Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (12): 2696-2704.DOI: 10.3969/j.issn.1004-1524.20240116
• Horticultural Science • Previous Articles Next Articles
ZHANG Yaru(
), XIE Jianming(
), ZHANG Jing(
), YANG Xuzhen, WU Zhiguo
Received:2024-02-01
Online:2024-12-25
Published:2024-12-27
CLC Number:
ZHANG Yaru, XIE Jianming, ZHANG Jing, YANG Xuzhen, WU Zhiguo. Effect of foliar spraying of iron nanoparticles on the growth and quality of spinach[J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2696-2704.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240116
| 处理 Treatment | 单株鲜重Fresh weight/g | 单株干重Dry weight/g | 叶面积 Leaf area/ cm2 | ||||
|---|---|---|---|---|---|---|---|
| 总鲜重 Total Fresh weight | 地上部 Shoot | 地下部 Root | 总干重 Total Dry weight | 地上部 Shoot | 地下部 Root | ||
| CK | 4.820±0.07 c | 3.247±0.227 cd | 1.573±0.189 b | 0.412±0.04 cd | 0.357±0.041 c | 0.046±0.001 cd | 598.59±13.75 c |
| T1 | 5.640±0.14 b | 3.970±0.124 bc | 1.670±0.035ab | 0.510±0.03 b | 0.403±0.023 c | 0.070±0.005 bc | 619.31±8.38 bc |
| T2 | 6.057±0.02 b | 4.330±0.125 b | 1.827±0.113ab | 0.620±0.04 b | 0.457±0.038 b | 0.083±0.002 ab | 665.26±26.44 b |
| T3 | 7.203±0.45 a | 5.200±0.414 a | 2.003±0.077 a | 0.724±0.05 a | 0.527±0.052 a | 0.098±0.001 a | 715.07±19.34 a |
| T4 | 5.627±0.25 b | 3.790±0.225 bc | 1.837±0.039 a | 0.458±0.03 c | 0.403±0.015 c | 0.063±0.012 c | 632.49±5.81 bc |
| T5 | 4.137±0.35 c | 2.983±0.277 d | 1.453±0.094 b | 0.351±0.02 d | 0.320±0.015 c | 0.041±0.002 d | 550.63±6.15 d |
Table 1 Effect of NZVI on biomass and leaf area of spinach
| 处理 Treatment | 单株鲜重Fresh weight/g | 单株干重Dry weight/g | 叶面积 Leaf area/ cm2 | ||||
|---|---|---|---|---|---|---|---|
| 总鲜重 Total Fresh weight | 地上部 Shoot | 地下部 Root | 总干重 Total Dry weight | 地上部 Shoot | 地下部 Root | ||
| CK | 4.820±0.07 c | 3.247±0.227 cd | 1.573±0.189 b | 0.412±0.04 cd | 0.357±0.041 c | 0.046±0.001 cd | 598.59±13.75 c |
| T1 | 5.640±0.14 b | 3.970±0.124 bc | 1.670±0.035ab | 0.510±0.03 b | 0.403±0.023 c | 0.070±0.005 bc | 619.31±8.38 bc |
| T2 | 6.057±0.02 b | 4.330±0.125 b | 1.827±0.113ab | 0.620±0.04 b | 0.457±0.038 b | 0.083±0.002 ab | 665.26±26.44 b |
| T3 | 7.203±0.45 a | 5.200±0.414 a | 2.003±0.077 a | 0.724±0.05 a | 0.527±0.052 a | 0.098±0.001 a | 715.07±19.34 a |
| T4 | 5.627±0.25 b | 3.790±0.225 bc | 1.837±0.039 a | 0.458±0.03 c | 0.403±0.015 c | 0.063±0.012 c | 632.49±5.81 bc |
| T5 | 4.137±0.35 c | 2.983±0.277 d | 1.453±0.094 b | 0.351±0.02 d | 0.320±0.015 c | 0.041±0.002 d | 550.63±6.15 d |
| 处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 叶绿素(a+b)含量 Chlorophyll (a+b) content |
|---|---|---|---|
| CK | 1.582±0.07 cd | 0.535±0.017 d | 2.117±0.058 d |
| T1 | 1.608±0.06 cd | 0.577±0.017 c | 2.185±0.052 cd |
| T2 | 1.840±0.01 b | 0.621±0.015 b | 2.461±0.009 b |
| T3 | 2.082±0.01 a | 0.755±0.002 a | 2.836±0.005 a |
| T4 | 1.676±0.01 bc | 0.629±0.004 b | 2.305±0.004 bc |
| T5 | 1.444±0.14 d | 0.418±0.002 e | 1.617±0.026 e |
Table 2 Effect of NZVI on chlorophyll content in spinach leaves mg·g-1
| 处理 Treatment | 叶绿素a含量 Chlorophyll a content | 叶绿素b含量 Chlorophyll b content | 叶绿素(a+b)含量 Chlorophyll (a+b) content |
|---|---|---|---|
| CK | 1.582±0.07 cd | 0.535±0.017 d | 2.117±0.058 d |
| T1 | 1.608±0.06 cd | 0.577±0.017 c | 2.185±0.052 cd |
| T2 | 1.840±0.01 b | 0.621±0.015 b | 2.461±0.009 b |
| T3 | 2.082±0.01 a | 0.755±0.002 a | 2.836±0.005 a |
| T4 | 1.676±0.01 bc | 0.629±0.004 b | 2.305±0.004 bc |
| T5 | 1.444±0.14 d | 0.418±0.002 e | 1.617±0.026 e |
Fig.1 Effect of NZVI on intercellular carbon dioxide (Ci), transpiration rate (Tr), stomatal conductance (Gs), and net photosynthetic rate (Pn) in spinach The bars without the same lowercase letter indicated significant differences at P<0.05. The same as below.
| 处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tips |
|---|---|---|---|---|
| CK | 1 171.39±96.344 c | 451.51±4.977 bc | 12.47±0.605 c | 986.33±63.803 c |
| T1 | 1 593.02±16.435 b | 507.72±20.374 bc | 13.29±0.974 c | 1 178.67±90.757 bc |
| T2 | 1 817.58±79.567 b | 524.23±8.810 bc | 16.92±0.834 b | 1 229.33±60.333 bc |
| T3 | 2 272.16±40.964 a | 762.92±11.883 a | 20.40±0.476 a | 1 618.67±93.861 a |
| T4 | 1 210.33±42.045 c | 535.20±5.360 b | 16.01±0.884 b | 1 263.33±32.258 b |
| T5 | 1 102.99±25.601 c | 422.09±72.341 c | 9.89±1.047 d | 866.33±74.196 d |
Table 3 Effect of NZVI on the morphological structure of spinach roots
| 处理 Treatment | 总根长 Total root length/cm | 根表面积 Root surface area/cm2 | 根体积 Root volume/cm3 | 根尖数 Root tips |
|---|---|---|---|---|
| CK | 1 171.39±96.344 c | 451.51±4.977 bc | 12.47±0.605 c | 986.33±63.803 c |
| T1 | 1 593.02±16.435 b | 507.72±20.374 bc | 13.29±0.974 c | 1 178.67±90.757 bc |
| T2 | 1 817.58±79.567 b | 524.23±8.810 bc | 16.92±0.834 b | 1 229.33±60.333 bc |
| T3 | 2 272.16±40.964 a | 762.92±11.883 a | 20.40±0.476 a | 1 618.67±93.861 a |
| T4 | 1 210.33±42.045 c | 535.20±5.360 b | 16.01±0.884 b | 1 263.33±32.258 b |
| T5 | 1 102.99±25.601 c | 422.09±72.341 c | 9.89±1.047 d | 866.33±74.196 d |
| [1] | 冯国军, 刘大军. 菠菜的营养价值与功能评价[J]. 北方园艺, 2018(10):175-180. |
| FENG G J, LIU D J. Evaluation on nutrition and functions of spinach(Spinacia oleracea L.)[J]. Northern Horticulture, 2018(10):175-180. (in Chinese with English abstract) | |
| [2] | 李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6):835-842. |
| LI J C, YU H, YANG S X, et al. Research progress of molecular regulation of iron uptake in plants[J]. Plant Physiology Journal, 2016, 52(6):835-842. | |
| [3] | 程建峰. 植物生理学[M]. 南昌: 江西高校出版社, 2019. |
| [4] | ŞIMŞEK O, ÇELIK H. Effects of iron fortification on growth and nutrient amounts of spinach (Spinacia oleracea L.)[J]. Journal of Plant Nutrition, 2021, 44(18):2770-2782. |
| [5] | 路强, 王艳, 李梅兰, 等. 叶面施铁对胡萝卜产量和品质的影响[J]. 蔬菜, 2020(11):7-12. |
| LU Q, WANG Y, LI M L, et al. Effects of iron application on yield and quality in carrot[J]. Vegetables, 2020(11):7-12. (in Chinese with English abstract) | |
| [6] | 于会丽, 司鹏, 乔宪生, 等. 喷施不同铁肥对草莓铁养分吸收和品质的影响[J]. 中国土壤与肥料, 2016(5):73-78. |
| YU H L, SI P, QIAO X S, et al. Iron absorption and quality of strawberry affected by different forms of foliar iron fertilizer[J]. Soil and Fertilizer Sciences in China, 2016(5):73-78. (in Chinese with English abstract) | |
| [7] | 薛琴琴, 韩贝贝, 吴雪晴, 等. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6):655-660. |
| XUE Q Q, HAN B B, WU X Q, et al. Application and prospective of nanomaterials in crop research[J]. Current Biotechnology, 2020, 10(6):655-660. (in Chinese with English abstract) | |
| [8] | 窦宗信, 李宽莹, 庞勇, 等. 不同纳米铁肥叶面喷施对桃树新梢和叶片生长的影响[J]. 南方农机, 2023, 54(14):52-54. |
| DOU Z X, LI K Y, PANG Y, et al. Effects of foliar spraying of different nano iron fertilizers on the growth of new shoots and leaves of peach trees[J]. China Southern Agricultural Machinery, 2023, 54(14):52-54. (in Chinese) | |
| [9] | DELFANI M, BARADARN FIROUZABADI M, FARROKHI N, et al. Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers[J]. Communications in Soil Science and Plant Analysis, 2014, 45(4):530-540. |
| [10] | MANZOOR N, AHMED T, NOMAN M, et al. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake[J]. Science of the Total Environment, 2021, 769:145221. |
| [11] | 李璇. 纳米零价铁在土壤中的迁移转化及其对花生幼苗生长的影响[D]. 泰安: 山东农业大学, 2015. |
| LI X. Transport, transformation of NZVI in soil and its effect on seedling development of peanut[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract) | |
| [12] | 胡静. 纳米氧化铁对柑橘缺铁黄化病的矫治作用及效果评价[D]. 武汉: 武汉理工大学, 2017. |
| HU J. The impacts of iron oxide nanoparticles on the correction of iron-deficit chlorosis of citrus seedlings[D]. Wuhan: Wuhan University of Technology, 2017. (in Chinese with English abstract) | |
| [13] | 胡子逸. 叶面喷施纳米铁肥对花生和柑橘幼苗生长和铁营养的影响[D]. 重庆: 西南大学, 2022. |
| HU Z Y. Effects of foliar spraying nano-iron fertilizer on growth and iron nutrition of peanut and citrus seedlings[D]. Chongqing: Southwest University, 2022. | |
| [14] | YOON H, KANG Y G, CHANG Y S, et al. Effects of zerovalent iron nanoparticles on photosynthesis and biochemical adaptation of soil-grown Arabidopsis thaliana[J]. Nanomaterials, 2019, 9(11):1543. |
| [15] | LI X, YANG Y C, GAO B, et al. Stimulation of peanut seedling development and growth by zero-valent iron nanoparticles at low concentrations[J]. PLoS One, 2015, 10(4):e0122884. |
| [16] | MA X M, GURUNG A, DENG Y. Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species[J]. Science of the Total Environment, 2013, 443:844-849. |
| [17] | 虎丽霞, 张婧, 高彦强, 等. 钙对水培芹菜光合特性、产量及品质的影响[J]. 北方园艺, 2023(11):22-28. |
| HU L X, ZHANG J, GAO Y Q, et al. Effects of calcium on photosynthetic characteristics, yield and quality of hydroponic celery[J]. Northern Horticulture, 2023(11):22-28. (in Chinese with English abstract) | |
| [18] | 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告[J]. 广东化工, 2020, 47(6):211-212. |
| ZHU X Y, LIANG M, MA Y. A review report on the experiments for the determination of root activity by TTC method[J]. Guangdong Chemical Industry, 2020, 47(6):211-212. (in Chinese with English abstract) | |
| [19] | 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. |
| [20] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006. |
| [21] | 梁力平, 赵岩, 于鑫淼, 等. 新疆99个品种红枣有机酸测定及其多元统计分析[J]. 食品研究与开发, 2022, 43(10):181-188. |
| LIANG L P, ZHAO Y, YU X M, et al. Determination and multivariate statistical analysis of organic acids in 99 varieties of jujube in Xinjiang[J]. Food Research and Development, 2022, 43(10):181-188. (in Chinese with English abstract) | |
| [22] | 曾宝珍, 成永娟, 车莉莉, 等. 纳米零价铁对武威产区黑比诺葡萄新梢和叶片生长及光合特性的影响[J]. 果树学报, 2024, 41(3):481-493. |
| ZENG B Z, CHENG Y J, CHE L L, et al. Effects of nano zero-valent iron on the growth and photosynthetic characteristics of the new shoots and leaves of Pinot Noir in Wuwei production area[J]. Journal of Fruit Science, 2024, 41(3):481-493. (in Chinese with English abstract) | |
| [23] | JAFARI A, HATAMI M. Foliar-applied nanoscale zero-valent iron (nZVI) and iron oxide (Fe3O4) induce differential responses in growth, physiology, antioxidative defense and biochemical indices in Leonurus cardiaca L[J]. Environmental Research, 2022, 215:114254. |
| [24] | 路轲, 宋正国. 喷施不同纳米材料对水稻幼苗磷含量的影响[J]. 农业环境科学学报, 2020, 39(1):28-36. |
| LU K, SONG Z G. Effects of different sprayed nanomaterials on the phosphorus content in rice seedlings[J]. Journal of Agro-Environment Science, 2020, 39(1):28-36. (in Chinese with English abstract) | |
| [25] | 张枥分, 张丽娜, 王晓玲, 等. 喷施纳米铁和纳米锌叶面肥对冬枣叶片及果实品质的影响[J]. 北方园艺, 2024(11):23-30. |
| ZHANG L F, ZHANG L N, WANG X L, et al. Effects of spraying Nano-iron and Nano-zinc foliar fertilizer on leaf and fruit quality of Ziziphus jujuba Mill. cv. Dongzao[J]. Northern Horticulture, 2024(11):23-30. (in Chinese with English abstract) | |
| [26] | 李慧芳, 王瑜, 袁庆华, 等. 铅胁迫对禾本科牧草的生长及体内酶活性的影响[J]. 种子, 2014, 33(8):1-7. |
| LI H F, WANG Y, YUAN Q H, et al. The impacts of lead stress on the growth of forage grasses and their enzyme activities[J]. Seed, 2014, 33(8):1-7. (in Chinese with English abstract) | |
| [27] | KIM J H, OH Y, YOON H, et al. Iron nanoparticle-induced activation of plasma membrane H(+)-ATPase promotes stomatal opening in Arabidopsis thaliana[J]. Environmental Science & Technology, 2015, 49(2):1113-1119. |
| [28] | 贾凤芹. 喷施铁肥对葡萄、桃叶片光合特性和果实品质的影响[D]. 新乡: 河南科技学院, 2023. |
| JIA F Q. Effects of spraying iron fertilizer on photosynthetic characteristics and fruit quality of grape and peach leaves[D]. Xinxiang: Henan Institute of Science and Technology, 2023. (in Chinese with English abstract) | |
| [29] | 杨建昌. 水稻根系形态生理与产量、品质形成及养分吸收利用的关系[J]. 中国农业科学, 2011, 44(1):36-46. |
| YANG J C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization[J]. Scientia Agricultura Sinica, 2011, 44(1):36-46. (in Chinese with English abstract) | |
| [30] | 王立红, 李星星, 孙影影, 等. 外源水杨酸对NaCl胁迫下棉花幼苗生长生理特性的影响[J]. 西北植物学报, 2017, 37(1):154-162. |
| WANG L H, LI X X, SUN Y Y, et al. Effects of exogenous salicylic acid on the physiological characteristics and growth of cotton seedlings under NaCl stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1):154-162. (in Chinese with English abstract) | |
| [31] | HUANG M, KELLER A A, WANG X M, et al. Low concentrations of silver nanoparticles and silver ions perturb the antioxidant defense system and nitrogen metabolism in N2-fixing cyanobacteria[J]. Environmental Science & Technology, 2020, 54(24):15996-16005. |
| [32] | EL-TEMSAH Y S, JONER E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil[J]. Chemosphere, 2012, 89(1):76-82. |
| [33] | KIM J H, LEE Y, KIM E J, et al. Exposure of iron nanoparticles to Arabidopsis thaliana enhances root elongation by triggering cell wall loosening[J]. Environmental Science & Technology, 2014, 48(6):3477-3485. |
| [34] | 曹长明, 曾凤, 黄丙玲. 施肥对大白菜产量和维生素C含量及经济效益的影响[J]. 农业科技通讯, 2022(9):141-144. |
| CAO C M, ZENG F, HUANG B L. Effects of fertilization on yield, vitamin C content and economic benefit of Chinese cabbage[J]. Bulletin of Agricultural Science and Technology, 2022(9):141-144. (in Chinese) | |
| [35] | FENG Y M, KRESLAVSKI V D, SHMAREV A N, et al. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants[J]. Plants, 2022, 11(14):1894. |
| [36] | GIOVANNONI J J. Completing a pathway to plant vitamin C synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22):9109-9110. |
| [37] | SHAKOOR N, ADEEL M, ZAIN M, et al. Exposure of cherry radish (Raphanus sativus L. var. Radculus Pers) to iron-based nanoparticles enhances its nutritional quality by trigging the essential elements[J]. NanoImpact, 2022, 25:100388. |
| [38] | 付连刚. 叶菜类蔬菜的富铁机理及其影响因素研究[D]. 泰安: 山东农业大学, 2005. |
| FU L G. Study on iron-rich mechanism and influencing factors of leafy vegetables[D]. Tai’an: Shandong Agricultural University, 2005. (in Chinese with English abstract) | |
| [39] | 蔡晓锋, 徐晨曦, 王小丽, 等. 植物中的草酸:合成、降解及其积累调控[J]. 植物生理学报, 2015, 51(3):267-272. |
| CAI X F, XU C X, WANG X L, et al. The oxalic acid in plants:biosynthesis, degradation and its accumulation regulation[J]. Plant Physiology Journal, 2015, 51(3):267-272. (in Chinese with English abstract) | |
| [40] | 周文利. 硫酸亚铁对小青菜生物量与硝酸盐含量的影响[J]. 北方园艺, 2010(2):34-35. |
| ZHOU W L. Effects of spraying ferrous sulfate on yield and nitrate content of greengrocery[J]. Northern Horticulture, 2010(2):34-35. (in Chinese with English abstract) |
| [1] | XU Weimeng, XU Yan, CHEN Guoli. Comprehensive evaluation of waxy corn quality based on various analytical methods [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1840-1848. |
| [2] | ZHU Weijing, WU Jia, HONG Chunlai, ZHU Fengxiang, HONG Leidong, ZHANG Tao, ZHANG Shuo, ZHU Huifen. Effects of straw mulching on water, heat, fertility status of soil and yield and quality of flat peach [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1924-1932. |
| [3] | HE Shixiong, YANG Lei, QI Anmin, CHENG Ji, WANG Min, LI Yingkui, HONG Lin. Effects of interstock on leaf photosynthetic characteristics, physicochemical properties and fruit quality of three mandarin hybrids [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1680-1693. |
| [4] | ZHANG Shunchang, XU Jigen, FU Chengyue, PU Zhanxu, HU Lipeng, WU Hao, LI Junbing, XIN Liang, LEI Yuanjun. Effect of amino acid calcium spraying on peel cracking and quality of citrus hybrid Hongmeiren [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1706-1715. |
| [5] | YAN Fulin, LANG Yunhu, JIAN Yingquan, CHEN Xiongfei, WEI Wei, WANG Zhiwei, AN Jiangyong, REN Deqiang, DING Ning, WEI Shenghua. Response of yield and quality of Radix Ardisia to soil physiochemical properties [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1766-1775. |
| [6] | FENG Yiyu, REN Hongjie. Quantitative assessment of new quality productive forces in China’s livestock industry: based on panel data in 2007-2021 [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1805-1816. |
| [7] | HUANG Xianke, HUANG Xiaolin, ZHANG Xiang, LI Min, CAI Yilong, CHEN Ran. Effects of oyster shells on the growth performance of Penaeus vannamei and water quality, and microbial community characteristics on shell surfaces [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1441-1450. |
| [8] | WANG Chengyang, LIU Jieya, WU Minyi, XIE Boyi, HONG Decheng, LENG Feng, WU Guoquan. Effect of calcium treatment on the fruit quality of Reliance grape under waterlogging [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1451-1458. |
| [9] | ZHANG Yuanyuan, LI Meng. The estimation of new quality productive forces level, developmental retardation and cultivation path of feed enterprises [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1580-1594. |
| [10] | ZHANG Ruonan, MEN Xiaoming, QIN Kaipeng, WANG Binbin, WU Jie, DING Xiangbin, XU Ziwei, QI Keke. Comparative study on growth performance, carcass quality, meat performance and profitability of different crossbreed combinations of Lvjiahei pigs [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1203-1211. |
| [11] | XIANG Ying, CONG Jianmin, PAN Danhong, TAO Yonggang. Comprehensive evaluation of the growth process of different tomato varieties under spring organic greenhouse planting [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1252-1261. |
| [12] | LIU Wenqi, HU Qizan, YUE Zhichen, TAO Peng, LEI Juanli, LI Biyuan, ZHAO Yanting, WANG Huasen. Effects of high temperature in summer on the appearance and nutritional quality of Brassica juncea [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1262-1271. |
| [13] | ZHANG Chengcheng, FAN Tao, ZHANG Jianming, ZHAO Fengliang, XIN Xiaoting, NIU Haiyue, LIU Daqun. Changes of bacterial community and quality during pickling process of Jinyun pickled and dried mustard [J]. Acta Agriculturae Zhejiangensis, 2025, 37(6): 1336-1343. |
| [14] | YUE Li, ZHUANG Hongmei, ZULIPIYA· Maimaiti, WANG Jiamin, MAO Hongyan, ZHANG Yingxian, NIGARY· Yadikar, YU Ming. Comprehensive evaluation of the texture quality of turnip succulent root based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1057-1071. |
| [15] | SU Yang, SHANG Xiaolan, QIAN Zhongming, WU Lingen, HUANG Jiaqi, ZHUANG Haifeng, ZHAO Yufei, DANG Hongyang, XU Lijun. Effects of synergistic enhancement of straw returning to the field with decomposition agent and biochar on soil quality and rice growth [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1139-1148. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||