Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (11): 2395-2407.DOI: 10.3969/j.issn.1004-1524.20240508
• Biosystems Engineering • Previous Articles Next Articles
FENG Yongxin1(
), JI Yuanpeng2, CUI Ying1, BAI Li1, WANG Jian1, DING Jia1, ZHANG Xiaodong1, ZHANG Weiwei2, LI Meng3, ZHANG Weizheng2,*(
)
Received:2024-06-11
Online:2025-11-25
Published:2025-12-08
CLC Number:
FENG Yongxin, JI Yuanpeng, CUI Ying, BAI Li, WANG Jian, DING Jia, ZHANG Xiaodong, ZHANG Weiwei, LI Meng, ZHANG Weizheng. The recognition and detection of tobacco stems based on the improved YOLOv8n model[J]. Acta Agriculturae Zhejiangensis, 2025, 37(11): 2395-2407.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240508
Fig.3 Architecture of the improved YOLOv8n model YGshort, short tobacco stems; YGlong, long tobacco stems. The subsequent numbers indicating the probability of being classified into each category.
Fig.4 Structure of alterable kernel convolution C represents the number of channels, H and W represent the height and width of the tobacco stem images, respectively, the same as Fig.5. N represents the size of the convolution kernel.
| 模型 Model | APlong/% | APshort/% | APbroken/% | mAP/% | 参数量 Parameter/106 | FLOPs/G | FPS |
|---|---|---|---|---|---|---|---|
| Faster R-CNN | 76.09 | 86.12 | 57.23 | 73.15 | 136.69 | 200.84 | 13.22 |
| SSD | 79.49 | 91.74 | 92.45 | 87.89 | 23.61 | 136.59 | 29.58 |
| YOLOv5n | 90.50 | 83.93 | 85.37 | 86.60 | 1.90 | 4.50 | 63.16 |
| YOLOv6n | 89.25 | 83.46 | 82.95 | 85.22 | 4.70 | 11.40 | 52.43 |
| YOLOv7tiny | 84.32 | 83.51 | 82.97 | 83.60 | 6.01 | 13.00 | 50.40 |
| YOLOv8n | 91.21 | 89.63 | 91.72 | 90.85 | 3.01 | 8.20 | 56.65 |
| 改进的YOLOv8n | 95.60 | 94.71 | 95.89 | 95.40 | 2.52 | 7.50 | 62.38 |
| Improved YOLOv8n |
Table 1 Results of improved YOLOv8n model and six different models on the test set of the tobacco stem
| 模型 Model | APlong/% | APshort/% | APbroken/% | mAP/% | 参数量 Parameter/106 | FLOPs/G | FPS |
|---|---|---|---|---|---|---|---|
| Faster R-CNN | 76.09 | 86.12 | 57.23 | 73.15 | 136.69 | 200.84 | 13.22 |
| SSD | 79.49 | 91.74 | 92.45 | 87.89 | 23.61 | 136.59 | 29.58 |
| YOLOv5n | 90.50 | 83.93 | 85.37 | 86.60 | 1.90 | 4.50 | 63.16 |
| YOLOv6n | 89.25 | 83.46 | 82.95 | 85.22 | 4.70 | 11.40 | 52.43 |
| YOLOv7tiny | 84.32 | 83.51 | 82.97 | 83.60 | 6.01 | 13.00 | 50.40 |
| YOLOv8n | 91.21 | 89.63 | 91.72 | 90.85 | 3.01 | 8.20 | 56.65 |
| 改进的YOLOv8n | 95.60 | 94.71 | 95.89 | 95.40 | 2.52 | 7.50 | 62.38 |
| Improved YOLOv8n |
Fig.6 Comprehensive performance comparison and analysis of seven models APlong, Average precision of long tobacco stem; APshort, Average precision of short tobacco stem; APbroken, Average precision of broken tobacco stem; FLOPs, Floating-point operation per second; FPS, Frames per second.
Fig.7 Comparison of detection performance of seven models The yellow dashed box indicates false detection. YGbroken, Broken tobacco stems; YGshort, Short tobacco stems, YGlong, Long tobacco stems. The subsequent numbersindicating the probability of being classified into each category.
| YOLOv8n模型 YOLOv8n model | AKConv | TAM | APlong/% | APshort/% | APbroken/% | mAP/% | 参数量 Parameter/106 | FLOPS/G | FPS |
|---|---|---|---|---|---|---|---|---|---|
| √ | 91.21 | 89.63 | 91.72 | 90.85 | 3.01 | 8.20 | 56.65 | ||
| √ | √ | 92.06 | 91.53 | 92.83 | 92.14 | 2.52 | 7.40 | 64.10 | |
| √ | √ | √ | 95.60 | 94.71 | 95.89 | 95.40 | 2.52 | 7.50 | 62.38 |
Table 2 Results of ablation experiments on different optimization modules
| YOLOv8n模型 YOLOv8n model | AKConv | TAM | APlong/% | APshort/% | APbroken/% | mAP/% | 参数量 Parameter/106 | FLOPS/G | FPS |
|---|---|---|---|---|---|---|---|---|---|
| √ | 91.21 | 89.63 | 91.72 | 90.85 | 3.01 | 8.20 | 56.65 | ||
| √ | √ | 92.06 | 91.53 | 92.83 | 92.14 | 2.52 | 7.40 | 64.10 | |
| √ | √ | √ | 95.60 | 94.71 | 95.89 | 95.40 | 2.52 | 7.50 | 62.38 |
| 方法 Method | 长烟梗质量 Quality of long tobacco stem/g | 短烟梗质量 Quality of short tobacco stem/g | 碎烟梗质量 Quality of broken tobacco stem/g | 长梗率 Long tobacco stem rate/% | 碎梗率 Broken tobacco stem rate/% | 长烟梗识别误差 Identification error of long tobacco stem/% | 短烟梗识别误差 Identification error of short tobacco stem/% | 碎烟梗识别误差 Identification error of broken tobacco stem/% |
|---|---|---|---|---|---|---|---|---|
| 人工分选 | 986.2 | 413.5 | 100.3 | 65.75 | 6.69 | 0 | 0 | 0 |
| Manual sorting | ||||||||
| 改进的YOLOv8n模型 | 982.7 | 420.4 | 96.9 | 65.51 | 6.46 | 0.35 | 1.82 | 3.40 |
| Improved YOLOv8n model |
Table 3 Comparison between improved YOLOv8n model and manual sorting
| 方法 Method | 长烟梗质量 Quality of long tobacco stem/g | 短烟梗质量 Quality of short tobacco stem/g | 碎烟梗质量 Quality of broken tobacco stem/g | 长梗率 Long tobacco stem rate/% | 碎梗率 Broken tobacco stem rate/% | 长烟梗识别误差 Identification error of long tobacco stem/% | 短烟梗识别误差 Identification error of short tobacco stem/% | 碎烟梗识别误差 Identification error of broken tobacco stem/% |
|---|---|---|---|---|---|---|---|---|
| 人工分选 | 986.2 | 413.5 | 100.3 | 65.75 | 6.69 | 0 | 0 | 0 |
| Manual sorting | ||||||||
| 改进的YOLOv8n模型 | 982.7 | 420.4 | 96.9 | 65.51 | 6.46 | 0.35 | 1.82 | 3.40 |
| Improved YOLOv8n model |
| [1] | ZOU X D, BK A, ABU-IZNEID T, et al. Current advances of functional phytochemicals in Nicotiana plant and related potential value of tobacco processing waste: a review[J]. Biomedicine & Pharmacotherapy, 2021, 143: 112191. |
| [2] | YANG X Y, LIU Z C, LIU J S, et al. Two-step strategy for the comprehensive utilization of tobacco stem[J]. Chemical Papers, 2023, 77(4): 1797-1808. |
| [3] | GUO D Y, HU Q. Design of multi-indicator integrated testing system for tobacco intelligent silk production line[J]. Journal of Intelligent & Fuzzy Systems, 2022, 42(3): 2615-2627. |
| [4] | WANG W, ZHANG L L, WANG J, et al. Locating defects and image preprocessing: deep learning in automated tobacco production[J]. Journal of Sensors, 2022, 2022(1): 6797207. |
| [5] | 朱文魁, 刘斌, 毛伟俊, 等. 基于低能X射线透射成像的打叶片烟中烟梗在线检测[J]. 烟草科技, 2015, 48(2): 69-74. |
| ZHU W K, LIU B, MAO W J, et al. A method for on-line detection of stem in strips based on low-energy X-ray transmission imaging[J]. Tobacco Science & Technology, 2015, 48(2): 69-74. | |
| [6] | 席建平, 易浩, 刘斌, 等. 基于FPGA的烟梗在线检测系统设计[J]. 中国烟草学报, 2016, 22(5): 50-54. |
| XI J P, YI H, LIU B, et al. Design of online tobacco stems detection system based on FPGA[J]. Acta Tabacaria Sinica, 2016, 22(5): 50-54. | |
| [7] | 崔云月, 管一弘, 孙娜, 等. BP神经网络在烟梗长短梗率检测中的应用[J]. 软件导刊, 2021, 20(2): 63-67. |
| CUI Y Y, GUAN Y H, SUN N, et al. The application of BP neural network in the determination of the stalk length and stem rate[J]. Software Guide, 2021, 20(2): 63-67. | |
| [8] | 杨耀伟, 张月华, 崔廷, 等. 基于机器视觉和深度学习的烟梗识别方法[J]. 计算机应用, 2022, 42(S1):118-122. |
| YANG Y W, ZHANG Y H, CUI T, et al. Tobacco stem recognition method based on machine vision and deep learning[J]. Journal of Computer Applications, 2022, 42(S1):118-122. | |
| [9] | 刘新宇, 郝同盟, 张红涛, 等. 基于改进YOLOv3网络的烟梗识别定位方法[J]. 食品与机械, 2022, 38(3): 103-109. |
| LIU X Y, HAO T M, ZHANG H T, et al. Cigarette stem identification and location method based on improved YOLOv3 network[J]. Food & Machinery, 2022, 38(3): 103-109. | |
| [10] | 肖雷雨, 王澍, 刘渊根, 等. 基于深度学习技术的烟梗形态分类与识别[J]. 烟草科技, 2021, 54(6): 65-74. |
| XIAO L Y, WANG S, LIU Y G, et al. Classification and identification of tobacco stem morphology based on deep learning technology[J]. Tobacco Science & Technology, 2021, 54(6): 65-74. | |
| [11] | 郑银环, 林晓琛, 吴飞, 等. 基于改进YOLOv4的轻量化烟梗识别方法[J]. 合肥工业大学学报(自然科学版), 2023, 46(9): 1196-1202, 1253. |
| ZHENG Y H, LIN X C, WU F, et al. Lightweight tobacco stem identification method based on improved YOLOv4[J]. Journal of Hefei University of Technology (Natural Science), 2023, 46(9): 1196-1202, 1253. | |
| [12] | MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module[C]//2021 IEEE Winter Conference on Applications of Computer Vision (WACV). January 3-8, 2021, Waikoloa, HI, USA. IEEE, 2021: 3138-3147. |
| [13] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. |
| [14] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. |
| [15] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]// Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. |
| [16] | MA L, YU Q W, YU H L, et al. Maize leaf disease identification based on YOLOv5n algorithm incorporating attention mechanism[J]. Agronomy, 2023, 13(2): 521. |
| [17] | LI C Y, LI L L, JIANG H L, et al. YOLOv6:a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2024-06-08]. https://arxiv.org/abs/2209.02976. |
| [18] | WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 17-24, 2023, Vancouver, BC, Canada. IEEE, 2023: 7464-7475. |
| [19] | 周雅宁. 烟梗加工处理技术与设备研究进展[J]. 中国烟草学报, 2019, 25(2): 121-129. |
| ZHOU Y N. Research progress in tobacco stem processing technology and equipment[J]. Acta Tabacaria Sinica, 2019, 25(2): 121-129. |
| [1] | LIU Rui, WANG Lijuan, WANG Qiuhao, LIN Xudong, GUO Qihang, XU Duolin, LI Wenyan. Detection of pest and disease in tea based on improved YOLOv8s [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 1933-1942. |
| [2] | LYU Yinchun, DUAN Enze, ZHU Yixing, ZHENG Xia, BAI Zongchun. Real-time detection of overturned meat ducks based on YOLOv8-Swin Transformer model [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1556-1566. |
| [3] | CHEN Wei, YAO Jie, FENG Mingfeng, LI Shuai, JIANG Xizi, JIANG Lei, JIANG Tong. Comparative study on the sensitivity of different detection techniques for major viruses in vegetables [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1072-1081. |
| [4] | TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479. |
| [5] | SUN Shuo, LIU Zhaohua, WANG Ke, ZHENG Jiye, XING Fanbin, SONG Xianxue, WANG Jianying, MENG Xianfeng, YANG Jingchao, ZHANG Xia. Breed recognition of sheep based on SNP and machine learning algorithms [J]. Acta Agriculturae Zhejiangensis, 2025, 37(11): 2387-2394. |
| [6] | YU Hongwei, DENG Huidan, YANG Hua, XIAO Yingping, DING Xiangying, JI Xiaofeng. Research progress on detection technology and analysis of veterinary drug residues in animal-derived foods [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 203-216. |
| [7] | GU Rui, SONG Cuiling, QIAN Chunhua. A lightweight tomato leaf disease recognition model integrating a sandglass structure with improved coordinate attention [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 217-230. |
| [8] | GUO Xiuming, WANG Dawei, LIU Shengping, ZHU Yeping, LIU Xiaohui, LIN Kejian, WANG Jiayu, LI Fei. Study on key problems for rat hole recognition and count near ground based on deep learning and its application [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2146-2154. |
| [9] | ZHU Mingmin, ZHANG Guoping, TAN Jianjun, SUN Lingjiao, ZHU Li, JIAO Jie. A lightweight tea buds terminal detection model based on YOLOv5s [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1413-1424. |
| [10] | LU Shengmin, HUANG Zixin, LI Xiaoqiong, ZHENG Meiyu, HAN Yongbin. Formation, detection and control of advanced glycation end products and 5-hydroxymethylfurfural in heated foods [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1458-1468. |
| [11] | TANG Yonghua, SHI Feifan, LIN Sen, ZHANG Zhipeng, MENG Yanjun, LIU Xingtong. YOLOv5s high-density koi fry detection method based on fusion non-local operation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 952-967. |
| [12] | NIU Yu, LI Jing, WANG Junwen, LI Ruirui, TIAN Qiang, WU Yue, YU Jihua. Research progress of anthocyanin biosynthesis, regulation, bioactivity and detection in higher plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 978-996. |
| [13] | GUO Weina, TAO Jing, HE Mengting, WANG Ziwei, MA Baihe, ZHAO Lei. Isolation, identification, antimicrobial susceptibility test and virulence genes detection of Salmonella typhimurium from chicken [J]. Acta Agriculturae Zhejiangensis, 2024, 36(2): 284-294. |
| [14] | YU Shuochen, ZHANG Jun, SONG Xinjie, ZHOU Jinyun. Research on 1D-DenseRNet-based classification and detection method for canned food vacuum data [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2846-2856. |
| [15] | ZHOU Kaiqi, YU Cheng, YUAN Biao, LÜ Yan, NI Yihua, NI Zhongjin, YAN Xuechun, ZHAO Pengfei. Design of a high isolation and high sensitivity antenna for winter bamboo shoot detection [J]. Acta Agriculturae Zhejiangensis, 2024, 36(11): 2605-2616. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||