Research and Development, 2018, 39(14): 69-75.(in Chinese with English abstract) | |
[4] | 汪正兴, 韩强, 郜海燕, 等. 响应面试验优化亚临界水提取核桃粕蛋白工艺及其氨基酸分析[J]. 食品科学, 2017, 38(20): 191-196. |
WANG Z X, HAN Q, GAO H Y, et al. Optimization of subcritical water extraction of walnut meal protein by response surface methodology and amino acid analysis[J]. Food Science, 2017, 38(20): 191-196. (in Chinese with English abstract) | |
[5] | 翟纹静, 郜海燕, 陶菲, 等. 山核桃中类脂褐素提取方法的研究[J]. 中国粮油学报, 2013, 28(3): 105-109. |
ZHAI W J, GAO H Y, TAO F, et al. Study on extraction method of lipofuscin-like pigments from Chinese walnuts (Carya cathayensis)[J]. Journal of the Chinese Cereals and Oils Association, 2013, 28(3): 105-109. (in Chinese with English abstract) | |
[6] | 郜海燕, 陈杭君, 穆宏磊, 等. 坚果类食品氧化及抗氧化研究进展[J]. 中国食品学报, 2017, 17(11): 1-8. |
GAO H Y, CHEN H J, MU H L, et al. Research advances in oxidation and antioxidation of nut products[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(11): 1-8.(in Chinese with English abstract) | |
[7] | 何金鑫, 郜海燕, 穆宏磊, 等. 山核桃氧化过程中品质指标变化的电子鼻快速检测[J]. 农业工程学报, 2017, 33(14): 284-291. |
HE J X, GAO H Y, MU H L, et al. Rapid detection of quality parameters change in hickory oxidation process by electronic nose[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 284-291.(in Chinese with English abstract) | |
[8] |
XIANG L M, WANG Y H, YI X M, et al. Chemical constituent and antioxidant activity of the husk of Chinese hickory[J]. Journal of Functional Foods, 2016, 23: 378-388.
DOI URL |
[9] | 陈杭君, 李兴飞, 郜海燕, 等. 山核桃仁多酚组分分析及抗氧化研究[J]. 核农学报, 2013, 27(1): 61-67. |
CHEN H J, LI X F, GAO H Y, et al. The analysis of chemical composition and antioxidant activities of phenolic compounds from carya (Carya cathayensis) kernel[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(1): 61-67. (in Chinese with English abstract) | |
[10] |
YANG J J, ZHOU F, XIONG L N, et al. Comparison of phenolic compounds, tocopherols, phytosterols and antioxidant potential in Zhejiang pecan (Carya cathayensis) at different stir-frying steps[J]. LWT: Food Science and Technology, 2015, 62(1): 541-548.
DOI URL |
[11] | 李丽, 赵鑫, 高彦祥, 等. 山核桃仁最佳烘烤条件的研究[J]. 食品工业科技, 2012, 33(2): 243-245. |
LI L, ZHAO X, GAO Y X, et al. Study on the optimum roasting conditions of Carya cathayensis Sarg[J]. Science and Technology of Food Industry, 2012, 33(2): 243-245. (in Chinese with English abstract) | |
[12] | 俞文君, 金强, 李根, 等. 基于果实苦涩味新疆核桃资源遗传多样性分析[J]. 食品工业科技, 2020, 41(13): 234-240. |
YU W J, JIN Q, LI G, et al. Genetic diversity analysis of walnut germplasm resources based on bitter and astringent of fruits in Xinjiang[J]. Science and Technology of Food Industry, 2020, 41(13): 234-240.(in Chinese with English abstract) | |
[13] | 刘雨霞, 张玲, 张小军, 等. 基于电子舌技术分类评价核桃内种皮的口感品质[J]. 食品与发酵工业, 2020, 46(19): 258-263. |
LIU Y X, ZHANG L, ZHANG X J, et al. Classification and evaluation of walnut kernel pellicle taste quality based on electronic tongue technology[J]. Food and Fermentation Industries, 2020, 46(19): 258-263.(in Chinese with English abstract) | |
[14] |
PLOYON S, MORZEL M, BELLOIR C, et al. Mechanisms of astringency: structural alteration of the oral mucosal pellicle by dietary tannins and protective effect of bPRPs[J]. Food Chemistry, 2018, 253: 79-87.
DOI URL |
[15] |
NAYAK A, CARPENTER G H. A physiological model of tea-induced astringency[J]. Physiology & Behavior, 2008, 95(3): 290-294.
DOI URL |
[16] |
UURLU S, OKUMU E, BAKKALBAI E. Reduction of bitterness in green walnuts by conventional and ultrasound-assisted maceration[J]. Ultrasonics Sonochemistry, 2020, 66: 105094.
DOI URL |
[17] | 陶菲, 郜海燕, 葛林梅, 等. 加工工艺对山核桃脂肪氧化的影响[J]. 中国食品学报, 2008, 8(1): 99-102. |
TAO F, GAO H Y, GE L M, et al. The effect of process technology on lipoxygenation of walnut(Carya cathayensis sarg.)[J]. Journal of Chinese Institute of Food Science and Technology, 2008, 8(1): 99-102.(in Chinese with English abstract) | |
[18] | 王俊转, 房明虎, 刘文娟, 等. 碱煮后核桃内种皮及核桃青皮中单宁含量的研究[J]. 饮料工业, 2015, 18(1): 42-44. |
WANG J Z, FANG M H, LIU W J, et al. Study on tannin content of the alkaline treated walnut skin and walnut peel[J]. Beverage Industry, 2015, 18(1): 42-44. (in Chinese with English abstract) | |
[19] | 刘燕. 核桃综合深加工的思路与技术评价[J]. 农业开发与装备, 2020(6): 37-38. |
LIU Y. Thoughts and technical evaluation of comprehensive deep processing of walnut[J]. Agricultural Development & Equipments, 2020(6): 37-38.(in Chinese) | |
[20] | 王玉良. 贮藏因素和加工工艺对山核桃脂肪氧化的影响[D]. 南京: 南京农业大学, 2011. |
WANG Y L. Study on effect of storage conditions and processing on lipid oxidation of walnut(Carya cathayensis Sarg.)[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese with English abstract) | |
[21] | 刘婷, 王茜, 海光辉, 等. 基于响应面法的餐用油橄榄果脱涩工艺优化[J]. 经济林研究, 2019, 37(1): 139-147. |
LIU T, WANG Q, HAI G H, et al. Optimization of debittering process of table olive fruits by using response surface method[J]. Non-Wood Forest Research, 2019, 37(1): 139-147.(in Chinese with English abstract) | |
[22] | 耿阳阳, 侯娜, 何佳丽, 等. 梯度干燥温度对核桃感官品质的影响[J]. 食品科技, 2018, 43(2): 64-69. |
GENG Y Y, HOU N, HE J L, et al. Effect of the gradient temperature drying on sensory quality in fresh walnut[J]. Food Science and Technology, 2018, 43(2): 64-69.(in Chinese with English abstract) | |
[23] |
LI M Y, CHEN X M, DENG J, et al. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn[J]. Food Chemistry, 2020, 332: 127429.
DOI URL |
[24] | 王振宇, 葛胜晗, 周阿容, 等. 鲜莲结合酚的提取及其抗氧化活性分析[J]. 食品科学, 2018, 39(10): 304-311. |
WANG Z Y, GE S H, ZHOU A R, et al. Extraction and antioxidant capacity of bound phenolics from fresh lotus seeds[J]. Food Science, 2018, 39(10): 304-311.(in Chinese with English abstract) | |
[25] |
SHI J Y, SHAN S H, LI Z W, et al. Bound polyphenol from foxtail millet bran induces apoptosis in HCT-116 cell through ROS generation[J]. Journal of Functional Foods, 2015, 17: 958-968.
DOI URL |
[26] |
HILBIG J, ALVES V R, MÜLLER C M O, et al. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis(Wangenh) C. Koch]extracts[J]. Food Research International (Ottawa, Ont), 2018, 106: 549-557.
DOI URL |
[27] |
LOU X M, DE XU H, HANNA M, et al. Identification and quantification of free, esterified, glycosylated and insoluble-bound phenolic compounds in hawthorn berry fruit (Crataegus pinnatifida) and antioxidant activity evaluation[J]. LWT, 2020, 130: 109643.
DOI URL |
[28] |
WU N N, LI H H, TAN B, et al. Free and bound phenolic profiles of the bran from different rice varieties and their antioxidant activity and inhibitory effects on α-amylose and α-glucosidase[J]. Journal of Cereal Science, 2018, 82: 206-212.
DOI URL |
[29] |
CHANG S K, ALASALVAR C, BOLLING B W, et al. Nuts and their co-products: the impact of processing (roasting) on phenolics, bioavailability, and health benefits: a comprehensive review[J]. Journal of Functional Foods, 2016, 26: 88-122.
DOI URL |
[30] | 杨希娟, 党斌, 徐菲, 等. 不同粒色青稞酚类化合物含量与抗氧化活性的差异及评价[J]. 中国粮油学报, 2017, 32(9): 34-42. |
YANG X J, DANG B, XU F, et al. Difference and evaluation of phenolics contents and antioxidant activity of colored hulless barley[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(9): 34-42.(in Chinese with English abstract) | |
[31] | 王晗琦, 关未萌, 王帅, 等. 热加工处理对核桃氧化及功能成分稳定性的影响[J]. 中国食品学报, 2016, 16(10): 66-72. |
WANG H Q, GUAN W M, WANG S, et al. Effect of heat processing treatments on oxidation and functional components stability of walnuts[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(10): 66-72.(in Chinese with English abstract) |
[1] | WU Jiawei, YAO Zhangliang, HU Qiqi, ZHANG Jie, CHEN Yi, JIANG Jianrong, ZHOU Guoxin, WANG Xia. Fungicides and optimum time for control of pear rust in Tongxiang City, north Zhejiang, China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1668-1675. |
[2] | JIA Yangyang, NIE Zongning, LUO Xingyu, YANG Kaihui, HE Chunlei. Study on processing technology of exogenous polyphenol oxidase assisted fermentation of Tibetan tea [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1720-1729. |
[3] | GUO Jia, MEN Xiaoming, DENG Bo, XU Ziwei. Advances of function, expression of animal selenoproteins and their regulation mechanism on meat quality [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1779-1788. |
[4] | ZHANG Zhigang, LIU Yufang, LI Changcheng, LI Hong, CHENG Ping, YANG Lu. Effect of different maturity on fruit quality of apricot [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1402-1408. |
[5] | QI Zhenyu, CAI Licong, HU Weizhen, CAI Pan, ZHANG Longping, REN Yanyun, ZHOU Yanhong. Effects of reduced application of chemical fertilizers and ratio of base and topdressing fertilizers on yield and quality of garlic in integrated mode of water and fertilizer [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1409-1415. |
[6] | LI Ju, XIE Bojie, WEI Shouhui, ZHANG Guobin, WU Yue, TANG Zhongqi, XIAO Xuemei, YU Jihua. Effects of combined application of organic fertilizer and chemical fertilizer on nutritional quality and volatile compounds of cauliflower [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1199-1211. |
[7] | HUANG Shuchao, HOU Dong, YUE Hongzhong, KONG Weiping, ZHANG Dongqin, LI Yali, HAN Dongrong, XIE Bojie. Effects of three growth promoting bacteria and their mixed microbial agents on growth and quality of lettuce [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1212-1221. |
[8] | HOU Lijuan, LI Zhengpeng, LIN Jinsheng, MA Lin, LI Huiping, QU Shaoxuan, JIANG Jianxin, ZOU Xiulong, YANG Huaping, LI Changtian, JIANG Ning. Effects of different light quality of LED light source on growth rate, mycelium branch and biomass of straw mushroom mycelium [J]. Acta Agriculturae Zhejiangensis, 2021, 33(6): 1110-1116. |
[9] | WANG Lingling, WU Wenge, LI Rui, HU Jian, YAN Suhui, SHAO Qingqin, XU Feng, ZHANG Congyu, ZHOU Yongjin, LI Wenyang. Effects of nitrogen rate on grain quality and nitrogen utilization of weak gluten wheat [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 777-784. |
[10] | WANG Yingzhen, PAN Zhimei. Comprehensive evaluation of 22 Actinidia eriantha germplasm resources based on principal components analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 825-830. |
[11] | LI Qingbin, QIN Benben, LI Yingying, FAN Kaifeng, YANG Dong, CHEN Lei, LIU Kun. Effects of continuous rain and sunless weather on microclimate, strawberry growth and quality in greenhouse [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 831-839. |
[12] | ZHANG Jiameng, WEI Jiawen, ZHANG Huiling. Process optimization of solid-state fermented jujube powder by Lactobacillus paracasei and its quality analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 893-906. |
[13] | WU Jian, WANG Jiangong, CHU Weixiong. Effect of natamycin treatment on grape quality in e-commerce logistics process [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 916-922. |
[14] | LI Baoxian, WANG Baojun, HUAI Yan, SHEN Yaqiang, ZHANG Hongmei, CHENG Wangda. Effects of integrated rice-redclaw crayfish farming system on soil nutrients, carbon pool and rice quality [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 688-696. |
[15] | FENG Luoluo, GAO Haiyan, ZHANG Runguang, YAN Xinpeng, ZHANG Yani, HAN Qiqi, ZHANG Youlin. Effects of different gas composition storage on physiological changes and quality of Dog-head jujube fruit [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 704-713. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||