Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (11): 2329-2339.DOI: 10.3969/j.issn.1004-1524.2022.11.02
• Crop Science • Previous Articles Next Articles
WANG Jichun1(), LI Ruili2, WANG Jiaoling3, SHAO Junwen1, ZHAO Hongyu2,*(
)
Received:
2022-04-20
Online:
2022-11-25
Published:
2022-11-29
Contact:
ZHAO Hongyu
CLC Number:
WANG Jichun, LI Ruili, WANG Jiaoling, SHAO Junwen, ZHAO Hongyu. Functional analysis of plastid phosphate transporter OsPPT family members in rice[J]. Acta Agriculturae Zhejiangensis, 2022, 34(11): 2329-2339.
基因Gene | 上游引物Forward primer(5'→3') | 下游引物Reverse primer(5'→3') |
---|---|---|
OsPPT1 | TTCCAATTGTTGGTGGTGTG | AGGTGACATTTGAGGCCATT |
OsPPT2 | GCATCTCTTACTGAGGCTTCCT | ATTTGAAGCCATTGCACTCC |
OsPPT3 | TCTACTTCAACATCTACAACAAGCAG | GATGACGAAGGAGCCGAAC |
OsPPT4 | TCAATCGCGAAATGTTTTCA | GGTTTATATCATCCAATGTTTCCTC |
Table 1 Primers for qRT-PCR
基因Gene | 上游引物Forward primer(5'→3') | 下游引物Reverse primer(5'→3') |
---|---|---|
OsPPT1 | TTCCAATTGTTGGTGGTGTG | AGGTGACATTTGAGGCCATT |
OsPPT2 | GCATCTCTTACTGAGGCTTCCT | ATTTGAAGCCATTGCACTCC |
OsPPT3 | TCTACTTCAACATCTACAACAAGCAG | GATGACGAAGGAGCCGAAC |
OsPPT4 | TCAATCGCGAAATGTTTTCA | GGTTTATATCATCCAATGTTTCCTC |
基因Gene | 上游引物Forward primer(5'→3') | 下游引物Reverse primer(5'→3') |
---|---|---|
OsPPT1 | CGCGGATCCATGCAGAGCGCGGCGGCCGT | ACGCGTCGACGGCAGTCTTGGGCTTGGGTTT |
OsPPT2 | CGCGGATCCATGCAGAGCGCCGCGGCGGCGTT | ACGCGTCGACCGCAGCCTTGGGCTTGGGCTT |
OsPPT3 | CGCGGATCCATGCAGCGCGCGGCGGCGGCCT | ACGCGTCGACGGCATTCTTTGGTTTTGTTCTCTT |
OsPPT4 | CGCGGATCCATGCAGGCCGTGGCGGCGGCGA | ACGCGTCGACTGCAGTCTTAGCCTTTGGTTTAGC |
Table 2 Primers used for fragment amplification
基因Gene | 上游引物Forward primer(5'→3') | 下游引物Reverse primer(5'→3') |
---|---|---|
OsPPT1 | CGCGGATCCATGCAGAGCGCGGCGGCCGT | ACGCGTCGACGGCAGTCTTGGGCTTGGGTTT |
OsPPT2 | CGCGGATCCATGCAGAGCGCCGCGGCGGCGTT | ACGCGTCGACCGCAGCCTTGGGCTTGGGCTT |
OsPPT3 | CGCGGATCCATGCAGCGCGCGGCGGCGGCCT | ACGCGTCGACGGCATTCTTTGGTTTTGTTCTCTT |
OsPPT4 | CGCGGATCCATGCAGGCCGTGGCGGCGGCGA | ACGCGTCGACTGCAGTCTTAGCCTTTGGTTTAGC |
引物名称Primer name | 引物序列Forward primer(5'→3') |
---|---|
OsPPT1-BamHI-F | GCAGCCCGGGGGATCCATGCAGAGCGCGGCGGCC |
OsPPT1-SacI-R | GGGAACAAAAGCTGGAGCTCTCAGGCAGTCTTGGGCTTGGGT |
OsPPT2-BamHI-F | GCAGCCCGGGGGATCCATGCAGAGCGCCGCGGCG |
OsPPT2-SacI-R | GGGAACAAAAGCTGGAGCTCTTACGCAGCCTTGGGCTTGG |
OsPPT3-BamHI-F | GCAGCCCGGGGGATCCATGCAGCGCGCGGCGGCG |
OsPPT3-SacI-R | GGGAACAAAAGCTGGAGCTCTCAGGCATTCTTTGGTTTTGTTCTC |
OsPPT4-BamHI-F | GCAGCCCGGGGGATCCATGCAGGCCGTGGCGGCG |
OsPPT4-SacI-R | GGGAACAAAAGCTGGAGCTCTCATGCAGTCTTAGCCTTTGG |
Table 3 Primers for yeast vector construction
引物名称Primer name | 引物序列Forward primer(5'→3') |
---|---|
OsPPT1-BamHI-F | GCAGCCCGGGGGATCCATGCAGAGCGCGGCGGCC |
OsPPT1-SacI-R | GGGAACAAAAGCTGGAGCTCTCAGGCAGTCTTGGGCTTGGGT |
OsPPT2-BamHI-F | GCAGCCCGGGGGATCCATGCAGAGCGCCGCGGCG |
OsPPT2-SacI-R | GGGAACAAAAGCTGGAGCTCTTACGCAGCCTTGGGCTTGG |
OsPPT3-BamHI-F | GCAGCCCGGGGGATCCATGCAGCGCGCGGCGGCG |
OsPPT3-SacI-R | GGGAACAAAAGCTGGAGCTCTCAGGCATTCTTTGGTTTTGTTCTC |
OsPPT4-BamHI-F | GCAGCCCGGGGGATCCATGCAGGCCGTGGCGGCG |
OsPPT4-SacI-R | GGGAACAAAAGCTGGAGCTCTCATGCAGTCTTAGCCTTTGG |
Fig.1 Phylogenetic tree analysis of PPT family members The different colours indicated different plastidic phosphate translocators family: red, GPT and XPT; grey, TPT; green, PPT. Letters in the codes represented species names as follows: Os, Oryza sativa; AT, Arabidopsis thaliana; ATR, Amborella trichopoda; Bradi, Brachypodium distachyon; Cre, Chlamydomonas reinhardtii; Mapoly, Marchantia polymorpha; Potri, Populus trichocarpa; PP, Physcomitrella patens; SMO, Selaginella moellendorffii; Soly, Solanum lycopersicum; ZM, Zea mays.
Fig.2 Expression pattern of OsPPT family members in various tissues in rice VS, Vegetative stage, 21-day-old plants; FS, Flowering stage, 48-day-old plants; GFS, Grain filling stage, 60-day-old plants. Data are x -±s(n=3). Leaf1-Leaf7 represents the number of leaves from below, leaf1 refers to the number of the second leaf from below (the first leaf has fallen off), and leaf7 refers to the number of the eighth leaf from below (flag leaf). Different letters represent significant differences, P<0.05.
Fig.3 Subcellular localization of OsPPT1-OsPPT4 proteins in rice protoplasts The green signals indicated green fluorescent protein (GFP), and the red signals indicated autofluorescence of chlorophyll. Bright, bright area; Scale bar=10 μm.
Fig.4 OsPPT genes can confer phosphate transport in yeast PHO84 was a high-affinity phosphate transporter and served as a positive control, and empty vector was a negative control.
Fig.6 Dynamic changes of transcript levels of OsPPT gene family members in response to NaCl, SA and ABA stresses of rice seedings Fourteen-day-old seedlings grown under normal conditions were exposed to different chemical treatments for 24 h. ABA, 100 μmol·L-1; NaCl, 100 mmol·L-1; SA, 500 μmol·L-1. Data were x -±s(n=3). *, P<0.05; **, P<0.01; ***, P<0.001.
[1] |
LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95-123.
DOI URL |
[2] |
NIKITHA M S T, SADHANA E U B R B, VANI S S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition[J]. International Journal of Current Microbiology and Applied Sciences, 2017, 6(4): 2133-2144.
DOI URL |
[3] |
RUAN W Y, GUO M N, XU L, et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice[J]. The Plant Cell, 2018, 30(4): 853-870.
DOI PMID |
[4] |
VERONICA N, SUBRAHMANYAM D, VISHNU KIRAN T, et al. Influence of low phosphorus concentration on leaf photosynthetic characteristics and antioxidant response of rice genotypes[J]. Photosynthetica, 2017, 55(2): 285-293.
DOI URL |
[5] |
FOYER C, SPENCER C. The relationship between phosphate status and photosynthesis in leaves[J]. Planta, 1986, 167(3): 369-375.
DOI URL |
[6] |
SHARKEY T D. Is triose phosphate utilization important for understanding photosynthesis?[J]. Journal of Experimental Botany, 2019, 70(20): 5521-5525.
DOI PMID |
[7] | FURBANK R T, FOYER C H, WALKER D A. Inhibition of photophosphorylation by ribulose-1, 5-bisphosphate carboxylase[J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 1986, 852(1): 46-54. |
[8] |
CARSTENSEN A, HERDEAN A, SCHMIDT S B, et al. The impacts of phosphorus deficiency on the photosynthetic electron transport chain[J]. Plant Physiology, 2018, 177(1): 271-284.
DOI PMID |
[9] | TCHERKEZ G. The mechanism of rubisco-catalysed oxygenation[J]. Plant, Cell & Environment, 2016, 39(5): 983-997. |
[10] |
MARCUS Y, GUREVITZ M. Activation of cyanobacterial RuBP-carboxylase/oxygenase is facilitated by inorganic phosphate via two independent mechanisms[J]. European Journal of Biochemistry, 2000, 267(19): 5995-6003.
PMID |
[11] | FREDEEN A L, RAAB T K, RAO I M, et al. Effects of phosphorus nutrition on photosynthesis in Glycine max(L.) Merr[J]. Planta, 1990, 181(3): 399-405. |
[12] | KESSEL-VIGELIUS S K. Toward intracellular membrane transport-characterization of the mitochondrial carrier family in plants[D]. Dusseldorf: Heinrich Heine University, 2013. |
[13] |
VERSAW W K, HARRISON M J. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses[J]. The Plant Cell, 2002, 14(8): 1751-1766.
DOI URL |
[14] |
LIU X L, WANG L, WANG X W, et al. Mutation of the chloroplast-localized phosphate transporter OsPHT2;1 reduces flavonoid accumulation and UV tolerance in rice[J]. The Plant Journal: for Cell and Molecular Biology, 2020, 102(1): 53-67.
DOI URL |
[15] |
WANG G Y, ZHANG C, BATTLE S, et al. The phosphate transporter PHT4;1 is a salicylic acid regulator likely controlled by the circadian clock protein CCA1[J]. Frontiers in Plant Science, 2014, 5: 701.
DOI PMID |
[16] |
IRIGOYEN S, KARLSSON P M, KURUVILLA J, et al. The sink-specific plastidic phosphate transporter PHT4;2 influences starch accumulation and leaf size in Arabidopsis[J]. Plant Physiology, 2011, 157(4): 1765-1777.
DOI URL |
[17] |
MIYAJI T, KUROMORI T, TAKEUCHI Y, et al. AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis[J]. Nature Communications, 2015, 6: 5928.
DOI URL |
[18] |
LI R L, WANG J L, XU L, et al. Functional analysis of phosphate transporter OsPHT4 family members in rice[J]. Rice Science, 2020, 27(6): 493-503.
DOI |
[19] |
BOCKWOLDT M, HEILAND I, FISCHER K. The evolution of the plastid phosphate translocator family[J]. Planta, 2019, 250(1): 245-261.
DOI PMID |
[20] |
FISCHER K, ARBINGER B, KAMMERER B, et al. Cloning and in vivo expression of functional triose phosphate/phosphate translocators from C3-and C4-plants: evidence for the putative participation of specific amino acid residues in the recognition of phosphoenolpyruvate[J]. The Plant Journal: for Cell and Molecular Biology, 1994, 5(2): 215-226.
DOI URL |
[21] |
SCHNEIDER A, HÄUSLER R E, KOLUKISAOGLU Ü, et al. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished[J]. The Plant Journal, 2002, 32(5): 685-699.
DOI URL |
[22] |
TOYOTA K, TAMURA M, OHDAN T, et al. Expression profiling of starch metabolism-related plastidic translocator genes in rice[J]. Planta, 2006, 223(2): 248-257.
PMID |
[23] | HEINEKE D, KRUSE A, FLÜGGE U I, et al. Effect of antisense repression of the chloroplast triose-phosphate translocator on photosynthetic metabolism in transgenic potato plants[J]. Planta, 1994, 193(2): 174-180. |
[24] |
KAMMERER B, FISCHER K, HILPERT B, et al. Molecular characterization of a carbon transporter in plastids from heterotrophic tissues: the glucose 6-phosphate/phosphate antiporter[J]. The Plant Cell, 1998, 10(1): 105-117.
DOI URL |
[25] |
ZIMMERMANN P, HIRSCH-HOFFMANN M, HENNIG L, et al. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox[J]. Plant Physiology, 2004, 136(1): 2621-2632.
DOI URL |
[26] |
NIEWIADOMSKI P, KNAPPE S, GEIMER S, et al. The Arabidopsis plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for pollen maturation and embryo sac development[J]. The Plant Cell, 2005, 17(3): 760-775.
DOI URL |
[27] |
ZHANG M M, XU X W, ZHENG Y P, et al. Expression of a plastid-localized sugar transporter in the suspensor is critical to embryogenesis[J]. Plant Physiology, 2020, 185(3): 1021-1038.
DOI PMID |
[28] |
QU A L, XU Y, YU X X, et al. Sporophytic control of anther development and male fertility by glucose-6-phosphate/phosphate translocator 1 (OsGPT1) in rice[J]. Journal of Genetics and Genomics, 2021, 48(8): 695-705.
DOI PMID |
[29] |
EICKS M, MAURINO V, KNAPPE S, et al. The plastidic pentose phosphate translocator represents a link between the cytosolic and the plastidic pentose phosphate pathways in plants[J]. Plant Physiology, 2002, 128(2): 512-522.
PMID |
[30] |
HILGERS E J A, SCHÖTTLER M A, METTLER-ALTMANN T, et al. The combined loss of triose phosphate and xylulose 5-phosphate/phosphate translocators leads to severe growth retardation and impaired photosynthesis in Arabidopsis thaliana tpt/xpt double mutants[J]. Frontiers in Plant Science, 2018, 9: 1331.
DOI URL |
[31] | FISCHER K, KAMMERER B, GUTENSOHN M, et al. A new class of plastidic phosphate translocators: a putative link between primary and secondary metabolism by the phosphoenolpyruvate/phosphate antiporter[J]. The Plant Cell, 1997, 9(3): 453-462. |
[32] |
HERRMANN K M. The shikimate pathway: early steps in the biosynthesis of aromatic compounds[J]. The Plant Cell, 1995, 7(7): 907-919.
PMID |
[33] |
STREATFIELD S J, WEBER A, KINSMAN E A, et al. The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression[J]. The Plant Cell, 1999, 11(9): 1609-1621.
DOI URL |
[34] |
KNAPPE S, LÖTTGERT T, SCHNEIDER A, et al. Characterization of two functional phosphoenolpyruvate/phosphate translocator (PPT) genes in Arabidopsis: AtPPT1 may be involved in the provision of signals for correct mesophyll development[J]. The Plant Journal: for Cell and Molecular Biology, 2003, 36(3): 411-420.
DOI URL |
[1] | JIANG Ruiping, ZHAO Chenhui, LI Wenjie, AN Qiuju, LI Jialun, ZHOU Jiayu, LI Suiyan, LIAO Hai. Codon bias of IPI gene in leguminous plants [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1114-1123. |
[2] | CHEN Qin, LIU Meijia, LIU Diqiu, QU Yuan, CUI Xiuming, GE Feng. Effects of synergy by double genes of PjFPS and Pjβ-AS on biosynthesis of Panax japonicus saponins [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 428-436. |
[3] | WAN Xiao, TIAN Danqing, PAN Xiaoyun, PAN Gangmin, GE Yaying, ZHOU Yuan, XIE Lupeng, ZHU Qiang. Physiological characteristics and sucrose treatment of Anthurium at different developmental stages [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2182-2187. |
[4] | FU Yuan, SHI Tuanyuan, SUN Hongchao. Establishment and application of indirect-ELISA for detection of Mycoplasma parvum based on mp-tGAPDH [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 809-815. |
[5] | YANG Yibin, CHEN Xiaojuan, DENG Lansheng, LIN Jingjing, CHENG Fengxian, HU Kewei, ZHANG Chenglin, TU Panfeng. Effect of ammonium polyphosphate on phosphorus adsorption and desorption in laterite and calcareous soil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 697-703. |
[6] | YANG Mingxia, LIAN Hongjuan, WANG Xiaofang, DU Yiyang, DONG Zhigang, JI Wei. Identification and expression analysis of grape MPT gene family [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2173-2185. |
[7] | ZHANG Haojie, LIU Mei, LI Chunyan, HE Ran, LAN Jingchao, LUO Li, GU Xiaobin, XIE Yue, YANG Guangyou. Prokaryotic expression and immunofluorescence localization of nucleoside diphosphate kinase gene from Dirofilaria immitis [J]. , 2019, 31(9): 1453-1460. |
[8] | XU Jiming, MAO Wenxuan, HE Qiuju, JIANG Xiaoyan, MAO Chuanzao. Analysis of influencing factors for determination of inorganic phosphate concentration in rice leaves [J]. , 2019, 31(11): 1790-1795. |
[9] | CHEN Xiaojuan, CHEN Yulin, LIN Jingjing, YANG Yibin, HU Kewei, ZHANG Chenglin. Conversion dynamics and effectiveness of ammonium polyphosphate with different polymerization degrees to soil phosphorus [J]. , 2019, 31(10): 1681-1688. |
[10] | XUE Shengling, JIANG Min, CHANG Jiaqi, LIU Yang, WEI Lin, ZHOU Jiankun, ZHANG Fen, SUN Bo. Cloning and prokaryotic expression of 1-deoxy-D-xylulose-5-phosphate synthase encoding gene (BaDXS1) in Brassica alboglabra [J]. , 2018, 30(5): 771-777. |
[11] | YU Chenliang, ZHANG Chenghao, ZHAN Yihua, DONG Wenqi. Identification, evolution and expression analysis of Pht1 gene family in Sorghum bicolor [J]. , 2017, 29(1): 16-22. |
[12] | LIU Yong, ZHANG Ling, WU Xiao\|qing, WEI Zhao\|hui, WANG Yan\|hong, WANG Qi\|di, GAO Di, DING Biao, WU Feng\|rui, WANG Rong, LI Wen\|yong*. Effects of heat stress on glucose\|6\|phosphate dehydrogenase activity and the chromatin configuration in pig oocytes [J]. , 2016, 28(1): 22-. |
[13] | LU Fu\|zeng1, LUO Wei\|bing1, SHENG Chun\|sheng2, XU Ru\|hai1, DAI Li\|he1, JIANG Hong\|jin1, CHU Xiao\|hong1,*. Evaluation of fresh pork umami index and study on flavor nucleotides degradation process#br# [J]. , 2015, 27(9): 1514-. |
[14] | NIU Jing\|yan1,2, LIU Zhan\|cai 1,2,*, WANG Yu\|shui1, ZHANG An\|shi1. Change of phosphatases activity in different tissues of grass carp(Ctenopharyngodon idella) after exposing to Hg2+#br# [J]. , 2015, 27(9): 1545-. |
[15] | WU Ying\|ben, HE Yue\|lin, CHEN Wei, WANG Zhen, XU Li\|juan, YIN Hong\|mei. Isolation, identification and degradation characteristics of a novel phosphate\|dissolving fungus strain Galactomyces geotrichum P14 [J]. , 2015, 27(4): 625-. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 461
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 800
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||