Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (10): 2182-2187.DOI: 10.3969/j.issn.1004-1524.2022.10.12
• Horticultural Science • Previous Articles Next Articles
WAN Xiao(), TIAN Danqing(
), PAN Xiaoyun, PAN Gangmin, GE Yaying, ZHOU Yuan, XIE Lupeng, ZHU Qiang
Received:
2021-03-01
Online:
2022-10-25
Published:
2022-10-26
Contact:
TIAN Danqing
CLC Number:
WAN Xiao, TIAN Danqing, PAN Xiaoyun, PAN Gangmin, GE Yaying, ZHOU Yuan, XIE Lupeng, ZHU Qiang. Physiological characteristics and sucrose treatment of Anthurium at different developmental stages[J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2182-2187.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.10.12
时期 Stage | 外观描述 Appearance description | 生长重点 Key project |
---|---|---|
T1 | 新叶和花芽尚未钻出鳞叶(现蕾期),此时花芽呈白色 The new leaves and flower buds have not yet drilled out of the scale leaf(squaring stage), and the flower buds are white at this time | 叶芽从鳞叶中钻出,叶柄伸长,叶片面积增加,叶片平展 The leaf bud is drilling out of the scale leaf; the leaf petiole is elongating; the leaf area is increasing, and the leaf blade is flating |
T2 | 花芽尚未钻出对应叶片基部的托叶(孕蕾期) Stipules that have not yet emerged from the base of the corresponding leaf (bud pregnant stage) | 叶片面积增大,叶片加厚,花芽钻出托叶,花芽色素开始合成 Leaf area and thickness is increasing; flower buds is drilling out of the stipule; flower pigment is begining to synthesize |
T3 | 花芽从托叶钻出1/2左右;花朵的佛焰苞先端2/3呈红色 Flower bud have drilled out half of the stipules; the 2/3 front apex of spathe is red | 花芽的生长,花梗伸长,苞片面积增大,叶片蜡质增厚 Flower bud growth. Pedicel elongated, bract area enlarged, leaf waxy thickened |
T4 | 佛焰苞卷曲,花柄为叶柄一半长 The spathe is still curly; the flower petiole length is half of the leaf | 花梗伸长,苞片开展,面积增大 The flower pedicel is elongating; the spathe is flating; the spathe area is increasing |
T5 | 佛焰苞完全打开,肉穗花序先端黄色占1/3,此时为最佳观赏期 The spathe is fully open, 1/3 apex of the spadix is yellow;this stage is the best viewing period | 种子成熟 The seed is maturing |
Table 1 Phenotypic observation of Anthurium at different developmental stages
时期 Stage | 外观描述 Appearance description | 生长重点 Key project |
---|---|---|
T1 | 新叶和花芽尚未钻出鳞叶(现蕾期),此时花芽呈白色 The new leaves and flower buds have not yet drilled out of the scale leaf(squaring stage), and the flower buds are white at this time | 叶芽从鳞叶中钻出,叶柄伸长,叶片面积增加,叶片平展 The leaf bud is drilling out of the scale leaf; the leaf petiole is elongating; the leaf area is increasing, and the leaf blade is flating |
T2 | 花芽尚未钻出对应叶片基部的托叶(孕蕾期) Stipules that have not yet emerged from the base of the corresponding leaf (bud pregnant stage) | 叶片面积增大,叶片加厚,花芽钻出托叶,花芽色素开始合成 Leaf area and thickness is increasing; flower buds is drilling out of the stipule; flower pigment is begining to synthesize |
T3 | 花芽从托叶钻出1/2左右;花朵的佛焰苞先端2/3呈红色 Flower bud have drilled out half of the stipules; the 2/3 front apex of spathe is red | 花芽的生长,花梗伸长,苞片面积增大,叶片蜡质增厚 Flower bud growth. Pedicel elongated, bract area enlarged, leaf waxy thickened |
T4 | 佛焰苞卷曲,花柄为叶柄一半长 The spathe is still curly; the flower petiole length is half of the leaf | 花梗伸长,苞片开展,面积增大 The flower pedicel is elongating; the spathe is flating; the spathe area is increasing |
T5 | 佛焰苞完全打开,肉穗花序先端黄色占1/3,此时为最佳观赏期 The spathe is fully open, 1/3 apex of the spadix is yellow;this stage is the best viewing period | 种子成熟 The seed is maturing |
时期 Stage | 发育到下一时期 天数Duration of each stage/d | 叶柄长 Petiole length/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm | 花梗长 Pedicel length/cm | 苞片长 Bract length/cm | 苞片宽 Bract width/cm |
---|---|---|---|---|---|---|---|
T1 | 55.25±4.11 | 10.43±0.21 | |||||
T2 | 55.50±4.20 | 17.53±2.35 | 7.93±0.67 | 6.83±0.35 | |||
T3 | 35.00±1.41 | 22.30±1.8 | 17.07±0.45 | 12.23±0.15 | |||
T4 | 58.75±2.22 | 25.2±0.53 | 17.10±0.46 | 12.23±0.15 | 13.63±1.21 | 7.17±0.25 | |
T5 | 28.47±0.60 | 17.23±0.31 | 12.23±0.15 | 29.37±0.95 | 9.07±0.21 | 9.60±0.26 |
Table 2 The development state of leaf and spathe at different developmental stages of Anthurium
时期 Stage | 发育到下一时期 天数Duration of each stage/d | 叶柄长 Petiole length/cm | 叶长 Leaf length/cm | 叶宽 Leaf width/cm | 花梗长 Pedicel length/cm | 苞片长 Bract length/cm | 苞片宽 Bract width/cm |
---|---|---|---|---|---|---|---|
T1 | 55.25±4.11 | 10.43±0.21 | |||||
T2 | 55.50±4.20 | 17.53±2.35 | 7.93±0.67 | 6.83±0.35 | |||
T3 | 35.00±1.41 | 22.30±1.8 | 17.07±0.45 | 12.23±0.15 | |||
T4 | 58.75±2.22 | 25.2±0.53 | 17.10±0.46 | 12.23±0.15 | 13.63±1.21 | 7.17±0.25 | |
T5 | 28.47±0.60 | 17.23±0.31 | 12.23±0.15 | 29.37±0.95 | 9.07±0.21 | 9.60±0.26 |
Fig.1 Net photosynthetic rate of Anthurium at different developmental stages The treatments with different lowercase letters showed significant difference (P<0.05). The same as below.
Fig.2 TPS activity of Anthurium in different development stages* and ** represented the significant difference at the level of 0.05 and 0.01, respectively.
Fig.3 Induction of Anthurium flower buds by different concentrations of sucrose solution A, The percentage of flower pedicel>5 cm; B, The percentage of 1 cm≤flower pedicel≤5 cm; C, The percentage of flower pedicel<1 cm; D, The percentage of flower pedicel without drilling out of the scale leaf; E, The percentage of flower bud emergency.
[1] |
DAI J W, PAULL R E. The role of leaf development on Anthurium flower growth[J]. Journal of the American Society for Horticultural Science, 1990, 115(6): 901-905.
DOI URL |
[2] | 常娟霞. 红掌CO和FT类基因的克隆与分析[D]. 海口: 海南大学, 2014. |
CHANG J X. Cloning and analysis of CO and FT gene in Anthurium andraeanum[D]. Haikou: Hainan University, 2014. (in Chinese with English abstract) | |
[3] |
DUFOUR L, GUÉRIN V. Growth, developmental features and flower production of Anthurium andreanum Lind. in tropical conditions[J]. Scientia Horticulturae, 2003, 98(1): 25-35.
DOI URL |
[4] |
IORDACHESCU M, IMAI R. Trehalose biosynthesis in response to abiotic stresses[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1223-1229.
DOI |
[5] |
GRIFFITHS C A, PAUL M J, FOYER C H. Metabolite transport and associated sugar signalling systems underpinning source/sink interactions[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2016, 1857(10): 1715-1725.
DOI PMID |
[6] | PAUL M J, JHURREEA D, ZHANG Y H, et al. Up-regulation of biosynthetic processes associated with growth by trehalose 6-phosphate[J]. Plant Signaling & Behavior, 2010, 5(4): 386-392. |
[7] | SCHLUEPMANN H, PELLNY T, VAN DIJKEN A, et al. Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(11): 6849-6854. |
[8] |
OSZVALD M, PRIMAVESI L F, GRIFFITHS C A, et al. Trehalose 6-phosphate regulates photosynthesis and assimilate partitioning in reproductive tissue[J]. Plant Physiology, 2018, 176(4): 2623-2638.
DOI PMID |
[9] |
MARTINS M C M, HEJAZI M, FETTKE J, et al. Feedback inhibition of starch degradation in Arabidopsis leaves mediated by trehalose 6-phosphate[J]. Plant Physiology, 2013, 163(3): 1142-1163.
DOI URL |
[10] |
PAUL M J, GONZALEZ-URIARTE A, GRIFFITHS C A, et al. The role of trehalose 6-phosphate in crop yield and resilience[J]. Plant Physiology, 2018, 177(1): 12-23.
DOI PMID |
[11] | 韩明玉, 杜利莎, 邢利博, 等. 一种促进苹果花芽孕育的蔗糖喷施方法: CN106212012A[P]. 2016-12-14. |
[12] | 蒋甲福, 王恒, 陈发棣, 等. 一种蔗糖处理促进菊花开花的方法: CN105766409B[P]. 2019-08-23. |
[13] | 张晓, 任惠惠, 曹婧, 等. 弱光导致荷花花芽败育的机制探析[J]. 南京农业大学学报, 2019, 42(6): 1040-1049. |
ZHANG X, REN H H, CAO J, et al. Analysis of the mechanism of Lotus flower bud abortion caused by low light[J]. Journal of Nanjing Agricultural University, 2019, 42(6): 1040-1049. (in Chinese with English abstract) | |
[14] |
NUCCIO M L, WU J, MOWERS R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nature Biotechnology, 2015, 33(8): 862-869.
PMID |
[15] | 彭丽丽, 姜卫兵, 韩健. 源库关系变化对果树产量及果实品质的影响[J]. 经济林研究, 2012, 30(3): 134-140. |
PENG L L, JIANG W B, HAN J. Effects of source-sink relationship change on yield and quality in fruit tree[J]. Nonwood Forest Research, 2012, 30(3): 134-140. (in Chinese with English abstract) | |
[16] | 徐迎春, 李绍华, 柴成林, 等. 水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J]. 果树学报, 2001, 18(1): 1-6. |
XU Y C, LI S H, CHAI C L, et al. Carbohydrate metabolism in source leaves of jonagold apple tree under water stress and after water stress relief[J]. Journal of Fruit Science, 2001, 18(1): 1-6. (in Chinese with English abstract) | |
[17] | 方金豹, 田莉莉, 陈锦永, 等. 猕猴桃源库关系的变化对果实特性的影响[J]. 园艺学报, 2002, 29(2): 113-118. |
FANG J B, TIAN L L, CHEN J Y, et al. Influence of sink or source change on fruit characteristics in kiwifruit[J]. Acta Horticulturae Sinica, 2002, 29(2): 113-118. (in Chinese with English abstract) | |
[18] |
ZHANG Y, XU W G, WANG H W, et al. Progress in genetic improvement of grain yield and related physiological traits of Chinese wheat in Henan Province[J]. Field Crops Research, 2016, 199: 117-128.
DOI URL |
[19] |
KHAN S U, GURMANI A R, DIN J U, et al. Exogenously applied gibberellic acid, indole acetic acid and kinetin as potential regulators of source-sink relationship, physiological and yield attributes in rice (Oryza sativa) genotypes under water deficit conditions[J]. International Journal of Agriculture and Biology, 2015, 18(1): 139-145.
DOI URL |
[20] |
MA Y T, CHEN Y J, ZHU J Y, et al. Coupling individual kernel-filling processes with source-sink interactions into GREENLAB-maize[J]. Annals of Botany, 2018, 121(5): 961-973.
DOI PMID |
[21] |
ZHANG Z P, DENG Y K, SONG X X, et al. Trehalose-6-phosphate and SNF1-related protein kinase 1 are involved in the first-fruit inhibition of cucumber[J]. Journal of Plant Physiology, 2015, 177: 110-120.
DOI PMID |
[22] |
SCHWACHTJE J, MINCHIN P E H, JAHNKE S, et al. SNF1-related kinases allow plants to tolerate herbivory by allocating carbon to roots[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(34): 12935-12940.
DOI PMID |
[23] |
WAHL V, PONNU J, SCHLERETH A, et al. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana[J]. Science, 2013, 339(6120): 704-707.
DOI URL |
[24] |
PAUL M J, PRIMAVESI L F, JHURREEA D, et al. Trehalose metabolism and signaling[J]. Annual Review of Plant Biology, 2008, 59: 417-441.
DOI PMID |
[25] |
DIJKEN A J H V, SCHLUEPMANN H, SMEEKENS S C M. Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering[J]. Plant Physiology, 2004, 135(2): 969-977.
DOI URL |
[26] | 牛俊海, 常娟霞, 杨光穗, 等. 红掌CONSTANS类基因AaCOL1和AaCOL2的克隆与表达分析[J]. 分子植物育种, 2014, 12(6): 1222-1229. |
NIU J H, CHANG J X, YANG G S, et al. Molecular cloning and expression analysis of CONSTANS-like genes, AaCOL1 and AaCOL2 of Anthurium andraeanum[J]. Molecular Plant Breeding, 2014, 12(6): 1222-1229. (in Chinese with English abstract) |
[1] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[2] | LYU Shufang, ZHANG Hongxiao, XU Huawei, ZHAO Xingli. Analysis of GhSuSy expression by particle bombardment during initiation of cotton fibers [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1361-1368. |
[3] | YANG Xiaofang, LI Yunduan, SUN Yunfan, LI Shaojia, MIAO Lixiang, ZHANG Yuchao, JIANG Guihua. Influence of substrate cultivation and soil cultivation on sucrose and citric acid accumulation of Yuexin strawberry [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1423-1430. |
[4] | ZHANG Weimei, ZHANG Guwen, FENG Zhijuan, LIU Na, WANG Bin, BU Yuanpeng. Research progress on genetic and regulatory mechanisms of sucrose in vegetable soybean seeds [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2446-2456. |
[5] | JIN Weiwei, CHEN Gongkai*, ZHU Jianjun, GAO Ailing. Gene clone, sequence analysis and gene expression of NIN and Sus from Ougan fruit [J]. , 2016, 28(5): 782-. |
[6] | LI Qiaozi1,GAO Suping2,*,ZHANG Keyan1,CHEN Feng1,DUAN Jingjing1,CAI Xinyi1. Effects of exogenous nitric oxide on growth and polysaccharide accumulation of protocormlike bodies from Dendrobium officinale [J]. , 2016, 28(4): 595-. |
[7] | CHE Yang, ZHAO Chun\|tian, QIU Juan\|ping. Effect of carbon sources on moenomycin biosynthesis in Streptomyces ghanaensis#br# [J]. , 2015, 27(8): 1355-. |
[8] | WANG Bingliang,FANG Tingting,YE Hongxia*,SHI Yu. Effect of cultivation methods on photosynthetic rate,yield and quality of Hami melon (Cucumis melo var. saccharinus) [J]. , 2014, 26(4): 896-. |
[9] | CHEN Binghong1,2, TANG Weihua1,YING Junhui1, LI Qiuping2,WANG Dongming1,PAN Xiyu1,CHAI Hongling1. Effects of zeolite medium on growth of Thuidium cymbifolium gametophyte#br# [J]. , 2014, 26(4): 948-. |
[10] | ZHENG Ning;MA Jia-wei;WANG Xyu-dong;YE Zheng-qian;LI Tian-zhu;MAO Qi;WU Xiao-hua. Effects of combinations of fungi residue and chemical fertilizer on photosynthesis characteristics of flag leaf and grain yield in rice [J]. , 2013, 25(3): 0-608. |
[11] | XIE Xiaobo;QI Xingjiang;*;JIN Wei;XIANG Kanghua;CHEN Weili;LIANG Senmiao;ZHENG Xiliang;QIU Yingying;HE Huan. Accumulation of fruit sugar components and activities analyzing of sucrose metabolizing enzymes during fruit development of red bayberry [J]. , 2013, 25(1): 0-52. |
[12] | ZHANG Guwen;HU Qizan;XYU Shengchun;GONG Yaming*. Study on sucrose accumulation and enzyme activities involved in sucrose metabolism in developing seeds of vegetable soybean [J]. , 2012, 24(6): 0-1020. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||