Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (4): 920-931.DOI: 10.3969/j.issn.1004-1524.20230494
Previous Articles Next Articles
ZHAO Xiaoliang1(), LONG Zeyu1,2, LU Yun1,2, JIN Weiwei2,3,*(
)
Received:
2023-04-12
Online:
2024-04-25
Published:
2024-04-29
Contact:
JIN Weiwei
CLC Number:
ZHAO Xiaoliang, LONG Zeyu, LU Yun, JIN Weiwei. Research and application progress on efficacy of active substances in Dioscorea opposite Thunb.[J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 920-931.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230494
材料来源地 Material source | 结构特征 Structural characteristics | 单糖组成及相对摩尔比 Monosaccharide composition and relative molar ratio | 参考文献 Reference |
---|---|---|---|
重庆 Chongqing | ![]() | — | [ |
河南 Henan | 抗氧化活性最强组分的主链: Main chain of components with the strongest antioxidant activity: →2-β-D-Glc-(1→6)-α-D-Glc-(1→2)-β-D-Glc-(1→6)-α-D-Glc-(1→ | Ara,Gal,Glc,Man,GalA:0.04∶0.09∶0.69∶0.13∶0.04 | [ |
广州 Guangzhou | ![]() | Rib,Rha,Ara,Xyl,Man,Glc,GalA:0.26∶0.22∶1.45∶0.42∶14.90∶79.72∶3.03 | [ |
天津 Tianjin | 经红外分析,存在α构型、β构型和吡喃糖环结构,含有1-2、1-3、1-4、1-6和1-3,6型糖苷键。 Infrared analysis shows that there are alpha configuration, beta configuration and pyranose ring structure, which contain 1-2, 1-3, 1-4, 1-6 and 1-3, 6 glycosidic bonds. | Rha,Ara,Man,Glc,Gal,GalA. 3.08∶4.11∶25.59∶8.72∶8.08∶1 | [ |
河南 Henan | 三种多糖的主链: Main chains of three polysaccharides: →2)-β-D-Manp-(1→; 1,2-β-Manp; →1)-β-D-Galp-(4→ | 共同的单糖组成与比例: Common monosaccharide composition and proportion: Man,Rib,Rha,GalA,Glc,Gal,Ara,Fuc 155.71∶1.00∶1.83∶66.44∶12.25∶6.32∶2.60∶10.05; 106.65∶1.88∶1.44∶32.97∶3.74∶2.54∶1.00∶6.09; 116.10∶1.00∶2.58∶36.44∶2.57∶3.34∶1.31∶7.69 | [ |
Table 1 Connection mode and monosaccharide composition of several yam polysaccharides
材料来源地 Material source | 结构特征 Structural characteristics | 单糖组成及相对摩尔比 Monosaccharide composition and relative molar ratio | 参考文献 Reference |
---|---|---|---|
重庆 Chongqing | ![]() | — | [ |
河南 Henan | 抗氧化活性最强组分的主链: Main chain of components with the strongest antioxidant activity: →2-β-D-Glc-(1→6)-α-D-Glc-(1→2)-β-D-Glc-(1→6)-α-D-Glc-(1→ | Ara,Gal,Glc,Man,GalA:0.04∶0.09∶0.69∶0.13∶0.04 | [ |
广州 Guangzhou | ![]() | Rib,Rha,Ara,Xyl,Man,Glc,GalA:0.26∶0.22∶1.45∶0.42∶14.90∶79.72∶3.03 | [ |
天津 Tianjin | 经红外分析,存在α构型、β构型和吡喃糖环结构,含有1-2、1-3、1-4、1-6和1-3,6型糖苷键。 Infrared analysis shows that there are alpha configuration, beta configuration and pyranose ring structure, which contain 1-2, 1-3, 1-4, 1-6 and 1-3, 6 glycosidic bonds. | Rha,Ara,Man,Glc,Gal,GalA. 3.08∶4.11∶25.59∶8.72∶8.08∶1 | [ |
河南 Henan | 三种多糖的主链: Main chains of three polysaccharides: →2)-β-D-Manp-(1→; 1,2-β-Manp; →1)-β-D-Galp-(4→ | 共同的单糖组成与比例: Common monosaccharide composition and proportion: Man,Rib,Rha,GalA,Glc,Gal,Ara,Fuc 155.71∶1.00∶1.83∶66.44∶12.25∶6.32∶2.60∶10.05; 106.65∶1.88∶1.44∶32.97∶3.74∶2.54∶1.00∶6.09; 116.10∶1.00∶2.58∶36.44∶2.57∶3.34∶1.31∶7.69 | [ |
方法 Method | 优点 Advantages | 缺点 Disadvantages | 参考文献 Reference |
---|---|---|---|
热水浸提 Hot water extraction | 成本低,操作便捷 Low cost and convenient operation | 得率低,提取时间久 Low yield, long extraction time | [ |
微波辅助提取 Microwave assisted extraction | 溶剂消耗少,提取效率高 Low solvent consumption and high extraction efficiency | 大功率破坏产物结构,对实验人员以及设备要求高 High power destroys the product structure, high requirements for operators and equipment | [ |
超声波辅助提取 Ultrasonic-assisted extraction | 提取时间短 Short extraction time | 功率过大破坏结构 Excessive power destroys the structure | [ |
酶法提取 Enzymatic extraction | 反应条件温和 Mild reaction conditions | 不同酶适应的pH与温度条件对多糖结构影响明显 The suitable pH and temperature conditions for the enzymes impact the structure of the polysaccharide | [ |
超滤辅助提取 Ultrafiltration assisted extraction | 节能环保,高效 Energy saving and environment- friendly, high efficiency | — | [ |
深共晶溶剂提取 Deep eutectic solvents extraction | 溶剂绿色环保 Environment-friendly solvent | 挥发性差,回收利用困难 Poor volatility, difficult to recycle | [ |
超高压提取 Extra-high voltage extraction | 耗时短,提取液杂质含量低 Short time consumption and low impurity content in the extract | 设备成本高,不适合工业生产 High equipment cost, not suitable for industrial production | [ |
Table 2 Advantages and disadvantages of yam polysaccharide extraction methods
方法 Method | 优点 Advantages | 缺点 Disadvantages | 参考文献 Reference |
---|---|---|---|
热水浸提 Hot water extraction | 成本低,操作便捷 Low cost and convenient operation | 得率低,提取时间久 Low yield, long extraction time | [ |
微波辅助提取 Microwave assisted extraction | 溶剂消耗少,提取效率高 Low solvent consumption and high extraction efficiency | 大功率破坏产物结构,对实验人员以及设备要求高 High power destroys the product structure, high requirements for operators and equipment | [ |
超声波辅助提取 Ultrasonic-assisted extraction | 提取时间短 Short extraction time | 功率过大破坏结构 Excessive power destroys the structure | [ |
酶法提取 Enzymatic extraction | 反应条件温和 Mild reaction conditions | 不同酶适应的pH与温度条件对多糖结构影响明显 The suitable pH and temperature conditions for the enzymes impact the structure of the polysaccharide | [ |
超滤辅助提取 Ultrafiltration assisted extraction | 节能环保,高效 Energy saving and environment- friendly, high efficiency | — | [ |
深共晶溶剂提取 Deep eutectic solvents extraction | 溶剂绿色环保 Environment-friendly solvent | 挥发性差,回收利用困难 Poor volatility, difficult to recycle | [ |
超高压提取 Extra-high voltage extraction | 耗时短,提取液杂质含量低 Short time consumption and low impurity content in the extract | 设备成本高,不适合工业生产 High equipment cost, not suitable for industrial production | [ |
方法Method | 优点Advantages | 缺点Disadvantages |
---|---|---|
碱提取 Alkali extraction | 产率高 High yield | 不环保 Not environment-friendly |
酶提取 Enzyme extraction | 产率高,纯度高 High yield, high purity of product | 酶利用率低,底物转化率低 Low enzyme utilization, low substrate conversion rate |
超声提取 Ultrasonic extraction | 提取时间短,可作为辅助与其他方式结合 Short extraction time, could be combined with other methods | 单独使用时产率低 Low yield when used alone |
Table 3 Advantages and disadvantages of yam starch extraction methods
方法Method | 优点Advantages | 缺点Disadvantages |
---|---|---|
碱提取 Alkali extraction | 产率高 High yield | 不环保 Not environment-friendly |
酶提取 Enzyme extraction | 产率高,纯度高 High yield, high purity of product | 酶利用率低,底物转化率低 Low enzyme utilization, low substrate conversion rate |
超声提取 Ultrasonic extraction | 提取时间短,可作为辅助与其他方式结合 Short extraction time, could be combined with other methods | 单独使用时产率低 Low yield when used alone |
方法 Method | 优点 Advantages | 缺点 Disadvantages | 参考文献 Reference |
---|---|---|---|
生物酶处理提取 Extraction by biological enzyme treatment | 提取效率高 High extraction efficiency | 较高的成本 High cost | [ |
超声辅助提取 Ultrasonic-assisted extraction | 快速、环保 Rapid, environment-friendly | 超声探头老化降低产率 Ultrasonic probe aging reduces efficiency | [ |
表面活性剂提取 Surfactant extraction | 成本低,反应温和 Low cost, mild reaction | 不适宜的活性剂对环境造成污染 Unsuitable active agents cause pollution to the environment | [ |
亚临界水提取 Subcritical water extraction | 无毒、易回收、可持续利用 Nontoxic, easily recovered, sustainable | 不适用于高含水样品,仪器成本高 Not suitable for high water content samples, high instrument cost | [ |
Table 4 Advantages and disadvantages of yam diosgenin extraction methods
方法 Method | 优点 Advantages | 缺点 Disadvantages | 参考文献 Reference |
---|---|---|---|
生物酶处理提取 Extraction by biological enzyme treatment | 提取效率高 High extraction efficiency | 较高的成本 High cost | [ |
超声辅助提取 Ultrasonic-assisted extraction | 快速、环保 Rapid, environment-friendly | 超声探头老化降低产率 Ultrasonic probe aging reduces efficiency | [ |
表面活性剂提取 Surfactant extraction | 成本低,反应温和 Low cost, mild reaction | 不适宜的活性剂对环境造成污染 Unsuitable active agents cause pollution to the environment | [ |
亚临界水提取 Subcritical water extraction | 无毒、易回收、可持续利用 Nontoxic, easily recovered, sustainable | 不适用于高含水样品,仪器成本高 Not suitable for high water content samples, high instrument cost | [ |
[1] | 黄少杰, 黎攀, 杜冰. 山药多糖的纯化、结构及生物活性研究进展[J]. 食品研究与开发, 2022, 43(16): 209-215. |
HUANG S J, LI P, DU B. Progress in purification, structure and bioactivity of Chinese yam polysaccharide[J]. Food Research and Development, 2022, 43(16): 209-215. (in Chinese with English abstract) | |
[2] | 潘景芝, 孟庆龙, 崔文玉, 等. 山药功能性成分及药理作用研究进展[J]. 食品工业科技, 2023, 44(1): 420-428. |
PAN J Z, MENG Q L, CUI W Y, et al. Advances in studies on functional components and pharmacological effects of Dioscorea opposita Thunb[J]. Science and Technology of Food Industry, 2023, 44(1): 420-428. (in Chinese with English abstract) | |
[3] | 彭新, 牛乐, 周宁, 等. 山药多糖功能活性及新产品开发研究进展[J]. 食品研究与开发, 2020, 41(17): 204-209. |
PENG X, NIU L, ZHOU N, et al. Research progress in functional activity and new product development of Chinese yam polysaccharide[J]. Food Research and Development, 2020, 41(17): 204-209. (in Chinese with English abstract) | |
[4] | JU Y, XUE Y, HUANG J L, et al. Antioxidant Chinese yam polysaccharides and its pro-proliferative effect on endometrial epithelial cells[J]. International Journal of Biological Macromolecules, 2014, 66: 81-85. |
[5] | 陈丽叶, 常希光, 冯晓光, 等. 山药多糖的体外抗氧化活性[J]. 食品科学, 2021, 42(19): 122-128. |
CHEN L Y, CHANG X G, FENG X G, et al. In vitro Antioxidant activity of Chinese yam polysaccharides[J]. Food Science, 2021, 42(19): 122-128. (in Chinese with English abstract) | |
[6] | ZHOU S Y, HUANG G L, CHEN G Y. Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam[J]. Food Chemistry, 2021, 361: 130089. |
[7] | 郑常领, 赵柄舒, 王玉华, 等. 黑木耳多糖的磷酸化修饰及其抗氧化活性研究[J]. 食品工业科技, 2019, 40(17): 134-141. |
ZHENG C L, ZHAO B S, WANG Y H, et al. Study on the phosphorylation modification and antioxidant activity of polysaccharides of Auricularia auricular[J]. Science and Technology of Food Industry, 2019, 40(17): 134-141. (in Chinese with English abstract) | |
[8] | 许春平, 孙懿岩, 白家峰, 等. 怀山药多糖的提取、硫酸酯化修饰及抗氧化活性研究[J]. 河南工业大学学报(自然科学版), 2019, 40(3): 50-55. |
XU C P, SUN Y Y, BAI J F, et al. Study on the extraction, sulfation modification and antioxidant activity of yam polysaccharides[J]. Journal of Henan University of Technology(Natural Science Edition), 2019, 40(3): 50-55. (in Chinese) | |
[9] | ZHANG Y, LIU Y H, NI G Y, et al. Sulfated modification, basic characterization, antioxidant and anticoagulant potentials of polysaccharide from Sagittaria trifolia[J]. Arabian Journal of Chemistry, 2023, 16(7): 104812. |
[10] | LIU X X, GU L B, ZHANG G J, et al. Structural characterization and antioxidant activity of polysaccharides extracted from Chinese yam by a cellulase-assisted method[J]. Process Biochemistry, 2022, 121: 178-187. |
[11] | LI P, XIAO N, ZENG L P, et al. Structural characteristics of a mannoglucan isolated from Chinese yam and its treatment effects against gut microbiota dysbiosis and DSS-induced colitis in mice[J]. Carbohydrate Polymers, 2020, 250: 116958. |
[12] | 于海芬. 铁棍山药多糖的纯化、结构及胃肠调节活性研究[D]. 天津: 天津科技大学, 2019. |
YU H F.Study on purification, structure and gastrointestinal regulating activity of Dioscorea opposita Thunb.cv.Tiegun polysaccharide[D]. Tianjin:Tianjin University of Science and Technology, 2019. (in Chinese with English abstract) | |
[13] | 王瑞娇. 怀山药多糖的结构鉴定及活性评价[D]. 开封: 河南大学, 2021. |
WANG R J. Structural characterization and activities of polysaccharides from Dioscorea opposita Thunb.[D]. Kaifeng: Henan University, 2021. (in Chinese with English abstract) | |
[14] | HUANG R, SHEN M Y, YU Y, et al. Physicochemical characterization and immunomodulatory activity of sulfated Chinese yam polysaccharide[J]. International Journal of Biological Macromolecules, 2020, 165: 635-644. |
[15] | HUANG R, XIE J H, LIU X, et al. Sulfated modification enhances the modulatory effect of yam polysaccharide on gut microbiota in cyclophosphamide-treated mice[J]. Food Research International, 2021, 145: 110393. |
[16] | ZHANG N, LIANG T S, JIN Q, et al. Chinese yam (Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short-chain fatty acids in mice[J]. Food Research International, 2019, 122: 191-198. |
[17] | CHENG Z Y, HU M, TAO J, et al. The protective effects of Chinese yam polysaccharide against obesity-induced insulin resistance[J]. Journal of Functional Foods, 2019, 55: 238-247. |
[18] | ZENG H J, LIU Z, WANG Y P, et al. Studies on the anti-aging activity of a glycoprotein isolated from Fupenzi (Rubus chingii Hu.) and its regulation on klotho gene expression in mice kidney[J]. International Journal of Biological Macromolecules, 2018, 119: 470-476. |
[19] | WANG X, HUO X Z, LIU Z, et al. Investigations on the anti-aging activity of polysaccharides from Chinese yam and their regulation on klotho gene expression in mice[J]. Journal of Molecular Structure, 2020, 1208: 127895. |
[20] | WANG F, LIU F, CHEN W G. Effects of yam (Dioscorea oppositifolia L.) on growth performance, serum biochemical level and liver metabonomics of rainbow trout (Oncorhynchus mykiss)[J]. Aquaculture Reports, 2020, 18: 100481. |
[21] | 张俊婷. 山药多糖提取工艺优化及其抗菌活性研究[D]. 佳木斯: 佳木斯大学, 2014. |
ZHANG J T. Optimization of extraction technology of yam polysaccharide and its antibacterial activity[D]. Jiamusi: Jiamusi University, 2014. (in Chinese with English abstract) | |
[22] | CHEN C, ZHANG B, HUANG Q, et al. Microwave-assisted extraction of polysaccharides from Moringa oleifera Lam. leaves: characterization and hypoglycemic activity[J]. Industrial Crops and Products, 2017, 100: 1-11. |
[23] | 王珺, 李玉伟, 江姜, 等. 微波辅助酶法优化怀山药多糖提取工艺的研究[J]. 食品工业科技, 2018, 39(11): 190-193. |
WANG J, LI Y W, JIANG J, et al. Study on technology of polysaccharide extraction from Dioscorea opposita by microwave assisted enzymatic method[J]. Science and Technology of Food Industry, 2018, 39(11): 190-193. (in Chinese with English abstract) | |
[24] | 王晓敏, 林霖雨, 李康丽, 等. 超声波辅助提取山药多糖及体外抗氧化性研究[J]. 食品研究与开发, 2018, 39(12): 24-28. |
WANG X M, LIN L Y, LI K L, et al. Ultrasonic-assisted extraction of yam polysaccharides and its antioxidant activity in vitro[J]. Food Research and Development, 2018, 39(12): 24-28. (in Chinese with English abstract) | |
[25] | 段伟萍, 李新蕊, 司明东, 等. 山药多糖提取工艺的响应面法优化及其功能活性分析[J]. 食品研究与开发, 2020, 41(7): 118-123. |
DUAN W P, LI X R, SI M D, et al. Optimization of extraction technology for Chinese yam polysaccharides by response surface method and its hypoglycemic and antioxidant activity[J]. Food Research and Development, 2020, 41(7): 118-123. (in Chinese with English abstract) | |
[26] | LIU X X, YAN Y Y, LIU H M, et al. Emulsifying and structural properties of polysaccharides extracted from Chinese yam by an enzyme-assisted method[J]. LWT, 2019, 111: 242-251. |
[27] | XUE H Y, LI J R, LIU Y G, et al. Optimization of the ultrafiltration-assisted extraction of Chinese yam polysaccharide using response surface methodology and its biological activity[J]. International Journal of Biological Macromolecules, 2019, 121: 1186-1193. |
[28] | ZHANG L J, WANG M S. Optimization of deep eutectic solvent-based ultrasound-assisted extraction of polysaccharides from Dioscorea opposita Thunb[J]. International Journal of Biological Macromolecules, 2017, 95: 675-681. |
[29] | TANG Z H, XU Y, CAI C Y, et al. Extraction of Lycium barbarum polysaccharides using temperature-switchable deep eutectic solvents: a sustainable methodology for recycling and reuse of the extractant[J]. Journal of Molecular Liquids, 2023, 383: 122063. |
[30] | 林平舟. 水溶性荔枝多糖的超高压提取技术及其结构和生物活性研究[D]. 广州: 华南理工大学, 2017. |
LIN P Z. Study on structure and bioactivity of water soluble polysaccharides extracted from Litchi chinensis Sonn using ultra-high pressure technology[D]. Guangzhou: South China University of Technology, 2017. (in Chinese with English abstract) | |
[31] | EPPING J, LAIBACH N. An underutilized orphan tuber crop-Chinese yam: a review[J]. Planta, 2020, 252(4): 58. |
[32] | YU B, LI J, TAO H T, et al. Physicochemical properties and in vitro digestibility of hydrothermal treated Chinese yam (Dioscorea opposita Thunb.) starch and flour[J]. International Journal of Biological Macromolecules, 2021, 176: 177-185. |
[33] | CAO Y, LIU H L, QIN N B, et al. Impact of food additives on the composition and function of gut microbiota: a review[J]. Trends in Food Science & Technology, 2020, 99: 295-310. |
[34] | UPADHYAYA B, MCCORMACK L, FARDIN-KIA A R, et al. Impact of dietary resistant starch type 4 on human gut microbiota and immunometabolic functions[J]. Scientific Reports, 2016, 6: 28797. |
[35] | LI T, CHEN L, XIAO J B, et al. Prebiotic effects of resistant starch from purple yam (Dioscorea alata L.) on the tolerance and proliferation ability of Bifidobacterium adolescentis in vitro[J]. Food & Function, 2018, 9(4): 2416-2425. |
[36] | XU Z Z, LIU W, ZHANG Y H, et al. Therapeutic and prebiotic effects of five different native starches on dextran sulfate sodium-induced mice model of colonic colitis[J]. Molecular Nutrition and Food Research, 2021, 65(8): e2000922. |
[37] | 李颖, 张欣, 杨佳杰, 等. 抗性淀粉改善肠道功能及糖脂代谢的研究进展[J]. 食品科学, 2020, 41(13): 326-335. |
LI Y, ZHANG X, YANG J J, et al. Progress in the effect of resistant starch on improving intestinal function and glycolipid metabolism[J]. Food Science, 2020, 41(13): 326-335. (in Chinese with English abstract) | |
[38] | ZHOU Z K, WANG F, REN X C, et al. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats[J]. International Journal of Biological Macromolecules, 2015, 75: 316-321. |
[39] | LI T, TENG H, AN F P, et al. The beneficial effects of purple yam (Dioscorea alata L.) resistant starch on hyperlipidemia in high-fat-fed hamsters[J]. Food and Function, 2019, 10(5): 2642-2650. |
[40] | METZLER-ZEBELI B U, CANIBE N, MONTAGNE L, et al. Resistant starch reduces large intestinal pH and promotes fecal lactobacilli and bifidobacteria in pigs[J]. Animal, 2019, 13(1): 64-73. |
[41] | NIE M Z, PIAO C H, WANG A X, et al. Physicochemical properties and in vitro digestibility of highland barley starch with different extraction methods[J]. Carbohydrate Polymers, 2023, 303: 120458. |
[42] | KARMAKAR B, SAHA S P, CHAKRABORTY R, et al. Optimization of starch extraction from Amorphophallus paeoniifolius corms using response surface methodology (RSM) and artificial neural network (ANN) for improving yield with tenable chemical attributes[J]. International Journal of Biological Macromolecules, 2023, 237: 124183. |
[43] | LI Y, JI S Y, XU T, et al. Chinese yam (Dioscorea): nutritional value, beneficial effects, and food and pharmaceutical applications[J]. Trends in Food Science and Technology, 2023, 134: 29-40. |
[44] | WU Z G, JIANG W, NITIN M, et al. Characterizing diversity based on nutritional and bioactive compositions of yam germplasm (Dioscorea spp.) commonly cultivated in China[J]. Journal of Food and Drug Analysis, 2016, 24(2): 367-375. |
[45] | 从少华, 祁胜财, 彭前, 等. 薯蓣皂苷元对粪肠球菌体外抗菌性的研究[J]. 临床口腔医学杂志, 2020, 36(1): 7-10. |
CONG S H, QI S C, PENG Q, et al. A study on diosgenin antibacterial activity against Enterococcus faecalis in vitro[J]. Journal of Clinical Stomatology, 2020, 36(1): 7-10. (in Chinese with English abstract) | |
[46] | KOU Y, SUN Q D, ZHU R T, et al. Dioscin induces M1 macrophage polarization through Connexin-43 Channels in Tumor-associated-macrophages-mediated melanoma metastasis[J]. Phytomedicine, 2023, 109: 154559. |
[47] | CHEN J, LI H M, ZHANG X N, et al. Dioscin-induced apoptosis of human LNCaP prostate carcinoma cells through activation of caspase-3 and modulation of Bcl-2 protein family[J]. Journal of Huazhong University of Science and Technology, 2014, 34(1): 125-130. |
[48] | WANG Y, HE Q Y, CHIU J F. Dioscin induced activation of p38 MAPK and JNK via mitochondrial pathway in HL-60 cell line[J]. European Journal of Pharmacology, 2014, 735: 52-58. |
[49] | OGASAWARA A, TAKEUCHI H, KOMIYA H, et al. Anti-inflammatory effects of siponimod on astrocytes[J]. Neuroscience Research, 2022, 184: 38-46. |
[50] | AZAM S, KIM Y S, JAKARIA M, et al. Dioscorea nipponica Makino rhizome extract and its active compound dioscin protect against neuroinflammation and dcopolamine-induced memory deficits[J]. International Journal of Molecular Sciences, 2022, 23(17): 9923. |
[51] | LIU C H, WANG Y, WU C C, et al. Dioscin’s antiviral effect in vitro[J]. Virus Research, 2013, 172(1-2): 9-14. |
[52] | 王淑荣, 凌霜, 张庆光, 等. 薯蓣皂苷现代药理学研究进展[J]. 中国药理学通报, 2017, 33(2): 161-166. |
WANG S R, LING S, ZHANG Q G, et al. Advance on the pharmacological research of dioscin[J]. Chinese Journal of Pharmacology, 2017, 33(2): 161-166. (in Chinese with English abstract) | |
[53] | 雷攀. 生物酶预处理—醇提酸解法提取盾叶薯蓣中薯蓣皂苷元工艺研究[D]. 武汉: 湖北中医药大学, 2016. |
LEI P. The study on diosgenin extracted from Doscorea zingiberensis by bio-enzyme pretreatment-alcohol rxtraction and acid hydrolysis method[D]. Wuhan: Hubei University of Chinese Medicine, 2016. (in Chinese with English abstract) | |
[54] | LI X, MA J Z, XIA J, et al. Study on the extraction of dioscin by the ultrasonic-assisted ethanol[J]. African Journal of Biotechnology, 2014, 13(8): 973-977. |
[55] | 李祥, 师春兰, 王丽萍, 等. 基于表面活性剂增溶技术的薯蓣皂苷萃取研究[J]. 日用化学工业, 2014, 44(8): 452-455. |
LI X, SHI C L, WANG L P, et al. Study of dioscin extraction based on surfactant solubilization technology[J]. Commodity chemical industry, 2014, 44(8): 452-455. (in Chinese with English abstract) | |
[56] | ZHAO W Y, HAO H Q, XIAO W, et al. Subcritical water extraction of diosgenin from Dioscorea nipponica Makino and its antioxidant activity[J]. IOP Conference Series: Earth and Environmental Science, 2020, 559(1): 012004. |
[57] | SHAN N, WANG P T, ZHU Q L, et al. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China[J]. Journal of Integrative Agriculture, 2020, 19(11): 2839-2848. |
[58] | MA J N, KANG S Y, MENG X L, et al. Effects of rhizome extract of Dioscorea batatas and its active compound, allantoin, on the regulation of myoblast differentiation and mitochondrial biogenesis in C2C12 myotubes[J]. Molecules, 2018, 23(8): 2023. |
[59] | 刘应蛟, 楚世峰, 袁志鹰, 等. HPLC法同时测定山药饮片、麸炒及土炒山药中尿囊素、腺苷和苯丙氨酸的含量[J]. 时珍国医国药, 2019, 30(3): 568-570. |
LIU Y J, CHU S F, YUAN Z Y, et al. Simultaneous determination of allantoin, adenosine and phenylalanine in drinking slices, bran-fried and earth-fried yam by HPLC method[J]. Lishizhen Medicine and Materia Medica Research, 2019, 30(3): 568-570. (in Chinese) | |
[60] | 杨帆, 王宇鹏, 赵华. 响应面法优化超声提取山药尿囊素的研究[J]. 粮食与油脂, 2020, 33(6): 81-84. |
YANG F, WANG Y P, ZHAO H. Study on optimization of ultrasonic extraction process of the allantoin from Chinese yam with response surface methodology[J]. Grain and Oils, 2020, 33(6): 81-84. (in Chinese with English abstract) | |
[61] | FU Y C, FERNG L H A, HUANG P Y. Quantitative analysis of allantoin and allantoic acid in yam tuber, mucilage, skin and bulbil of the Dioscorea species[J]. Food Chemistry, 2006, 94(4): 541-549. |
[62] | ZHANG L, BAI B, LIU X H, et al. α-Glucosidase inhibitors from Chinese yam (Dioscorea opposita Thunb.)[J]. Food Chemistry, 2011, 126(1): 203-206. |
[63] | 张松松. α-葡萄糖苷酶微反应器的制备及其应用初步研究[D]. 开封: 河南大学, 2018. |
ZHANG S S. Preliminary research on the construction and application of α-glucosidase microreactors[D]. Kaifeng: Henan University, 2018. (in Chinese with English abstract) | |
[64] | 王丽, 杨伟鹏, 刘绣华, 等. 怀山药多糖铁治疗缺铁性贫血小鼠的研究[J]. 中国实验方剂学杂志, 2011, 17(9): 156-158. |
WANG L, YANG W P, LIU X H, et al. Experimental study of Dioscorea Rhizoma polysaccharide-Fe complex on mice with iron deficiency anemia[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2011, 17(9): 156-158. (in Chinese with English abstract) | |
[65] | 于莲, 周彤, 郭宇, 等. 纳米山药多糖合生元结肠靶向微生态调节剂对菌群失调动物生物学机制研究[J]. 中国微生态学杂志, 2013, 25(5): 505-507. |
YU L, ZHOU T, GUO Y, et al. Biological mechanisms of nano CYP synbiotics colon-targeting Microecological modulator on dysbacteriosis in animal models[J]. Chinese Journal of Microecology, 2013, 25(5): 505-507. (in Chinese with English abstract) | |
[66] | 于莲, 徐新, 张磊, 等. PCR-DGGE法测定纳米山药多糖靶向制剂对大鼠肠道菌群失调的调整作用[J]. 中国微生态学杂志, 2016, 28(11): 1269-1272. |
YU L, XU X, ZHANG L, et al. Regulatory effects of nano Chinese yam polysaccharides on dysbacteria animals by PCR-DGGE[J]. Chinese Journal of Microecology, 2016, 28(11): 1269-1272. (in Chinese with English abstract) | |
[67] | ZOU J, XU M J, WEN L R, et al. Structure and physicochemical properties of native starch and resistant starch in Chinese yam (Dioscorea opposita Thunb.)[J]. Carbohydrate Polymers, 2020, 237: 116188. |
[68] | 张炳文, 张桂香, 鲁佩杰, 等. 提高山药全粉抗性淀粉含量与热稳定性加工方法及产品: CN112772887A[P]. 2021-05-11. |
[69] | 钟安祺. 一种含淮山药抗性淀粉饼干及其制备方法: CN107743996A[P]. 2018-03-02. |
[70] | CHEMIRU G, GONFA G. Preparation and characterization of glycerol plasticized yam starch-based films reinforced with titanium dioxide nanofiller[J]. Carbohydrate Polymer Technologies and Applications, 2023, 5: 100300. |
[71] | 关倩倩. 基于抗糖尿病活性的山药粉制备技术及特殊医用主食研究[D]. 扬州: 扬州大学, 2018. |
GUAN Q Q. Preparation technology of yam flour based on antidiabetic activity and research on special medical staple food[D]. Yangzhou: Yangzhou University, 2018. (in Chinese with English abstract) |
[1] | WANG Di, YANG Hanmei, LI Yangqian, JIA Mengting, ZOU Liang, YANG Fan. Multidimensional evaluation of “variety, quality, efficiency and application” of Tartary buckwheat and research progress of high-value utilization of active ingredients [J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1960-1974. |
[2] | ZHANG Bin, FENG Xiaoqing, ZHENG Qian, CHEN Wen, TENG Jie. OsPUT5 silencing reduced low temperature resistance in rice [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 780-788. |
[3] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
[4] | JIN Xiaojie, ZHANG Jingzhen, YANG Xinsun. Comparative metabolite profiling of rhizome and bulbil of wild Chinese yam (Dioscorea polystachya Turcz.) from Wuxue by widely targeted metabolomics [J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 727-735. |
[5] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515. |
[6] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. |
[7] | HUANG Zhendong, PU Zhanxu, HU Xiurong, CHEN Guoqing, LYU Jia, ZHAN Hongmu. Effects of processed petroleum-based horticultural mineral oils on settling behavior of Diaphorina citri Kuwayama (Hemiptera: Lividae) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 87-95. |
[8] | DUAN Qianqian, MAO Tianjiao, HAN Yeqin, HAN Xuejiao, WEI Jianzhong, SUN Pei, LI Yu. Evaluation of immune efficacy of inactivated Streptococcus suis serotype 2 vaccine in mice [J]. , 2020, 32(4): 577-585. |
[9] | QIN Ling, ZHANG Xin, RONG Chunxiao, MO Chuanyuan, FAN Lu, YAN Jie, MENG Ying, ZHANG Manrang. Identification and expression analysis of polyamine oxidase (PAO) gene family in apple [J]. , 2020, 32(2): 262-273. |
[10] | BAI Dongdong, LI Xinpu, YANG Feng, LUO Jinyin, WANG Xurong, LI Hongsheng. Clinical efficacy and mechanism prediction of Difutongrusan in treatment of bovine mastitis [J]. , 2019, 31(5): 730-736. |
[11] | LU Yanhui, TIAN Junce, ZHENG Xusong, XU Hongxing, YANG Yajun, YANG Taiyuan, SHI Zhaoyun, LÜ Zhongxian1,*. Laboratory toxicity of 26 insecticides against different instar larvae of Spodoptera frugiperda [J]. , 2019, 31(12): 2049-2056. |
[12] | CHEN Zhang, LIU Xiaolu, YAO Yanbin, WU Qiongjuan, SUN Pei, WEI Jianzhong, LI Dongfeng, LI Yu. Screening of immunological adjuvant for inactivated vaccine against Erysipelothrix rhusiopathiae [J]. , 2019, 31(11): 1803-1811. |
[13] | HUANG Shengjia, YE Shuang, LIU Xinya, XI Lijuan, WANG Zhihui, FU Jialing. Effects of different fertilizes on phenolics of Huangguogan fruit [J]. , 2018, 30(1): 91-98. |
[14] | YIN Minghua, XU Zhijian, ZHANG Shengqin, LYU Sijie, ZENG Yanhong, FU Youzhang, XIA Jinhua, HONG Senrong*. Cryopreservation of Jiangxi yam shoottip by encapsulationvitrification and its detection of genetic stability [J]. , 2016, 28(6): 984-. |
[15] | HE Chao1,2,SHEN Deng\|rong1,HUA Lei2,*,YUAN Sheng\|yong1,TIAN Xue\|jun1. Changes of polyamine metabolism in larvae of oriental fruit moth, Grapholita molesta, during diapause development [J]. , 2015, 27(11): 1960-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||