Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (1): 128-137.DOI: 10.3969/j.issn.1004-1524.2023.01.14
• Plant Protection • Previous Articles Next Articles
JI Yangyang(), ZHANG Peng, LIU Xiaoqiang, DONG Zhenru, ZHANG Wei, FAN Ting(
)
Received:
2022-01-19
Online:
2023-01-25
Published:
2023-02-21
CLC Number:
JI Yangyang, ZHANG Peng, LIU Xiaoqiang, DONG Zhenru, ZHANG Wei, FAN Ting. Oxidative stress response and biosorption capacity of Aspergillus flavus TL-F3 under nano silver particles stress[J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 128-137.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2023.01.14
Fig.3 Influence of AgNPs on morphology of A. flavus TL-F3 A, Scanning electron microscope (SEM) image of control group without AgNPs; B, SEM image of experiment group with 80 mg·L-1 AgNPs; C, Energy spectra of control group; D, Energy spectra of experiment group; E, F, Element mapping analysis diagram of control group; G, H, Element mapping analysis diagram of experiment group.
Fig.4 Content (A) and toxicity (B) of Ag+ released from AgNPs on A. flavus TL-F3 Bars marked without the same letters indicated significant difference at P<0.05. The same as below.
Fig.5 Effect of AgNPs on secretion of EPS by A. flavus TL-F3 (A) and changes of particle size before and after interaction of AgNPs with A. flavus TL-F3 (B)
Fig.7 Changes of ultraviolet absorption peak intensity before and after the interaction of A. flavus TL-F3 with AgNPs (A) and adsorption rate of AgNPs by A. flavus TL-F3 (B) 1-0 and 1-7 indicated interaction of 1 mg·L-1 AgNPs with A. flavus for 0 and 7 days, respectively. The rest may be deduced by analogy.
[1] |
BANO A, HUSSAIN J, AKBAR A, et al. Biosorption of heavy metals by obligate halophilic fungi[J]. Chemosphere, 2018, 199: 218-222.
DOI PMID |
[2] |
YIN Y G, TAN Z Q, HU L G, et al. Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications[J]. Chemical Reviews, 2017, 117(5): 4462-4487.
DOI PMID |
[3] | 叶成红, 奚廷斐. 纳米技术在医用材料领域中的应用[J]. 中国组织工程研究与临床康复, 2008, 12(45): 8897-8900. |
YE C H, XI T F. Application of nanotechnology in the field of biomedical materials[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008, 12(45): 8897-8900. (in Chinese with English abstract) | |
[4] | 谢晓俊, 羊桂英, 周琪欢, 等. 纳米银的绿色合成、杀虫活性和作用机制研究进展[J]. 农药学学报, 2021, 23(6): 1046-1054. |
XIE X J, YANG G Y, ZHOU Q H, et al. Advances on green synthesis, the insecticidal activity and mechanism of silver nanoparticles[J]. Chinese Journal of Pesticide Science, 2021, 23(6): 1046-1054. (in Chinese with English abstract) | |
[5] | 卢雪蓉, 冯晓丽, 刘朝莹, 等. 纳米银的迁移转化对环境微生物毒性的影响[J]. 生态毒理学报, 2018, 13(5): 49-57. |
LU X R, FENG X L, LIU Z Y, et al. Impact of migration and transformation of AgNPs on its toxicity towards environmental microorganism[J]. Asian Journal of Ecotoxicology, 2018, 13(5): 49-57. (in Chinese with English abstract) | |
[6] |
COLMAN B P, ESPINASSE B, RICHARDSON C J, et al. Emerging contaminant or an old toxin in disguise?:silver nanoparticle impacts on ecosystems[J]. Environmental Science & Technology, 2014, 48(9): 5229-5236.
DOI URL |
[7] | 江红生. 纳米银对水生植物的毒性机制及其生态效应[D]. 武汉: 中国科学院武汉植物园, 2017. |
JIANG H S. The toxicity mechanisms of silver nanoparticles to aauatic plants and their effects to a quatic ecosystem[D]. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. (in Chinese with English abstract) | |
[8] | 杨青青. 纳米银及硝酸银的迁移分布与生物摄入: 以水稻和池塘微宇宙为研究模型[D]. 焦作: 河南理工大学, 2016. |
YANG Q Q. The transport, fate and biouptake of silver nanoparticle and silver nitrate in the model of rice plant (Oryza sativa L.) and pond microcosm[D]. Jiaozuo: Henan Polytechnic University, 2016. (in Chinese with English abstract) | |
[9] | 易峰. 纳米银颗粒的迁移、转化及微生物毒性作用的研究[D]. 长沙: 湖南大学, 2017. |
YI F. The fate and transportation of silver nanoparticles, and its toxicity to microorganism[D]. Changsha: Hunan University, 2017. (in Chinese with English abstract) | |
[10] |
GEETHA N, BHAVYA G, ABHIJITH P, et al. Insights into nanomycoremediation: secretomics and mycogenic biopolymer nanocomposites for heavy metal detoxification[J]. Journal of Hazardous Materials, 2021, 409: 124541.
DOI URL |
[11] | 左亚男. 银纳米颗粒对黄孢原毛平革菌去除重金属镉的影响及其自身在体系中的迁移转化研究[D]. 长沙: 湖南大学, 2015. |
ZUO Y N. Impact of silver nanoparticles on the removal of Cd(Ⅱ) by Phanerochaete chrysosporium and its transport and transformation in aqueous solutions[D]. Changsha: Hunan University, 2015. (in Chinese with English abstract) | |
[12] |
WU L L, ZHU G S, ZHANG X X, et al. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri[J]. Science of the Total Environment, 2020, 706: 135711.
DOI URL |
[13] |
LOO S L, KRANTZ W B, FANE A G, et al. Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles[J]. Environmental Science & Technology, 2015, 49(4): 2310-2318.
DOI URL |
[14] | 王小壮. 黄酒酿造中黄酒酵母与黄曲霉的定量分析及相互作用研究[D]. 无锡: 江南大学, 2021. |
WANG X Z. Quantitative analysis and interaction between Saccharomyces cerevisiae and Aspergillus flavus in Huangjiu brewing[D]. Wuxi: Jiangnan University, 2021. (in Chinese with English abstract) | |
[15] |
FOROUTAN R, ESMAEILI H, RISHEHRI S D, et al. Zinc, nickel, and cobalt ions removal from aqueous solution and plating plant wastewater by modified Aspergillus flavus biomass: a dataset[J]. Data in Brief, 2017, 12: 485-492.
DOI URL |
[16] |
MAHMOUD M E, EL ZOKM G M, FARAG A E M, et al. Assessment of heat-inactivated marine Aspergillus flavus as a novel biosorbent for removal of Cd(II), Hg(II), and Pb(II) from water[J]. Environmental Science and Pollution Research International, 2017, 24(22): 18218-18228.
DOI URL |
[17] | QAYYUM S, KHAN I, BHATTI Z A, et al. Fungal strain Aspergillus flavus F3 as a potential candidate for the removal of lead (II) and chromium (VI) from contaminated soil[J]. Main Group Metal Chemistry, 2016, 39: 93-104. |
[18] | 樊霆, 刘如, 潘丹丹, 等. 黄曲霉TL-F3强化黑麦草修复重金属污染土壤的方法: 202010623709.2[P]. 2020-06-30. |
[19] | 樊霆, 周娜, 刘云国, 等. 黑曲霉对重金属Cu(Ⅱ)和Zn(Ⅱ)的抗性及富集特性[J]. 农业环境科学学报, 2012, 31(9): 1836-1841. |
FAN T, ZHOU N, LIU Y G, et al. Resistance to Cu(Ⅱ) and Zn(Ⅱ) and bioaccumulation characteristics of Aspergillus niger[J]. Journal of Agro-Environment Science, 2012, 31(9): 1836-1841. (in Chinese with English abstract) | |
[20] |
刘如, 董畅茹, 张祎雯, 等. 镉胁迫下黑曲霉TL-F2的促生特征及其对黑麦草种子萌发、幼苗生长和镉含量的影响[J]. 浙江农业学报, 2021, 33(2): 326-334.
DOI |
LIU R, DONG C R, ZHANG Y W, et al. Growth-promoting characteristics of Aspergillus niger TL-F2 and its effect on seed germination and cadmium content in seedlings of ryegrass under cadmium stress[J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 326-334. (in Chinese with English abstract)
DOI |
|
[21] | 刘子森, 肖恩荣, 张丽萍, 等. EPS及其测定方法分析[J]. 膜科学与技术, 2015, 35(4): 103-109. |
LIU Z S, XIAO E R, ZHANG L P, et al. Analysis on the determination methods of EPS[J]. Membrane Science and Technology, 2015, 35(4): 103-109. (in Chinese with English abstract) | |
[22] | 李定心. Cu(Ⅱ)和Zn(Ⅱ)对黑曲霉TL-F2抗氧化系统的影响[D]. 合肥: 安徽农业大学, 2015. |
LI D X. Effects of Cu(Ⅱ) and Zn(Ⅱ) on antioxidant system of Aspergillus niger TL-F2[D]. Hefei: Anhui Agricultural University, 2015. (in Chinese with English abstract) | |
[23] | 蔡群虎, 刘石磊, 袁敏惠, 等. 三七多糖含量测定方法比较[J]. 云南中医中药杂志, 2020, 41(8): 59-62. |
CAI Q H, LIU S L, YUAN M H, et al. Comparison of determination methods of polysaccharide content in Panax notoginseng[J]. Yunnan Journal of Traditional Chinese Medicine and Materia Medica, 2020, 41(8): 59-62. (in Chinese with English abstract) | |
[24] | 陈惠萍. 活性氧的检测方法[J]. 华南热带农业大学学报, 2000(2): 14-17. |
CHEN H P. Detection method of active oxygen species[J]. Journal of South China University of Tropical Agriculture, 2000(2): 14-17. (in Chinese) | |
[25] | 丁文东, 崔康平, 郭志, 等. 纳米银在诺氟沙星胁迫下对黄孢原毛平革菌的毒物兴奋效应[J]. 生态毒理学报, 2020, 15(6): 141-150. |
DING W D, CUI K P, GUO Z, et al. Hormesis of silver nanoparticles on Phanerochaete chrysosporium under norfloxacin stress[J]. Asian Journal of Ecotoxicology, 2020, 15(6): 141-150. (in Chinese with English abstract) | |
[26] |
ANEKTHIRAKUN P, IMYIM A. Separation of silver ions and silver nanoparticles by silica based-solid phase extraction prior to ICP-OES determination[J]. Microchemical Journal, 2019, 145: 470-475.
DOI URL |
[27] | 王燕, 周少华, 邵永珍, 等. 胶体纳米银对白假丝酵母菌的抑制作用[J]. 中国微生态学杂志, 2019, 31(10): 1147-1150. |
WANG Y, ZHOU S H, SHAO Y Z, et al. The inhibitory effect of colloidal silver nanoparticles on Candida albicans[J]. Chinese Journal of Microecology, 2019, 31(10): 1147-1150. (in Chinese with English abstract) | |
[28] |
ANUJ S A, GAJERA H P, HIRPARA D G, et al. The impact of bacterial size on their survival in the presence of cationic particles of nano-silver[J]. Journal of Trace Elements in Medicine and Biology, 2020, 61: 126517.
DOI URL |
[29] | 万正强. EPS在硫酸盐脱硫弧菌(Desulfovibrio desulfuricans)去除重金属Cd2+过程作用研究[D]. 合肥: 合肥工业大学, 2013. |
WAN Z Q. Study on the role of EPS in the removal of heavy metal Cd2+ by Desulfovibrio desulfuricans[D]. Hefei: Hefei University of Technology, 2013. (in Chinese with English abstract) | |
[30] | 刘滨, 殷学伟, 郭励劼, 等. ZnO纳米粒子通过线粒体通路抑制小鼠光感受器细胞Na+/K+-ATP酶表达和活性的作用研究[J]. 生态毒理学报, 2018, 13(3): 172-180. |
LIU B, YIN X W, GUO L J, et al. Inhibitory effects of zinc oxide nanoparticles on Na+/K+-ATP enzyme expression and activity via mitochondrial pathway in murine photoreceptor cells[J]. Asian Journal of Ecotoxicology, 2018, 13(3): 172-180. (in Chinese with English abstract) | |
[31] | 潘蒋娟, 李培骏, 苏东林, 等. 纳米银诱导微生物氧化应激及其抗菌机制[J]. 中国食品学报, 2021, 21(11): 389-396. |
PAN J J, LI P J, SU D L, et al. Microbial oxidative stress induced by silver nanoparticles and its antimicrobial mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 389-396. (in Chinese with English abstract) | |
[32] |
KUMAR V, SINGH S, SINGH G, et al. Exploring the cadmium tolerance and removal capability of a filamentous fungus Fusarium solani[J]. Geomicrobiology Journal, 2019, 36(9): 782-791.
DOI URL |
[33] | 刘亚楼, 樊霆, 刘如, 等. 一株耐盐菌的筛选、鉴定及对苯酚和镉耐性特征[J]. 安徽农业大学学报, 2020, 47(3): 402-408. |
LIU Y L, FAN T, LIU R, et al. Screening, identification and tolerance to phenol and cadmium of a salt-tolerant strain[J]. Journal of Anhui Agricultural University, 2020, 47(3): 402-408. (in Chinese with English abstract) |
[1] | ZHONG Lijun, DENG Jiaqiang, GU Congwei, SHEN Liuhong, CAO Suizhong, YU Shumin. Effects of MitoQ on mitochondrial function and antioxidant capacity of canine bone marrow mesenchymal stem cells [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 934-941. |
[2] | XIONG Xinyi, XU Zeyu, HE Nianjia, HE Junbo, CHEN Zhengli, HUANG Chao, LIU Wentao, LUO Qihui. Effects of soy isoflavones on oxidative stress and inflammatory response in liver of rats with food borne obesity [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 942-948. |
[3] | YUE Jianhua, DONG Yan, LI Wenyang, LI Meng, ZHANG Yan. Effects of pH on physiological characters in somatic embryo induction stage of Agapanthus praecox [J]. , 2020, 32(8): 1405-1414. |
[4] | MA Qixue, SUN Xiangyang, LI Suyan, LI Song, LIU Yuanxin, ZHOU Wenjie. Effects of applying green waste compost on physiological characteristics of pakchoi in Pb, Zn contaminated soil [J]. , 2020, 32(11): 2027-2034. |
[5] | YANG Zongying, ZHANG Yiliu, HU Kun, YANG Xianle, LIU Lishuo, ZHANG Fengxiang, CAI Honggui. Effects of deltamethrin exposure on oxidative stress indexes and histological structure of hepatopancreas in Eriocheir sinensis [J]. , 2017, 29(8): 1261-1270. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||