Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (1): 217-230.DOI: 10.3969/j.issn.1004-1524.20240646
• Biosystems Engineering • Previous Articles Next Articles
GU Rui1,2(), SONG Cuiling1, QIAN Chunhua3,*(
)
Received:
2024-07-21
Online:
2025-01-25
Published:
2025-02-14
CLC Number:
GU Rui, SONG Cuiling, QIAN Chunhua. A lightweight tomato leaf disease recognition model integrating a sandglass structure with improved coordinate attention[J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 217-230.
输入 Input | 操作 Operator | 通道数 Exp_size | 输出维度 Out | 注意力 ICA | 激活函数 Non-Linearity | 步长 Stride |
---|---|---|---|---|---|---|
224×224×3 | Conv2d,3×3 | - | 16 | - | HS | 2 |
112×112×16 | SG-ICA bneck,3×3 | 16 | 16 | √ | ELU | 2 |
56×56×16 | SG-ICA bneck,3×3 | 72 | 24 | - | ELU | 2 |
28×28×24 | SG-ICA bneck,3×3 | 88 | 24 | - | ELU | 1 |
28×28×24 | SG-ICA bneck,5×5 | 96 | 40 | √ | HS | 2 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 120 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 144 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 288 | 96 | √ | HS | 2 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | Conv2d,1×1 | - | 576 | √ | HS | 1 |
7×7×576 | Pool,1×1 | - | - | - | - | 1 |
1×1×576 | Conv2d,1×1,NBN | - | - | - | ELU | 1 |
1×1×1024 | Conv2d,1×1,NBN | - | - | - | HS | 1 |
Table 1 Parameter setting of SG-ICA-MoibleNetV3 model
输入 Input | 操作 Operator | 通道数 Exp_size | 输出维度 Out | 注意力 ICA | 激活函数 Non-Linearity | 步长 Stride |
---|---|---|---|---|---|---|
224×224×3 | Conv2d,3×3 | - | 16 | - | HS | 2 |
112×112×16 | SG-ICA bneck,3×3 | 16 | 16 | √ | ELU | 2 |
56×56×16 | SG-ICA bneck,3×3 | 72 | 24 | - | ELU | 2 |
28×28×24 | SG-ICA bneck,3×3 | 88 | 24 | - | ELU | 1 |
28×28×24 | SG-ICA bneck,5×5 | 96 | 40 | √ | HS | 2 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 240 | 40 | √ | HS | 1 |
14×14×40 | SG-ICA bneck,5×5 | 120 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 144 | 48 | √ | HS | 1 |
14×14×48 | SG-ICA bneck,5×5 | 288 | 96 | √ | HS | 2 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | SG-ICA bneck,5×5 | 576 | 96 | √ | HS | 1 |
7×7×96 | Conv2d,1×1 | - | 576 | √ | HS | 1 |
7×7×576 | Pool,1×1 | - | - | - | - | 1 |
1×1×576 | Conv2d,1×1,NBN | - | - | - | ELU | 1 |
1×1×1024 | Conv2d,1×1,NBN | - | - | - | HS | 1 |
Fig.2 The structure of different bottleneck Conv represents ordinary convolution, PW Conv represents pointwise convolution, and DW Conv represents depthwise convolution.
方案 Schema | 基线模型 Base | 沙漏结构 SG | 改进坐标注意力 ICA | 激活函数 ELU | 参数量 Params/MB | 浮点运算数 FLOPs/106 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
S0 | √ | 2.40 | 68.2 | 93.25 | |||
S1 | √ | √ | 2.31 | 67.5 | 94.36 | ||
S2 | √ | √ | 2.19 | 66.6 | 94.42 | ||
S3 | √ | √ | 2.34 | 67.3 | 94.31 | ||
S4 | √ | √ | √ | 2.28 | 65.1 | 96.58 | |
S5 | √ | √ | √ | 2.19 | 66.6 | 95.87 | |
S6 | √ | √ | 2.31 | 67.3 | 96.53 | ||
S7 | √ | √ | √ | √ | 2.28 | 65.1 | 98.36 |
Table 2 Impact of different schemas on the model
方案 Schema | 基线模型 Base | 沙漏结构 SG | 改进坐标注意力 ICA | 激活函数 ELU | 参数量 Params/MB | 浮点运算数 FLOPs/106 | 准确率 Accuracy/% |
---|---|---|---|---|---|---|---|
S0 | √ | 2.40 | 68.2 | 93.25 | |||
S1 | √ | √ | 2.31 | 67.5 | 94.36 | ||
S2 | √ | √ | 2.19 | 66.6 | 94.42 | ||
S3 | √ | √ | 2.34 | 67.3 | 94.31 | ||
S4 | √ | √ | √ | 2.28 | 65.1 | 96.58 | |
S5 | √ | √ | √ | 2.19 | 66.6 | 95.87 | |
S6 | √ | √ | 2.31 | 67.3 | 96.53 | ||
S7 | √ | √ | √ | √ | 2.28 | 65.1 | 98.36 |
类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio | 类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio |
---|---|---|---|---|---|---|---|
健康叶片Healthy | 100.00 | 100.00 | 100.00 | 红蜘蛛病Spider_mite | 98.75 | 98.65 | 98.21 |
早疫病Early_blight | 97.58 | 96.96 | 97.36 | 晚疫病Late_blight | 96.55 | 96.98 | 96.06 |
花叶病Mosaic_virus | 98.67 | 98.81 | 98.54 | 褐斑病Target_spot | 96.95 | 96.14 | 96.26 |
叶霉病Leaf_mold | 97.66 | 97.03 | 97.57 | 斑枯病Septoria_leaf_spot | 97.54 | 97.76 | 97.11 |
黄花曲叶病Yellow_leaf_curl | 98.66 | 98.04 | 97.56 | 细菌性斑点病Bacterial_spot | 99.08 | 99.22 | 98.65 |
Table 3 The recognition effectiveness of the model for different diseases %
类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio | 类别 Category | 准确率 Accuracy | 精确率 Precision | 召回率 Recall ratio |
---|---|---|---|---|---|---|---|
健康叶片Healthy | 100.00 | 100.00 | 100.00 | 红蜘蛛病Spider_mite | 98.75 | 98.65 | 98.21 |
早疫病Early_blight | 97.58 | 96.96 | 97.36 | 晚疫病Late_blight | 96.55 | 96.98 | 96.06 |
花叶病Mosaic_virus | 98.67 | 98.81 | 98.54 | 褐斑病Target_spot | 96.95 | 96.14 | 96.26 |
叶霉病Leaf_mold | 97.66 | 97.03 | 97.57 | 斑枯病Septoria_leaf_spot | 97.54 | 97.76 | 97.11 |
黄花曲叶病Yellow_leaf_curl | 98.66 | 98.04 | 97.56 | 细菌性斑点病Bacterial_spot | 99.08 | 99.22 | 98.65 |
模型 Model | 参数量 Params/MB | 浮点运算量 FLOPs/106 | 模型大小 Model size/MB | 准确率 Accuracy/% | 召回率 Recall ratio/% |
---|---|---|---|---|---|
ShuffleNetV2[ | 2.37 | 302.7 | 9.65 | 90.17 | 91.13 |
EfficientNet-B2[ | 4.02 | 412.3 | 15.37 | 91.55 | 92.28 |
MobileNetV2-1.0[ | 3.50 | 314.1 | 16.78 | 92.46 | 93.36 |
MobileNeXt-1.0[ | 3.42 | 298.7 | 16.45 | 93.51 | 93.97 |
MobileNetV3Small[ | 2.40 | 68.2 | 4.85 | 93.73 | 93.25 |
MobileVit-S[ | 5.62 | 700.4 | 18.43 | 93.91 | 94.53 |
ConvNeXt-V2[ | 5.21 | 380.6 | 21.26 | 94.29 | 94.84 |
SG-ICA-MobileNetV3 | 2.28 | 65.1 | 4.36 | 98.36 | 97.99 |
Table 4 Results of different lightweight models
模型 Model | 参数量 Params/MB | 浮点运算量 FLOPs/106 | 模型大小 Model size/MB | 准确率 Accuracy/% | 召回率 Recall ratio/% |
---|---|---|---|---|---|
ShuffleNetV2[ | 2.37 | 302.7 | 9.65 | 90.17 | 91.13 |
EfficientNet-B2[ | 4.02 | 412.3 | 15.37 | 91.55 | 92.28 |
MobileNetV2-1.0[ | 3.50 | 314.1 | 16.78 | 92.46 | 93.36 |
MobileNeXt-1.0[ | 3.42 | 298.7 | 16.45 | 93.51 | 93.97 |
MobileNetV3Small[ | 2.40 | 68.2 | 4.85 | 93.73 | 93.25 |
MobileVit-S[ | 5.62 | 700.4 | 18.43 | 93.91 | 94.53 |
ConvNeXt-V2[ | 5.21 | 380.6 | 21.26 | 94.29 | 94.84 |
SG-ICA-MobileNetV3 | 2.28 | 65.1 | 4.36 | 98.36 | 97.99 |
类别 Category | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall ratio/% | 平均推理时间 Average inference time/ms |
---|---|---|---|---|
斑点落叶病Alternaria_boltch | 97.25 | 97.12 | 96.58 | 42.7 |
灰斑病Grey_spot | 97.25 | 96.23 | 97.44 | 43.5 |
锈病Rust | 96.32 | 96.37 | 96.26 | 44.6 |
褐斑病Brown_spot | 98.14 | 98.27 | 98.45 | 41.4 |
白粉病Powdery_mildew | 97.86 | 98.18 | 98.24 | 43.6 |
健康叶片Healthy | 99.77 | 99.39 | 99.01 | 39.7 |
平均Average | 97.76 | 97.59 | 97.66 | 42.58 |
Table 5 The recognition effect of model transfer on apple leaf diseases
类别 Category | 准确率 Accuracy/% | 精确率 Precision/% | 召回率 Recall ratio/% | 平均推理时间 Average inference time/ms |
---|---|---|---|---|
斑点落叶病Alternaria_boltch | 97.25 | 97.12 | 96.58 | 42.7 |
灰斑病Grey_spot | 97.25 | 96.23 | 97.44 | 43.5 |
锈病Rust | 96.32 | 96.37 | 96.26 | 44.6 |
褐斑病Brown_spot | 98.14 | 98.27 | 98.45 | 41.4 |
白粉病Powdery_mildew | 97.86 | 98.18 | 98.24 | 43.6 |
健康叶片Healthy | 99.77 | 99.39 | 99.01 | 39.7 |
平均Average | 97.76 | 97.59 | 97.66 | 42.58 |
[1] | 马丽, 周巧黎, 赵丽亚, 等. 基于深度学习的番茄叶片病害分类识别研究[J]. 中国农机化学报, 2023, 44(7): 187-193. |
MA L, ZHOU Q L, ZHAO L Y, et al. Classification and recognition of tomato leaf diseases based on deep learning[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 187-193. (in Chinese with English abstract) | |
[2] | 李大华, 仲婷, 王笋, 等. 基于改进ShuffleNet v2的轻量化番茄叶片病害识别[J]. 江苏农业科学, 2024, 52(3): 220-228. |
LI D H, ZHONG T, WANG Sun, et al. Lightweight disease identification for tomato leaves based on improved ShuffleNet v2[J]. Jiangsu Agricultural Sciences, 2024, 52(3): 220-228. (in Chinese with English abstract) | |
[3] | MOKHTAR U, ALI M A S, HASSENIAN A E, et al. Tomato leaves diseases detection approach based on Support Vector Machines[C]//2015 11th International Computer Engineering Conference (ICENCO), December 29-30, 2015, Cairo, Egypt. New York: IEEE, 2015: 246-250. |
[4] | 魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48 (S1):166-171. |
WEI L R, YUE J, LI Z B, et al. Multi-classification Detection Method of Plant Leaf Disease Based on Kernel Function SVM[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48 (S1):166-171. | |
[5] | XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors, 2016, 16(5): 676. |
[6] | LIU B, ZHANG Y, HE D J. Identification of apple leaf diseases based on deep convolutional neural networks[J]. Symmetry-Base, 2018, 10(1):3390-3400. |
[7] | DHANALAKSHMI R, BALAKRISHNAN K, SINHA B B. Tomato leaf disease identification by modified inception-based convolution neural networks[J]. The Imaging Science Journal, 2023, 71(5):408-424. |
[8] | YU H L, CHENG X H, CHEN C C, et al. Apple leaf disease recognition method with improved residual network[J]. Multimedia Tools and Applications, 2022, 81(6): 7759-7782. |
[9] | AHMED M, AHMED A. Palm tree disease detection and classification using residual network and transfer learning of inception-ResNet[J]. PLoS ONE, 2023, 18(3):1371-1384. |
[10] | CHANG S L, YANG G J, CHENG J P. Recognition of wheat rusts in a field environment based on improved DenseNet[J]. Biosystems Engineering, 2023, 10(236): 10-21. |
[11] | 王杨, 李迎春, 许佳炜, 等. 基于改进Vision Transformer网络的农作物病害识别方法[J]. 小型微型计算机系统, 2024, 45(4): 887-893. |
WANG Y, LI Y C, XU J W, et al. Crop disease recognition method based on improved Vision Transformer network[J]. Journal of Chinese Computer Systems, 2024, 45(4): 887-893. (in Chinese with English abstract) | |
[12] | IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AleNet level accuracy with 50 fewer parameters and<0.5 MB model size[EB/OL] (2016-06-01) [2022-11-11]. https://ariv.org/abs/1602.7360. |
[13] | ZHANG X Y, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[EB/OL]. (2017-12-07) [2024-06-01]. https://ar5iv.labs.arxiv.org/html/1707.01083. |
[14] | TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. (2019-09-11) [2024-06-01]. https://arxiv.org/abs/1905.11946. |
[15] | HOWARD A G, ZHU M L, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL]. (2017-04-17) [2024-06-01]. http://arxiv.org/abs/1704.04861. |
[16] | HAN K, WANG Y H, TIAN Q, et al. GhostNet:more features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).June 13-19, 2020. Seattle, WA, USA. New York: IEEE, 2020: 1577-1586. |
[17] | BI C K, WANG J M, DUAN Y L, et al. MobileNet based apple leaf diseases identification[J]. Mobile Networks and Applications, 2022, 27(1): 172-180. |
[18] | HASSAM M, KHAN M A, ARMGHAN A, et al. A single stream modified MobileNet V3 and whale controlled entropy based optimization framework for citrus fruit diseases recognition[J]. IEEE Access, 2021, 10: 91828-91839. |
[19] | 袁培森, 欧阳柳江, 翟肇裕, 等. 基于MobileNetV3Small-ECA的水稻病害轻量级识别研究[J]. 农业机械学报, 2024, 55(1): 253-262. |
YUAN P S, OUYANG L J, ZHAI Z Y, et al. Lightweight identification of rice diseases based on improved ECA and MobileNetV3Small[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(1): 253-262. (in Chinese with English abstract) | |
[20] | HU J, LI S, SUN G, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. |
[21] | ZHOU D, HOU Q, CHEN Y, et al. Rethinking bottleneck structure for efficient mobile network design[C]// Computer Vision ECCV 2020: 16th European Conference, August 23-28, 2020, Glasgow, UK. Berlin:Springer-Verlag, 2020: 680-697. |
[22] | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). June 20-25, 2021. Nashville, TN, USA. IEEE, 2021: 13713-13722. |
[23] | SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. June 18-23, 2018. Salt Lake City, UT. IEEE, 2018: 4510-4520. |
[24] | HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). October 27-November 2, 2019. Seoul, Korea (South). IEEE, 2019: 1314-1324. |
[25] | MEHTA S, RASTEGARI M. MobileViT: light-weight, general-purpose, and mobile-friendly vision transformer[EB/OL]. (2021-10-05) [2024-06-01]. https://arxiv.org/abs/2110.02178v2. |
[26] | WANG S R, GAO J, LI Z M, et al. Closer look at self-supervised lightweight vision transformers[EB/OL]. (2023-05-03) [2024-06-01]. https://arxiv.org/abs/2205.14443. |
[1] | LI Tengfei, YANG Guiling, RUAN Meiying, CHU Tianfen, QIN Hua, DENG Meihua. Effects of fertilizer and pesticide managements on soil health and tomato qualities in greenhouse tomato cultivation [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 145-158. |
[2] | WANG Yun, YU Chao, SHEN Hong, CAO Mina, ZHOU Qiyao, HU Zhipeng, JIN Chongwei, FENG Ying. Effects of foliar silicon and zinc fertilizers on cadmium accumulation and nutritional quality of celery [J]. Acta Agriculturae Zhejiangensis, 2025, 37(1): 61-66. |
[3] | LIU Wenwen, HU Lianqing, ZHOU Wanhai, WEI Qin, FENG Ruizhang, ZHAO Xin, CHE Litao, CHEN Jinyu. Effects of different contents of Camphora longepaniculata leaves in diets on intestinal pH, cecal fermentation and cecal microbiota of meat rabbits [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1279-1289. |
[4] | CHENG Chen, DONG Chaoyang, ZHENG Shenghong, ZHOU Yubo, ZHONG Ning, LI Wenming, ZHU Yangchun, DING Fenghua, FENG Liping, LI Zhenfa. Comparison of simulation accuracy of leaf age models for horticultural crops driven by light and temperature factors [J]. Acta Agriculturae Zhejiangensis, 2024, 36(6): 1368-1378. |
[5] | WANG Hongcheng, BAI Zihao, XU Haihao, XU Kai, HUANG Along, WANG Ze’en, WAN Fei, ZHANG Linan, WU Liqun. Portable famous tea fresh leaves picking machine based on lifting-picking action [J]. Acta Agriculturae Zhejiangensis, 2024, 36(5): 1161-1172. |
[6] | HE Jiawei, Huang Leqin, LU Zhenyu, FANG Jin, LEI Ziyang, ZHANG Huijuan, JIANG Ming. Isolation and identification of the pathogen causing leaf spot disease on a rare and endangered plant species Rhododendron huadingense [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 837-845. |
[7] | SONG Peng, LI Lixiang, JIANG Houlong, WANG Ru, LI Hui, ZHAO Pengyu, ZHANG Jun, QIN Pingwei, REN Jiangbo, CHEN Qingming. Effect of application of Brevibacillus laterosporus on potassium content of cured tobacco leaves and physiological characteristics of tobacco plants [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 494-502. |
[8] | YU Chao, WANG Yinyu, LIU Qizhen, WANG Yun, SHEN Hong, FENG Ying. Effects of application of biochar from different raw materials combined with inorganic amendments on cadmium accumulation in pakchoi shoots and soil cadmium inactivation [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 613-621. |
[9] | LI Dahua, KONG Shu, LI Dong, YU Xiao. Lightweight detection model of citrus leaf disease based on improved SSD [J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 662-670. |
[10] | WANG Shizhen, HUANG Jun, LI Mingjiang, HUANG Yingjie, ZHANG Juan. Identification and biological characteristics of phytopathogen in Osmanthus fragrans in Zhejiang Province of China [J]. Acta Agriculturae Zhejiangensis, 2024, 36(12): 2763-2773. |
[11] | GUO Nana, LI Wei, HUANG Lijuan, ZHANG Tao, WEI Bingqiang. Research progress on resistance of pepper to Tomato spotted wilt virus (TSWV) [J]. Acta Agriculturae Zhejiangensis, 2024, 36(10): 2416-2425. |
[12] | ZHANG Xuenan, WANG Lele, NIU Mingxuan, ZHAN Ni, REN Haojie, XU Haocong, YANG Kun, WU Liquan, KE Jian, YOU Cuicui, HE Haibing. Estimation of rice leaf water content based on leaf reflectance spectrum and chlorophyll fluorescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1265-1277. |
[13] | ZHU Yan, WEI Jia, XU Zilong, LIN Tianbao, YANG Sheng, LIU Yan, LYU Zhiqiang, LIU Peigang. Effects of growth promoting hormones on physiological and biochemical indexes of mulberry leaves during senescence [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1278-1285. |
[14] | XIA Xiaodong, ZHANG Xiaobo, SHI Yongfeng, XU Rugen. Research progress in gene cloning and molecular mechanism of rice lethal mutants [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1223-1234. |
[15] | LOU Qianqi, LIANG Yan. Quality analysis of five kinds of tomato germplasm resources with different fruit colors [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 582-589. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 195
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 75
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||