Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (9): 2031-2041.DOI: 10.3969/j.issn.1004-1524.20231003
• Horticultural Science • Previous Articles Next Articles
OU Jinwen1,2(), ZHANG Guwen2, FENG Zhijuan2, WANG Bin2, BU Yuanpeng2, XU Yu2, RU Lei1, LIU Na1,2,*(
), GONG Yaming2
Received:
2023-08-22
Online:
2024-09-25
Published:
2024-09-30
CLC Number:
OU Jinwen, ZHANG Guwen, FENG Zhijuan, WANG Bin, BU Yuanpeng, XU Yu, RU Lei, LIU Na, GONG Yaming. Identification of soybean trehalose-6-phosphate phosphatase gene GmTPP and its expression analysis in growth and abiotic stress response[J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2031-2041.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231003
基因 Gene | 基因序列号 Gene ID number | 染色体 Chromosome | 内含子数目 Number of introns | 氨基酸数 Number of amino acids | 分子量 Molecular mass/ku | 等电点 Isoelectric point(pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GmTPP1 | Glyma.04G103600 | Gm04 | 9 | 371 | 41.438 67 | 9.35 | 叶绿体Chloroplast |
GmTPP2 | Glyma.04G119700 | Gm04 | 11 | 340 | 37.565 88 | 5.52 | 叶绿体Chloroplast |
GmTPP3 | Glyma.04G237900 | Gm04 | 9 | 367 | 41.772 01 | 8.86 | 叶绿体Chloroplast |
GmTPP4 | Glyma.05G179800 | Gm05 | 10 | 277 | 32.010 92 | 8.89 | 过氧化物酶体Peroxisomal |
GmTPP5 | Glyma.06G104800 | Gm06 | 9 | 370 | 41.444 76 | 9.46 | 叶绿体Chloroplast |
GmTPP6 | Glyma.06G126300 | Gm06 | 10 | 367 | 42.046 28 | 9.09 | 叶绿体Chloroplast |
GmTPP7 | Glyma.08G137500 | Gm08 | 10 | 290 | 33.448 61 | 8.83 | 过氧化物酶体Peroxisomal |
GmTPP8 | Glyma.09G231400 | Gm09 | 11 | 389 | 43.419 69 | 8.54 | 细胞质Cytoplasmic |
GmTPP9 | Glyma.11G239300 | Gm11 | 10 | 363 | 41.038 08 | 9.31 | 叶绿体Chloroplast |
GmTPP10 | Glyma.12G005200 | Gm12 | 11 | 389 | 43.276 45 | 7.66 | 叶绿体Chloroplast |
GmTPP11 | Glyma.13G088300 | Gm13 | 9 | 372 | 41.824 2 | 9.29 | 叶绿体Chloroplast |
GmTPP12 | Glyma.14G171700 | Gm14 | 9 | 379 | 42.540 85 | 9.47 | 叶绿体Chloroplast |
GmTPP13 | Glyma.16G025600 | Gm16 | 9 | 203 | 23.115 63 | 6.53 | 细胞质Cytoplasmic |
GmTPP14 | Glyma.17G138700 | Gm17 | 11 | 362 | 41.039 38 | 5.79 | 细胞核Nuclear |
GmTPP15 | Glyma.18G018100 | Gm18 | 11 | 365 | 41.200 30 | 9.31 | 叶绿体Chloroplast |
Table 1 Basic information of GmTPP family genes in soybean
基因 Gene | 基因序列号 Gene ID number | 染色体 Chromosome | 内含子数目 Number of introns | 氨基酸数 Number of amino acids | 分子量 Molecular mass/ku | 等电点 Isoelectric point(pI) | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|
GmTPP1 | Glyma.04G103600 | Gm04 | 9 | 371 | 41.438 67 | 9.35 | 叶绿体Chloroplast |
GmTPP2 | Glyma.04G119700 | Gm04 | 11 | 340 | 37.565 88 | 5.52 | 叶绿体Chloroplast |
GmTPP3 | Glyma.04G237900 | Gm04 | 9 | 367 | 41.772 01 | 8.86 | 叶绿体Chloroplast |
GmTPP4 | Glyma.05G179800 | Gm05 | 10 | 277 | 32.010 92 | 8.89 | 过氧化物酶体Peroxisomal |
GmTPP5 | Glyma.06G104800 | Gm06 | 9 | 370 | 41.444 76 | 9.46 | 叶绿体Chloroplast |
GmTPP6 | Glyma.06G126300 | Gm06 | 10 | 367 | 42.046 28 | 9.09 | 叶绿体Chloroplast |
GmTPP7 | Glyma.08G137500 | Gm08 | 10 | 290 | 33.448 61 | 8.83 | 过氧化物酶体Peroxisomal |
GmTPP8 | Glyma.09G231400 | Gm09 | 11 | 389 | 43.419 69 | 8.54 | 细胞质Cytoplasmic |
GmTPP9 | Glyma.11G239300 | Gm11 | 10 | 363 | 41.038 08 | 9.31 | 叶绿体Chloroplast |
GmTPP10 | Glyma.12G005200 | Gm12 | 11 | 389 | 43.276 45 | 7.66 | 叶绿体Chloroplast |
GmTPP11 | Glyma.13G088300 | Gm13 | 9 | 372 | 41.824 2 | 9.29 | 叶绿体Chloroplast |
GmTPP12 | Glyma.14G171700 | Gm14 | 9 | 379 | 42.540 85 | 9.47 | 叶绿体Chloroplast |
GmTPP13 | Glyma.16G025600 | Gm16 | 9 | 203 | 23.115 63 | 6.53 | 细胞质Cytoplasmic |
GmTPP14 | Glyma.17G138700 | Gm17 | 11 | 362 | 41.039 38 | 5.79 | 细胞核Nuclear |
GmTPP15 | Glyma.18G018100 | Gm18 | 11 | 365 | 41.200 30 | 9.31 | 叶绿体Chloroplast |
[1] |
KURODA Y, KAGA A, TOMOOKA N, et al. Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation[J]. Molecular Ecology, 2006, 15(4): 959-974.
DOI PMID |
[2] | LAM H M, XU X, LIU X, et al. Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection[J]. Nature Genetics, 2010, 42(12): 1053-1059. |
[3] | ZHANG M, LIU S L, WANG Z, et al. Progress in soybean functional genomics over the past decade[J]. Plant Biotechnology Journal, 2022, 20(2): 256-282. |
[4] |
CHAUDHARY J, PATIL G B, SONAH H, et al. Expanding omics resources for improvement of soybean seed composition traits[J]. Frontiers in Plant Science, 2015, 6: 1021.
DOI PMID |
[5] | 蒋炳军, 岳岩磊, 王彩洁, 等. 大豆分子育种研究进展[J]. 大豆科学, 2012, 31(4): 662-667. |
JIANG B J, YUE Y L, WANG C J, et al. Recent advances in molecular breeding of soybean[J]. Soybean Science, 2012, 31(4): 662-667. (in Chinese with English abstract) | |
[6] | 李金娜, 李海英. 糖料作物抗氧化酶基因应答非生物胁迫的研究进展[J]. 中国糖料, 2021, 43(4): 42-47. |
LI J N, LI H Y. Advance on antioxidant enzyme system’s genes response to abiotic stress in sugar crops[J]. Sugar Crops of China, 2021, 43(4): 42-47. (in Chinese with English abstract) | |
[7] | 陈柯岐, 邓星光, 林宏辉. 植物响应非生物胁迫的分子机制[J]. 生物学杂志, 2021, 38(6): 1-8. |
CHEN K Q, DENG X G, LIN H H. Molecular mechanisms of plant in response to abiotic stress[J]. Journal of Biology, 2021, 38(6): 1-8. (in Chinese with English abstract) | |
[8] | LUNN J E, DELORGE I, FIGUEROA C M, et al. Trehalose metabolism in plants[J]. Plant Journal, 2014, 79(4): 544-567. |
[9] |
DELORGE I, JANIAK M, CARPENTIER S, et al. Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants[J]. Frontiers in Plant Science, 2014, 5: 147.
DOI PMID |
[10] | YUAN G P, LIU J P, AN G L, et al. Genome-wide identification and characterization of the trehalose-6-phosphate synthetase (TPS) gene family in watermelon (Citrullus lanatus) and their transcriptional responses to salt stress[J]. International Journal of Molecular Sciences, 2021, 23(1): 276. |
[11] | RENARD-MERLIER D, RANDOUX B, NOWAK E, et al. Iodus 40, salicylic acid, heptanoyl salicylic acid and trehalose exhibit different efficacies and defence targets during a wheat/powdery mildew interaction[J]. Phytochemistry, 2007, 68(8): 1156-1164. |
[12] | WANG X L, DU Y, YU D Q. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana[J]. Journal of Integrative Plant Biology, 2019, 61(4): 509-527. |
[13] | VANDESTEENE L, LÓPEZ-GALVIS L, VANNESTE K, et al. Expansive evolution of the trehalose-6-phosphate phosphatase gene family in Arabidopsis[J]. Plant Physiology, 2012, 160(2): 884-896. |
[14] | BAENA-GONZÁLEZ E, LUNN J E. SnRK1 and trehalose 6-phosphate-two ancient pathways converge to regulate plant metabolism and growth[J]. Current Opinion in Plant Biology, 2020, 55: 52-59. |
[15] |
ZVINAVASHE A T, LIM E, SUN H, et al. A bioinspired approach to engineer seed microenvironment to boost germination and mitigate soil salinity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25555-25561.
DOI PMID |
[16] | ACOSTA-PÉREZ P, CAMACHO-ZAMORA B D, ESPINOZA-SÁNCHEZ E A, et al. Characterization of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase genes and analysis of its differential expression in maize (Zea mays) seedlings under drought stress[J]. Plants, 2020, 9(3): 315. |
[17] | KATAYA A R A, ELSHOBAKY A, HEIDARI B, et al. Multi-targeted trehalose-6-phosphate phosphatase I harbors a novel peroxisomal targeting signal 1 and is essential for flowering and development[J]. Planta, 2020, 251(5): 98. |
[18] |
WINGLER A, DELATTE T L, O’HARA L E, et al. Trehalose 6-phosphate is required for the onset of leaf senescence associated with high carbon availability[J]. Plant Physiology, 2012, 158(3): 1241-1251.
DOI PMID |
[19] |
AVONCE N, MENDOZA-VARGAS A, MORETT E, et al. Insights on the evolution of trehalose biosynthesis[J]. BMC Evolutionary Biology, 2006, 6: 109.
PMID |
[20] | YANG H L, LIU Y J, WANG C L, et al. Molecular evolution of trehalose-6-phosphate synthase (TPS) gene family in Populus, Arabidopsis and rice[J]. PLoS One, 2012, 7(8): e42438. |
[21] |
谢翎, 汪章勋, 黄勃. 大豆TPS基因家族全基因组鉴定、分类与表达分析[J]. 中国油料作物学报, 2014, 36(2): 160-167.
DOI |
XIE L, WANG Z X, HUANG B. Genome-wide identification classification and expression of TPS family genes in soybean[J]. Chinese Journal of Oil Crop Sciences, 2014, 36(2): 160-167. (in Chinese with English abstract) | |
[22] | LIN Q F, YANG J, WANG Q L, et al. Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana[J]. BMC Plant Biology, 2019, 19(1): 381. |
[23] | KRASENSKY J, BROYART C, RABANAL F A, et al. The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance[J]. Antioxidants & Redox Signaling, 2014, 21(9): 1289-1304. |
[24] | VAN HOUTTE H, LÓPEZ-GALVIS L, VANDESTEENE L, et al. Redundant and non-redundant roles of the trehalose-6-phosphate phosphatases in leaf growth, root hair specification and energy-responses in Arabidopsis[J]. Plant Signaling & Behavior, 2013, 8(3): e23209. |
[25] |
CLAEYS H, Ⅵ S L, XU X S, et al. Control of meristem determinacy by trehalose 6-phosphate phosphatases is uncoupled from enzymatic activity[J]. Nature Plants, 2019, 5(4): 352-357.
DOI PMID |
[26] | SHIMA S H, MATSUI H, TAHARA S, et al. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes[J]. The FEBS Journal, 2007, 274(5): 1192-1201. |
[27] | DU L Y, LI S M, DING L, et al. Genome-wide analysis of trehalose-6-phosphate phosphatases (TPP) gene family in wheat indicates their roles in plant development and stress response[J]. BMC Plant Biology, 2022, 22(1): 120. |
[28] | SATOH-NAGASAWA N, NAGASAWA N, MALCOMBER S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize[J]. Nature, 2006, 441(7090): 227-230. |
[29] |
FICHTNER F, LUNN J E. The role of trehalose 6-phosphate (Tre6P) in plant metabolism and development[J]. Annual Review of Plant Biology, 2021, 72: 737-760.
DOI PMID |
[30] |
FIGUEROA C M, FEIL R, ISHIHARA H, et al. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability[J]. The Plant Journal, 2016, 85(3): 410-423.
DOI PMID |
[31] | 张雯, 王宇斐, 郭延平. 高等植物6-磷酸海藻糖信号调控研究进展[J]. 植物生理学报, 2016, 52(4): 394-400. |
ZHANG W, WANG Y F, GUO Y P. Review on crosstalk regulation involving in trehalose-6-phosphate signal in plant[J]. Plant Physiology Journal, 2016, 52(4): 394-400. (in Chinese with English abstract) | |
[32] |
KARIM S, ARONSSON H, ERICSON H, et al. Improved drought tolerance without undesired side effects in transgenic plants producing trehalose[J]. Plant Molecular Biology, 2007, 64(4): 371-386.
DOI PMID |
[33] | GE L F, CHAO D Y, SHI M, et al. Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes[J]. Planta, 2008, 228(1): 191-201. |
[34] | SCHMID M, DAVISON T S, HENZ S R, et al. A gene expression map of Arabidopsis thaliana development[J]. Nature Genetics, 2005, 37(5): 501-506. |
[35] | LI H W, ZANG B S, DENG X W, et al. Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice[J]. Planta, 2011, 234(5): 1007-1018. |
[36] | MU M, LU X K, WANG J J, et al. Genome-wide Identification and analysis of the stress-resistance function of the TPS(Trehalose-6-Phosphate Synthase) gene family in cotton[J]. BMC Genetics, 2016, 17: 54. |
[37] |
田礼欣, 曲丹阳, 毕文双, 等. 海藻糖对盐胁迫下玉米幼苗生长及生理特性的影响[J]. 草业学报, 2017, 26(8): 131-138.
DOI |
TIAN L X, QU D Y, BI W S, et al. Trehalose alleviates the negative effects of salinity on the growth and physiological characteristics of maize seedlings[J]. Acta Prataculturae Sinica, 2017, 26(8): 131-138. (in Chinese with English abstract) | |
[38] | 刘旋, 佟昊阳, 田礼欣, 等. 外源海藻糖对低温胁迫下玉米幼苗根系生长及生理特性的影响[J]. 中国农业气象, 2018, 39(8): 538-546. |
LIU X, TONG H Y, TIAN L X, et al. Effects of exogenous trehalose on growth and physiological characteristics of maize seedling roots under chilling stress[J]. Chinese Journal of Agrometeorology, 2018, 39(8): 538-546. (in Chinese with English abstract) | |
[39] | BLÄSING O E, GIBON Y, GÜNTHER M, et al. Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis[J]. The Plant Cell, 2005, 17(12): 3257-3281. |
[40] |
NUCCIO M L, WU J, MOWERS R, et al. Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions[J]. Nature Biotechnology, 2015, 33(8): 862-869.
PMID |
[41] | GAO Y H, YANG X Y, YANG X, et al. Characterization and expression pattern of the trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase gene families in Populus[J]. International Journal of Biological Macromolecules, 2021, 187: 9-23. |
[1] | SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718. |
[2] | TANG Hong, GUAN Wenzhi, XU Xiaojun, NIU Baolong, LOU Bao, SHEN Xiaoming, GU Zhimin. Cloning and spatio-temporal expression analysis of foxl2 gene and the influence of EE2 on its expression in Megalobrama terminalis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1789-1799. |
[3] | YUAN Xiao, JIANG Yuanyuan, ZHU Yunna, QU Shanshan, WANG Yukun, YUAN Yuan, WANG Bin. Expression analysis of JAZ family genes in harvested cucumber fruit under cold storage condition [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1820-1831. |
[4] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[5] | SUN Xiujuan, XU Weihui, WANG Zhigang. Isolation and identification of endophytic bacteria from soybean nodule and their effects on soybean plant [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1532-1541. |
[6] | BU Yuanpeng, LIU Na, ZHANG Guwen, FENG Zhijuan, WANG Bin, GONG Yaming, XU Linying. Diversity evaluation of agronomic traits and construction of core collection and taste quality evaluation system in vegetable soybean germplasm resources [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1307-1314. |
[7] | ZHANG Xinye, LI Wenjing, ZHU Shu, SUN Yanxiang, WANG Congyan, YAN Xunyou, ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1315-1327. |
[8] | YANG Songhua, SHI Guiyang, WANG Jingqin, CHEN Zhu. Effects of soybean root exudates on insoluble phosphorus in soil under low phosphorus stress [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1396-1406. |
[9] | LIANG Feishuang, LIANG Huafang, Huang Jiayu, WANG Panmei, WEN Chongqing. Effect of RNA interference with PhCatC1/2 gene on expression of related immune genes in Panulirus homarus [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1037-1047. |
[10] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
[11] | TAN Shuxia, ZHAO Taodi, YANG Hao, NING Kejun, LIU Li, HE Qingyuan, HUANG Shoucheng, SHU Yingjie. Effects of shading on agronomic characters, yield and nitrogen metabolism of 10 vegetable soybean varieties [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 729-735. |
[12] | YAN Cunyao, JIA Kai, YAN Huizhuan, GAO Jie. Cloning, expression and bioinformatics analysis of BrrLOX7 gene in turnip [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 831-840. |
[13] | ZHANG Meng, SHE Bao, YANG Yuying, HUANG Linsheng, ZHU Mengqi. Study on extraction method of soybean planting areas based on unmanned aerial vehicle RGB image [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 952-961. |
[14] | LIU Yue, XU Weihui, WANG Zhigang. Screening and identification of soybean rhizosphere growth-promoting bacteria and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2775-2784. |
[15] | TAN Yunfeng, CHEN Lin, HU Sen, WANG Jian, CHEN Zhifan, LYU Xiaorong. Design and experiment of longitudinal-axial flow flexible bent-tooth soybean thresher [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2954-2965. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||