Acta Agriculturae Zhejiangensis ›› 2025, Vol. 37 ›› Issue (2): 466-479.DOI: 10.3969/j.issn.1004-1524.20240334
• Biosystems Engineering • Previous Articles Next Articles
TANG Aoran1,2(), JIN Xiu1,2, WANG Tan1,2, RAO Yuan1,2,*(
), LI Jiajia2,3, ZHANG Wu1,2
Received:
2024-04-10
Online:
2025-02-25
Published:
2025-03-20
Contact:
RAO Yuan
CLC Number:
TANG Aoran, JIN Xiu, WANG Tan, RAO Yuan, LI Jiajia, ZHANG Wu. Physiological plant height measurement method based on the reconstruction of the main stem skeleton for curved soybean plants[J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 466-479.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20240334
Fig.6 Improved YOLOv8n model structure Conv is convolutional module; C2f is Channel-to-Pixel module; CA is attention mechanism module; SPPF is fast space pyramid pooling module; Concat is feature fusion module; Upsample is upsampling module; Conv2d is two-dimensional convolution module; Loss is Loss function module; Sigmoid is activation function module; Avg Pool is average pooling module; BatchNorm is batch normalization module; Non-linear is non-linear activation function module.
Fig.7 YOLOv8n-seg model structure The P1 to P5 layer are the feature map output layer module; SPPF is the fast space pyramid pooling module; Segment is the segmentation head module.
模型 Models | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 参数量 Paramenters/MB |
---|---|---|---|---|
Faster R-CNN | 65.73 | 39.42 | 33.89 | 41.35 |
YOLOv5n | 85.52 | 83.21 | 89.09 | 2.71 |
YOLOv7n | 84.34 | 83.47 | 87.49 | 6.02 |
YOLOv8n | 86.04 | 84.96 | 89.43 | 3.01 |
YOLOv8n(CA) | 86.88 | 85.08 | 90.11 | 3.08 |
YOLOv8n(SOD) | 87.65 | 85.73 | 90.86 | 3.12 |
YOLOv8n(CA+SOD) | 88.07 | 86.05 | 91.52 | 3.17 |
Table 1 Comparison of recognition results of different detection models
模型 Models | 精确率 Precision/% | 召回率 Recall/% | 平均精度均值 mAP/% | 参数量 Paramenters/MB |
---|---|---|---|---|
Faster R-CNN | 65.73 | 39.42 | 33.89 | 41.35 |
YOLOv5n | 85.52 | 83.21 | 89.09 | 2.71 |
YOLOv7n | 84.34 | 83.47 | 87.49 | 6.02 |
YOLOv8n | 86.04 | 84.96 | 89.43 | 3.01 |
YOLOv8n(CA) | 86.88 | 85.08 | 90.11 | 3.08 |
YOLOv8n(SOD) | 87.65 | 85.73 | 90.86 | 3.12 |
YOLOv8n(CA+SOD) | 88.07 | 86.05 | 91.52 | 3.17 |
模型 Models | 遗漏率 Miss rate | 误检率 False positive rate |
---|---|---|
YOLOv8n | 6.56 | 3.01 |
YOLOv8n(CA+SOD) | 2.18 | 1.25 |
Table 2 Comparison of the detection effects of the main stem nodes %
模型 Models | 遗漏率 Miss rate | 误检率 False positive rate |
---|---|---|
YOLOv8n | 6.56 | 3.01 |
YOLOv8n(CA+SOD) | 2.18 | 1.25 |
测量方法 Measurement methods | MAE/cm | RMSE/cm | MAPE/% |
---|---|---|---|
正框检测株高 | 5.98 | 6.99 | 11.71 |
Bounding box height measurement | |||
主茎骨架检测株高 | 1.67 | 1.91 | 3.25 |
Skeleton height measurement |
Table 3 Comparison of soybean plant height measurements
测量方法 Measurement methods | MAE/cm | RMSE/cm | MAPE/% |
---|---|---|---|
正框检测株高 | 5.98 | 6.99 | 11.71 |
Bounding box height measurement | |||
主茎骨架检测株高 | 1.67 | 1.91 | 3.25 |
Skeleton height measurement |
Fig.12 Results of physiological plant height measurements in different ways The green line segment is the measured plant height, the red part is the root in Fig.b.
[1] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
YU H L, WU K M. Commercialization strategy of transgenic soybean in China[J]. Biotechnology Bulletin, 2023, 39(1): 1-15. (in Chinese with English abstract) | |
[2] | 刘亭萱, 谷勇哲, 张之昊, 等. 基于高密度遗传图谱定位大豆蛋白质含量相关的QTL[J]. 作物学报, 2023, 49(6): 1532-1541. |
LIU T X, GU Y Z, ZHANG Z H, et al. Mapping soybean protein QTLs based on high-density genetic map[J]. Acta Agronomica Sinica, 2023, 49(6): 1532-1541. (in Chinese) | |
[3] | 程音. 豆类营养价值及豆制品合理选择[J]. 食品安全导刊, 2022(12): 103-105. |
CHENG Y. Nutritional value of legumes and rational selection of bean productsbean products[J]. China Food Safety Magazine, 2022(12): 103-105. (in Chinese with English abstract) | |
[4] | SUN J, YANG L, ZHAO F Q, et al. Domestic dynamics of crop production in response to international food trade: evidence from soybean imports in China[J]. Journal of Land Use Science, 2020, 15(1): 91-98. |
[5] | 郭顺堂, 徐婧婷. 我国大豆食品产业发展现状及存在的问题[J]. 食品科学技术学报, 2023, 41(3): 1-8. |
GUO S T, XU J T. Development status and existing problems of soybean food industry in China[J]. Journal of Food Science and Technology, 2023, 41(3): 1-8. (in Chinese with English abstract) | |
[6] | 宋晨旭, 于翀宇, 邢永超, 等. 基于OpenCV的大豆籽粒多表型参数获取算法[J]. 农业工程学报, 2022, 38(20): 156-163. |
SONG C X, YU C Y, XING Y C, et al. Algorith for acquiring multi-phenotype parameters of soybean seed based on OpenCV[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(20): 156-163. (in Chinese with English abstract) | |
[7] | XU Z Y, WANG R K, KONG K K, et al. An APETALA2/ethylene responsive factor transcription factor GmCRF4a regulates plant height and auxin biosynthesis in soybean[J]. Frontiers in Plant Science, 2022, 13: 983650. |
[8] | 郑海洋, 侯立龙, 曹富斌, 等. 大豆株高QTL定位及候选基因挖掘[J]. 中国油料作物学报, 2023, 45(2): 283-292. |
ZHENG H Y, HOU L L, CAO F B, et al. QTL mapping and candidate gene mining for soybean plant height[J]. Chinese Journal of Oil Crop Sciences, 2023, 45(2): 283-292. (in Chinese with English abstract) | |
[9] | 金诚谦, 刘士坤, 陈满, 等. 采用改进U-Net网络的机收大豆质量在线检测[J]. 农业工程学报, 2022, 38(16): 70-80. |
JIN C Q, LIU S K, CHEN M, et al. Online quality detection of machine-harvested soybean based on improved U-Net network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 70-80. (in Chinese with English abstract) | |
[10] | DARBYSHIRE M, SALAZAR-GOMEZ A, GAO J F, et al. Towards practical object detection for weed spraying in precision agriculture[J]. Frontiers in Plant Science, 2023, 14: 1183277. |
[11] | JIAO L, XIE C J, CHEN P, et al. Adaptive feature fusion pyramid network for multi-classes agricultural pest detection[J]. Computers and Electronics in Agriculture, 2022, 195: 106827. |
[12] | DANG F Y, CHEN D, LU Y Z, et al. YOLOWeeds: a novel benchmark of YOLO object detectors for multi-class weed detection in cotton production systems[J]. Computers and Electronics in Agriculture, 2023, 205: 107655. |
[13] | ANUAR M M, HALIN A A, PERUMAL T, et al. Aerial imagery paddy seedlings inspection using deep learning[J]. Remote Sensing, 2022, 14(2): 274. |
[14] | LIU L C, LIANG J, WANG J Q, et al. An improved YOLOv5-based approach to soybean phenotype information perception[J]. Computers and Electrical Engineering, 2023, 106: 108582. |
[15] | 张建, 谢田晋, 杨万能, 等. 近地遥感技术在大田作物株高测量中的研究现状与展望[J]. 智慧农业(中英文), 2021, 3(1): 1-15. |
ZHANG J, XIE T J, YANG W N, et al. Research status and prospect on height estimation of field crop using near-field remote sensing technology[J]. Smart Agriculture, 2021, 3(1): 1-15. (in Chinese with English abstract) | |
[16] | 翔云, 陈其军, 宋栩杰, 等. 基于深度学习的菜用大豆荚型表型识别方法[J]. 核农学报, 2022, 36(12): 2391-2399. |
XIANG Y, CHEN Q J, SONG X J, et al. Deep learning-based identification method for vegetable soybean pod morphology traits[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(12): 2391-2399. (in Chinese with English abstract) | |
[17] | LIU H Y, YUAN K H, LI H. A systematic framework for defining R-squared measures in mediation analysis[J]. Psychological Methods, 2023,Doi: 10.1037/met0000571. |
[18] | 吴其林, 王竹, 杨文钰. 苗期遮荫对大豆茎秆形态和物质积累的影响[J]. 大豆科学, 2007, 26(6): 868-872. |
WU Q L, WANG Z, YANG W Y. Seedling shading affects morphogenesis and substance accumulation of stem in soybean[J]. Soybean Science, 2007, 26(6): 868-872. (in Chinese with English abstract) | |
[19] | 郭希岳, 李劲松, 郑立华, 等. 利用Re-YOLOv5和检测区域搜索算法获取大豆植株表型参数[J]. 农业工程学报, 2022, 38(15): 186-194. |
GUO X Y, LI J S, ZHENG L H, et al. Acquiring soybean phenotypic parameters using re-YOLOv5 and area search algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(15): 186-194. (in Chinese with English abstract) | |
[20] | LI S, YAN Z Z, GUO Y X, et al. SPM-IS: an auto-algorithm to acquire a mature soybean phenotype based on instance segmentation[J]. The Crop Journal, 2022, 10(5): 1412-1423. |
[21] | ZHANG P, LI D L. CBAM+ASFF-YOLOXs: an improved YOLOXs for guiding agronomic operation based on the identification of key growth stages of lettuce[J]. Computers and Electronics in Agriculture, 2022, 203: 107491. |
[22] | TIAN Y N, WANG S H, LI E, et al. MD-YOLO: Multi-scale Dense YOLO for small target pest detection[J]. Computers and Electronics in Agriculture, 2023, 213: 108233. |
[23] | RUSSELL B C, TORRALBA A, MURPHY K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1): 157-173. |
[24] | 甘雨, 郭庆文, 王春桃, 等. 基于改进EfficientNet模型的作物害虫识别[J]. 农业工程学报, 2022, 38(1): 203-211. |
GAN Y, GUO Q W, WANG C T, et al. Recognizing crop pests using an improved EfficientNet model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 203-211. (in Chinese with English abstract) | |
[25] | 宁姗, 陈海涛, 赵秋多, 等. 基于IM-SSD+ACO算法的整株大豆表型信息提取[J]. 农业机械学报, 2021, 52(12): 182-190. |
NING S, CHEN H T, ZHAO Q D, et al. Detection of pods and stems in soybean based on IM-SSD+ACO algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 182-190. (in Chinese with English abstract) | |
[26] | 郑程驰, 范影乐. 视网膜功能启发的边缘检测层级模型[J]. 自动化学报, 2023, 49(8): 1771-1784. |
ZHENG C C, FAN Y L. Multi-layer edge detection model inspired by retinal function[J]. Acta Automatica Sinica, 2023, 49(8): 1771-1784. (in Chinese with English abstract) | |
[27] | 董阳, 于洪鹏, 台立钢, 等. 基于最小外接矩形的目标工件定位算法[J]. 机械工程师, 2022(12): 21-26. |
DONG Y, YU H P, TAI L G, et al. Target workpiece localization algorithm based on minimum circumscribed rectangle[J]. Mechanical Engineer, 2022(12): 21-26. (in Chinese with English abstract) | |
[28] | YANG W J, WU J C, ZHANG J L, et al. Deformable convolution and coordinate attention for fast cattle detection[J]. Computers and Electronics in Agriculture, 2023, 211: 108006. |
[29] | 鲍文霞, 谢文杰, 胡根生, 等. 基于TPH-YOLO的无人机图像麦穗计数方法[J]. 农业工程学报, 2023, 39(1): 155-161. |
BAO W X, XIE W J, HU G S, et al. Wheat ear counting method in UAV images based on TPH-YOLO[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(1): 155-161. (in Chinese with English abstract) | |
[30] | YUE X, QI K, NA X Y, et al. Improved YOLOv8-seg network for instance segmentation of healthy and diseased tomato plants in the growth stage[J]. Agriculture, 2023, 13(8): 1643. |
[31] | 江俊君, 李震宇, 刘贤明. 基于深度学习的单目深度估计方法综述[J]. 计算机学报, 2022, 45(6): 1276-1307. |
JIANG J J, LI Z Y, LIU X M. Deep learning based monocular depth estimation: a survey[J]. Chinese Journal of Computers, 2022, 45(6): 1276-1307. (in Chinese with English abstract) | |
[32] | 朱逢乐, 严霜, 孙霖, 等. 基于深度学习多源数据融合的生菜表型参数估算方法[J]. 农业工程学报, 2022, 38(9): 195-204. |
ZHU F L, YAN S, SUN L, et al. Estimation method of lettuce phenotypic parameters using deep learning multi-source data fusion[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(9): 195-204. (in Chinese with English abstract) |
[1] | OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041. |
[2] | GUO Xiuming, WANG Dawei, LIU Shengping, ZHU Yeping, LIU Xiaohui, LIN Kejian, WANG Jiayu, LI Fei. Study on key problems for rat hole recognition and count near ground based on deep learning and its application [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2146-2154. |
[3] | SUN Xiujuan, XU Weihui, WANG Zhigang. Isolation and identification of endophytic bacteria from soybean nodule and their effects on soybean plant [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1532-1541. |
[4] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
[5] | YANG Songhua, SHI Guiyang, WANG Jingqin, CHEN Zhu. Effects of soybean root exudates on insoluble phosphorus in soil under low phosphorus stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1396-1406. |
[6] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
[7] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[8] | LIU Yue, XU Weihui, WANG Zhigang. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. |
[9] | TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965. |
[10] | LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132. |
[11] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[12] | LIU Na, FAN Qiaochu, ZHOU Jia, SONG Yajing, ZHANG Guwen, FENG Zhijuan, BO Yuanpeng, WANG Bin, GONG Yaming. Identification and control of anthracnose in vegetable soybean [J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2682-2688. |
[13] | HE Xiu, XU Meiyu, XIN Weigang, ZHANG Qilin, WANG Feng, LIN Lianbing. Effects of soybean meal addition and fermentation time on nutritional quality and bacterial diversity of Pennisetum purpureum silage [J]. Acta Agriculturae Zhejiangensis, 2022, 34(10): 2160-2171. |
[14] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[15] | ZHANG Weimei, ZHANG Guwen, FENG Zhijuan, LIU Na, WANG Bin, BU Yuanpeng. Research progress on genetic and regulatory mechanisms of sucrose in vegetable soybean seeds [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2446-2456. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||