Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (12): 2669-2681.DOI: 10.3969/j.issn.1004-1524.2022.12.10
• Horticultural Science • Previous Articles Next Articles
LIU Tao1(
), CHEN Hairong2, WANG Chengzhong3, REN Li2,*(
), ZHANG Di1,*(
)
Received:2021-08-16
Online:2022-12-25
Published:2022-12-26
Contact:
REN Li,ZHANG Di
CLC Number:
LIU Tao, CHEN Hairong, WANG Chengzhong, REN Li, ZHANG Di. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.12.10
| 基因名称 Gene name | 引物序列 Primer sequences/(5'→3') | 退火温度 Annealing temperature/℃ |
|---|---|---|
| Ap-Actin | CAGTGTCTGGATTGGAGG | 54.9 |
| TAGAAGCACTTCCTGTG | 49.8 | |
| Cu/Zn-SOD | GCAGTGAGGGAGTGAAGG | 57.2 |
| TGCAGCCATTTGTGGTAT | 50.3 | |
| Fe-SOD | GCTCCTGCATTCCCTGTG | 57.2 |
| AACATTGTGGCCGACGAA | 52.6 | |
| POD | ACAACCCTTGTCTATTCACG | 53.4 |
| TTCACCAACCGCCTCTAC | 54.9 | |
| CAT | GGCACTTGCACCTCTTGC | 57.2 |
| ACCACTTTCACCACCACC | 54.9 | |
| APX | ACAAGCGGGCGGAAGACA | 57.2 |
| TGGGCAGGTGCCACAAAG | 57.2 | |
| GPX | CATGGGAAAGCCAGGATC | 54.9 |
| CGATTTCACCGTCAAGGA | 52.6 |
Table 1 Target genes and primer sequences of qRT-PCR
| 基因名称 Gene name | 引物序列 Primer sequences/(5'→3') | 退火温度 Annealing temperature/℃ |
|---|---|---|
| Ap-Actin | CAGTGTCTGGATTGGAGG | 54.9 |
| TAGAAGCACTTCCTGTG | 49.8 | |
| Cu/Zn-SOD | GCAGTGAGGGAGTGAAGG | 57.2 |
| TGCAGCCATTTGTGGTAT | 50.3 | |
| Fe-SOD | GCTCCTGCATTCCCTGTG | 57.2 |
| AACATTGTGGCCGACGAA | 52.6 | |
| POD | ACAACCCTTGTCTATTCACG | 53.4 |
| TTCACCAACCGCCTCTAC | 54.9 | |
| CAT | GGCACTTGCACCTCTTGC | 57.2 |
| ACCACTTTCACCACCACC | 54.9 | |
| APX | ACAAGCGGGCGGAAGACA | 57.2 |
| TGGGCAGGTGCCACAAAG | 57.2 | |
| GPX | CATGGGAAAGCCAGGATC | 54.9 |
| CGATTTCACCGTCAAGGA | 52.6 |
Fig.2 Soil moisture (A) and fresh weights of Agapanthus praecox under drought (B) and different salt concentration (C) stress treatments Different lowercases in the same column indicated significant (P<0.05) differences in soil moisture or fresh weights of A. praecox in different time under drought stress treatment.
Fig.3 Physiological indexes of Agapanthus praecox under drought (A-H) and salt (I-P, 1.29% NaCl concentration) stress treatments The unit of total soluable protein was standardized as per gram of plant dry weight, and the unit of other physiological indexes (eccept relative electrical conductivity) was standardized as per milligram of protein. Different lowercases in the same column indicate significant (P<0.05) differences in physiological indexes of A. praecox in different time under drought or salt stress treatment.
| 指标Index | Chl | TSP | Pro | MDA | SOD | POD | CAT |
|---|---|---|---|---|---|---|---|
| REL | 0.821 | 0.339 | 0.885* | 0.942 | -0.346 | -0.693 | -0.757 |
| Chl | 0.815 | 0.524 | 0.841 | -0.382 | -0.751 | -0.866 | |
| TSP | -0.047 | 0.444 | -0.318 | -0.563 | -0.639 | ||
| Pro | 0.697 | 0.031 | -0.306 | -0.665 | |||
| MDA | -0.636 | -0.894* | -0.609 | ||||
| SOD | 0.891* | -0.119 | |||||
| POD | 0.343 |
Table 2 Correlation analysis of resistance physiological indexes of Agapanthus praecox under drought stress treatment
| 指标Index | Chl | TSP | Pro | MDA | SOD | POD | CAT |
|---|---|---|---|---|---|---|---|
| REL | 0.821 | 0.339 | 0.885* | 0.942 | -0.346 | -0.693 | -0.757 |
| Chl | 0.815 | 0.524 | 0.841 | -0.382 | -0.751 | -0.866 | |
| TSP | -0.047 | 0.444 | -0.318 | -0.563 | -0.639 | ||
| Pro | 0.697 | 0.031 | -0.306 | -0.665 | |||
| MDA | -0.636 | -0.894* | -0.609 | ||||
| SOD | 0.891* | -0.119 | |||||
| POD | 0.343 |
| 指标Index | Chl | TSP | Pro | MDA | SOD | POD | CAT |
|---|---|---|---|---|---|---|---|
| REL | 0.817 | -0.816 | -0.817 | 0.681 | -0.873 | -0.861 | -0.976* |
| Chl | -0.859 | -0.994** | 0.701 | -0.993** | -0.989* | -0.850 | |
| TSP | 0.907 | -0.964* | 0.850 | 0.923 | 0.921 | ||
| Pro | -0.774 | 0.982* | 0.996** | 0.870 | |||
| MDA | -0.680 | -0.791 | -0.824 | ||||
| SOD | 0.986* | 0.886 | |||||
| POD | 0.908 |
Table 3 Correlation analysis of resistance physiological indexes of Agapanthus praecox under salt stress treatment
| 指标Index | Chl | TSP | Pro | MDA | SOD | POD | CAT |
|---|---|---|---|---|---|---|---|
| REL | 0.817 | -0.816 | -0.817 | 0.681 | -0.873 | -0.861 | -0.976* |
| Chl | -0.859 | -0.994** | 0.701 | -0.993** | -0.989* | -0.850 | |
| TSP | 0.907 | -0.964* | 0.850 | 0.923 | 0.921 | ||
| Pro | -0.774 | 0.982* | 0.996** | 0.870 | |||
| MDA | -0.680 | -0.791 | -0.824 | ||||
| SOD | 0.986* | 0.886 | |||||
| POD | 0.908 |
Fig.4 Relative expression of antioxidant enzyme genes in Agapanthus praecox under drought (A-F) and salt (G-L, 1.29% NaCl concentration) stress treatments Different lowercases in the same column indicated significant (P<0.05) differences in relative expression of antioxidant enzyme genes in A. praecox in different time under drought or salt stress treatment.
| 主成分 Principal components | 干旱胁迫 Drought stress | 盐胁迫 Salt stress | |||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 1 | ||
| 特征值 Eigenvalues | 5.132 | 1.688 | 1.181 | 6.870 | |
| 贡献率 Contribution/% | 64.146 | 21.096 | 14.758 | 85.872 | |
| 累积贡献率 Cumulative contribution/% | 100 | 85.872 | |||
| 特征向量Eigen vectors | x1 | 0.181 | 0.152 | -0.223 | -0.129 |
| x2 | 0.186 | 0.025 | 0.250 | -0.131 | |
| x3 | 0.124 | -0.135 | 0.624 | -0.142 | |
| x4 | 0.128 | 0.360 | -0.376 | 0.132 | |
| x5 | 0.188 | -0.049 | -0.215 | -0.118 | |
| x6 | -0.101 | 0.481 | 0.227 | 0.143 | |
| x7 | -0.166 | 0.303 | 0.108 | 0.145 | |
| x8 | -0.151 | -0.309 | -0.306 | 0.136 | |
| 对应抗性生理指标 | MDA、TSP | SOD、Pro | Chl、Pro | SOD、POD | |
| Corresponding physiological indexes | |||||
Table 4 The principal component analysis of comprehensive appraisal of Agapanthus praecox under drought and salt stress treatments
| 主成分 Principal components | 干旱胁迫 Drought stress | 盐胁迫 Salt stress | |||
|---|---|---|---|---|---|
| 1 | 2 | 3 | 1 | ||
| 特征值 Eigenvalues | 5.132 | 1.688 | 1.181 | 6.870 | |
| 贡献率 Contribution/% | 64.146 | 21.096 | 14.758 | 85.872 | |
| 累积贡献率 Cumulative contribution/% | 100 | 85.872 | |||
| 特征向量Eigen vectors | x1 | 0.181 | 0.152 | -0.223 | -0.129 |
| x2 | 0.186 | 0.025 | 0.250 | -0.131 | |
| x3 | 0.124 | -0.135 | 0.624 | -0.142 | |
| x4 | 0.128 | 0.360 | -0.376 | 0.132 | |
| x5 | 0.188 | -0.049 | -0.215 | -0.118 | |
| x6 | -0.101 | 0.481 | 0.227 | 0.143 | |
| x7 | -0.166 | 0.303 | 0.108 | 0.145 | |
| x8 | -0.151 | -0.309 | -0.306 | 0.136 | |
| 对应抗性生理指标 | MDA、TSP | SOD、Pro | Chl、Pro | SOD、POD | |
| Corresponding physiological indexes | |||||
| [1] | 孙孟超, 尹赜鹏, 马晓蕾, 等. 盐胁迫对欧李幼苗生理响应及离子含量的影响[J]. 经济林研究, 2012, 30(2): 33-37. |
| SUN M C, YIN Z P, MA X L, et al. Effects of salt stress on physiological characteristics and ion contents in Cerasus humilis seedlings[J]. Nonwood Forest Research, 2012, 30(2): 33-37. (in Chinese with English abstract) | |
| [2] | 薛鑫, 张芊, 吴金霞. 植物体内活性氧的研究及其在植物抗逆方面的应用[J]. 生物技术通报, 2013(10): 6-11. |
| XUE X, ZHANG Q, WU J X. Research of reactive oxygen species in plants and its application on stress tolerance[J]. Biotechnology Bulletin, 2013(10): 6-11. (in Chinese with English abstract) | |
| [3] | 杨舒贻, 陈晓阳, 惠文凯, 等. 逆境胁迫下植物抗氧化酶系统响应研究进展[J]. 福建农林大学学报(自然科学版), 2016, 45(5): 481-489. |
| YANG S Y, CHEN X Y, HUI W K, et al. Progress in responses of antioxidant enzyme systems in plant to environmental stresses[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2016, 45(5): 481-489. (in Chinese with English abstract) | |
| [4] | 范海霞, 赵飒, 辛国奇, 等. 外源NO对盐胁迫下菊花幼苗生理特性的影响[J]. 北方园艺, 2020(19): 70-77. |
| FAN H X, ZHAO S, XIN G Q, et al. Effects of exogenous nitric oxide on physiological characteristics of Chrysanthemum seedling under salt stress[J]. Northern Horticulture, 2020(19): 70-77. (in Chinese with English abstract) | |
| [5] | 邓丽娟, 沈红香, 姚允聪. 观赏海棠品种对土壤干旱胁迫的响应差异[J]. 林业科学, 2011, 47(3): 25-32. |
| DENG L J, SHEN H X, YAO Y C. Differences responses of ornamental crabapple cultivars to soil drought stress[J]. Scientia Silvae Sinicae, 2011, 47(3): 25-32. (in Chinese with English abstract) | |
| [6] |
ZHANG D, REN L, SHEN X H, et al. Fertilization and embryogeny in Agapanthus praecox ssp. orientalis(Leighton) Leighton[J]. Plant Systematics and Evolution, 2011, 293(1/2/3/4): 25-30.
DOI URL |
| [7] | 陈冠群, 李晓丹, 申晓辉. 百子莲胚性愈伤组织玻璃化法超低温保存体系建立及遗传稳定性分析[J]. 上海交通大学学报(农业科学版), 2014, 32(5): 76-83,94. |
| CHEN G Q, LI X D, SHEN X H. Vitrification-based cryopreservation of embryogenic callus of Agapanthus praecox ssp.orientalis and analysis of genetic stability by AFLP[J]. Journal of Shanghai Jiao Tong University (Agricultural Science), 2014, 32(5): 76-83,94. (in Chinese with English abstract) | |
| [8] | 石玉波, 张荻, 申晓辉, 等. 百子莲开花相关基因ApFT的克隆及表达分析[J]. 园艺学报, 2014, 41(4): 726-734. |
| SHI Y B, ZHANG D, SHEN X H, et al. Cloning and expression pattern analysis of flowering related gene ApFT from Agapanthus praecox ssp. orientalis[J]. Acta Horticulturae Sinica, 2014, 41(4): 726-734. (in Chinese with English abstract) | |
| [9] | 陈香波, 陆亮, 钱又宇, 等. 百子莲品种资源收集与栽培[C]// 2016年中国观赏园艺学术研讨会论文集. 长沙: 中国园艺学会, 2016: 95-99. |
| [10] | 陈香波, 陆亮, 钱又宇, 等. 百子莲属种质资源及园林开发应用[J]. 中国园林, 2016, 32(8): 99-105. |
| CHEN X B, LU L, QIAN Y Y, et al. Recent advances in germplasm and landscape application of Agapanthus spp[J]. Chinese Landscape Architecture, 2016, 32(8): 99-105. (in Chinese with English abstract) | |
| [11] | 杨天宸, 陈晓童, 吕可, 等. 百子莲脱水素基因ApSK3对逆境与激素信号的应答模式与调控机制[J]. 园艺学报, 2021, 48(8): 1565-1578. |
| YANG T C, CHEN X T, LYU K, et al. Expression pattern and regulation mechanism of ApSK3 dehydrin(Agapanthus praecox)response to abiotic stress and hormone signals[J]. Acta Horticulturae Sinica, 2021, 48(8): 1565-1578. (in Chinese with English abstract) | |
| [12] | 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009. |
| [13] |
YANG Z, SHENG J Y, LV K, et al. Y2SK2 and SK3 type dehydrins from Agapanthus praecox can improve plant stress tolerance and act as multifunctional protectants[J]. Plant Science, 2019, 284: 143-160.
DOI URL |
| [14] | REN L, ZHANG D, SHEN X H, et al. Antioxidants and anti-stress compounds improve the survival of cryopreserved Arabidopsis seedlings[J]. Acta Horticulturae, 2014(1039): 57-62. |
| [15] |
ZHANG D, REN L, CHEN G Q, et al. ROS-induced oxidative stress and apoptosis-like event directly affect the cell viability of cryopreserved embryogenic callus in Agapanthus praecox[J]. Plant Cell Reports, 2015, 34(9): 1499-1513.
DOI URL |
| [16] | 王强, 马小红, 翁秀妹. 采用Origin软件计算DXI 800发光仪的四参数logistic定标数据[J]. 检验医学, 2014, 29(6): 656-658,663. |
| WANG Q, MA X H, WENG X M. The fit of four parameter logistic calibration of DXI 800 chemiluminescence analyzer by Origin software[J]. Laboratory Medicine, 2014, 29(6): 656-658,663. (in Chinese with English abstract) | |
| [17] |
SOHRABI Y, HEIDARI G, WEISANY W, et al. Changes of antioxidative enzymes, lipid peroxidation and chlorophyll content in chickpea types colonized by different Glomus species under drought stress[J]. Symbiosis, 2012, 56(1): 5-18.
DOI URL |
| [18] |
VERSLUES P E, AGARWAL M, KATIYAR-AGARWAL S, et al. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status[J]. The Plant Journal, 2006, 45(4): 523-539.
DOI URL |
| [19] | 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版), 2014, 29(3): 315-318,373. |
| MENG F H, WANG C, XU S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2014, 29(3): 315-318,373. (in Chinese with English abstract) | |
| [20] | 许盼云, 吴玉霞, 何天明. 植物对盐碱胁迫的适应机理研究进展[J]. 中国野生植物资源, 2020, 39(10): 41-49. |
| XU P Y, WU Y X, HE T M. Research progress on adaptation mechanism of plants to saline-alkali stress[J]. Chinese Wild Plant Resources, 2020, 39(10): 41-49. (in Chinese with English abstract) | |
| [21] | 张治振, 李稳, 周起先, 等. 不同水稻品种幼苗期耐盐性评价[J]. 作物杂志, 2020(3): 92-101. |
| ZHANG Z Z, LI W, ZHOU Q X, et al. Salt tolerance evaluation of different rice varieties at seedling stage[J]. Crops, 2020(3): 92-101. (in Chinese with English abstract) | |
| [22] | 李玉梅, 郭修武, 代汉萍, 等. 盐碱胁迫对牛叠肚幼苗渗透调节物质及叶绿素含量的影响[J]. 经济林研究, 2015, 33(1): 9-16. |
| LI Y M, GUO X W, DAI H P, et al. Effects of salt-saline stress on contents of osmotic adjustment substances and chlorophyll in Rubus crataegifolius seedlings[J]. Nonwood Forest Research, 2015, 33(1): 9-16. (in Chinese with English abstract) | |
| [23] | 祁伟亮, 冯鸿, 刘松青, 等. 不同桑品种在干旱胁迫下脯氨酸及可溶性蛋白质含量的变化规律研究[J]. 中国野生植物资源, 2017, 36(5): 34-36,39. |
| QI W L, FENG H, LIU S Q, et al. Effects of drought stress on free proline and soluble protein content of different mulberry varieties[J]. Chinese Wild Plant Resources, 2017, 36(5): 34-36,39. (in Chinese with English abstract) | |
| [24] | 董斌, 蓝来娇, 黄永芳, 等. 干旱胁迫对油茶叶片叶绿素含量和叶绿素荧光参数的影响[J]. 经济林研究, 2020, 38(3): 16-25. |
| DONG B, LAN L J, HUANG Y F, et al. Effects of drought stress on photosynthetic pigments and chlorophyll fluorescence characteristics in leaves of Camellia oleifera[J]. Non-Wood Forest Research, 2020, 38(3): 16-25. (in Chinese with English abstract) | |
| [25] | GUO C X, ZHOU Y, DONG Y F, et al. Introduction and drought-resistance evaluation of ten Iris species[J]. Acta Horticulturae, 2013(977): 75-82. |
| [26] | 陈洪. 木麻黄抗旱生理生化部分特性的研究[J]. 福建农业学报, 2000, 15(1): 48-54. |
| CHEN H. Studies on the part physiological and chemical characters of drought tolerance in Casuarina equisetifolia[J]. Fujian Journal of Agricultural Sciences, 2000, 15(1): 48-54. (in Chinese with English abstract) | |
| [27] |
TOMMASINO E, GRIFFA S, GRUNBERG K, et al. Malondialdehyde content as a potential biochemical indicator of tolerant Cenchrus ciliaris L. genotypes under heat stress treatment[J]. Grass and Forage Science, 2012, 67(3): 456-459.
DOI URL |
| [28] | 伏毅, 戴媛, 谭晓荣, 等. 干旱对小麦幼苗脂类和蛋白质氧化损伤的影响[J]. 作物杂志, 2010(3): 45-50. |
| FU Y, DAI Y, TAN X R, et al. Effects of drought on lipids and proteins oxidative damage in wheat seedlings[J]. Crops, 2010(3): 45-50. (in Chinese with English abstract) | |
| [29] | 李瑞雪, 金晓玲, 胡希军, 等. 低温胁迫下6种木兰科植物的生理响应及抗寒相关基因差异表达[J]. 生态学报, 2019, 39(8): 2883-2898. |
| LI R X, JIN X L, HU X J, et al. Physiological responses and differential expression of cold resistance-related genes of six varieties of Magnoliaceae under low temperature stress[J]. Acta Ecologica Sinica, 2019, 39(8): 2883-2898. (in Chinese with English abstract) | |
| [30] | 陈志飞, 宋书红, 张晓娜, 等. 赤霉素对干旱胁迫下高羊茅萌发及幼苗生长的缓解效应[J]. 草业学报, 2016, 25(6): 51-61. |
| CHEN Z F, SONG S H, ZHANG X N, et al. Effects of gibberellin on seed germination and seedling growth of tall fescue under drought stress[J]. Acta Prataculturae Sinica, 2016, 25(6): 51-61. (in Chinese with English abstract) | |
| [31] |
CHO U H, SEO N H. Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation[J]. Plant Science, 2005, 168(1): 113-120.
DOI URL |
| [32] |
CAKMAK I, HORST W J. Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max)[J]. Physiologia Plantarum, 1991, 83(3): 463-468.
DOI URL |
| [33] |
LIN C C, KAO C H. Effect of NaCl stress on H2O2 metabolism in rice leaves[J]. Plant Growth Regulation, 2000, 30(2): 151-155.
DOI URL |
| [34] | 黄海霞, 连转红, 王亮, 等. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应[J]. 干旱区研究, 2020, 37(1): 227-235. |
| HUANG H X, LIAN Z H, WANG L, et al. Response of osmotic regulation substances and antioxidant enzyme activity in leaves of Gymnocarpos przewalskii to drought[J]. Arid Zone Research, 2020, 37(1): 227-235. (in Chinese with English abstract) | |
| [35] | 裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5): 1386-1396. |
|
PEI B, ZHANG G C, ZHANG S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386-1396. (in Chinese with English abstract)
DOI URL |
|
| [36] | 井大炜, 邢尚军, 杜振宇, 等. 干旱胁迫对杨树幼苗生长、光合特性及活性氧代谢的影响[J]. 应用生态学报, 2013, 24(7): 1809-1816. |
| JING D W, XING S J, DU Z Y, et al. Effects of drought stress on the growth, photosynthetic characteristics, and active oxygen metabolism of poplar seedlings[J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1809-1816. (in Chinese with English abstract) | |
| [37] | 潘璐, 邹旭, 张往祥, 等. 盐胁迫对两种海棠生长和生理特性的影响[J]. 东北林业大学学报, 2020, 48(6): 25-31. |
| PAN L, ZOU X, ZHANG W X, et al. Effects of salt stress on growth and physiological characteristics of two Malus species[J]. Journal of Northeast Forestry University, 2020, 48(6): 25-31. (in Chinese with English abstract) | |
| [38] |
KATUWAL K B, XIAO B, JESPERSEN D. Physiological responses and tolerance mechanisms of seashore Paspalum and centipedegrass exposed to osmotic and iso-osmotic salt stresses[J]. Journal of Plant Physiology, 2020, 248: 153154.
DOI URL |
| [39] | 齐琪, 马书荣, 徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种, 2020, 18(8): 2741-2746. |
| QI Q, MA S R, XU W D. Advances in the effects of salt stress on plant growth and physiological mechanisms of salt tolerance[J]. Molecular Plant Breeding, 2020, 18(8): 2741-2746. (in Chinese with English abstract) | |
| [40] | 周广生, 梅方竹, 周竹青, 等. 小麦不同品种耐湿性生理指标综合评价及其预测[J]. 中国农业科学, 2003, 36(11): 1378-1382. |
| ZHOU G S, MEI F Z, ZHOU Z Q, et al. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties[J]. Scientia Agricultura Sinica, 2003, 36(11): 1378-1382. (in Chinese with English abstract) | |
| [41] | 何玮, 范彦, 徐远东, 等. 红三叶苗期抗旱性指标筛选及综合评价[J]. 植物遗传资源学报, 2009, 10(4): 572-577. |
| HE W, FAN Y, XU Y D, et al. Screening identification indexes of drought resistance and comprehensive evaluation at seedling stage of red clover[J]. Journal of Plant Genetic Resources, 2009, 10(4): 572-577. (in Chinese with English abstract) | |
| [42] | 吴文超, 曲延英, 高文伟, 等. 不同棉花品种对盐、旱胁迫的光合响应及抗逆性评价[J]. 新疆农业科学, 2016, 53(9): 1569-1579. |
| WU W C, QU Y Y, GAO W W, et al. Evaluation of cotton stress resistance based on the responses of the photosynthetic indexes to salt and drought stress[J]. Xinjiang Agricultural Sciences, 2016, 53(9): 1569-1579. (in Chinese with English abstract) | |
| [43] | 赵卫星, 刘喜存, 李晓慧, 等. 甜瓜幼苗对逆境胁迫的生理响应及抗逆性综合评价[J]. 西南农业学报, 2017, 30(2): 322-326. |
| ZHAO W X, LIU X C, LI X H, et al. Physiological responses of muskmelon seedlings to different adversity stresses and synthetical evaluation of stress resistance[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(2): 322-326. (in Chinese with English abstract) | |
| [44] | 贾鑫. 蒙古黄芪对干旱胁迫的响应及分子应答机制研究[D]. 呼和浩特: 内蒙古大学, 2016. |
| JIA X. The study of the response and the molecular mechanisms of Astragalus membranaceus BGE. var. Mongoliclus (BGE.) to drought stress[D]. Hohhot: Inner Mongolia University, 2016. (in Chinese with English abstract) | |
| [45] | 孙林, 郑卫国, 宫彦章, 等. 华南地区22种园林植物耐旱性分级筛选[J]. 亚热带植物科学, 2021, 50(3): 189-196. |
| SUN L, ZHENG W G, GONG Y Z, et al. Screening and classification of drought tolerance in 22 species of landscape plants in Southern China[J]. Subtropical Plant Science, 2021, 50(3): 189-196. (in Chinese with English abstract) | |
| [46] | 袁小环, 武菊英, 杨学军, 等. 基于半致死浓度的观赏草萌发期和幼苗期耐盐性评价[J]. 中国草地学报, 2012, 34(6): 49-53. |
| YUAN X H, WU J Y, YANG X J, et al. Assessment of salt tolerance of ornamental grasses at germination stage and seedling stage based on LC50[J]. Chinese Journal of Grassland, 2012, 34(6): 49-53. (in Chinese with English abstract) | |
| [47] | 谢委, 刘月, 王艳, 等. 不同盐胁迫对中牧一号紫花苜蓿种子萌发和幼苗生长的影响[J]. 黑龙江畜牧兽医, 2018(11): 157-161,168. |
| XIE W, LIU Y, WANG Y, et al. Effects of different kinds of salt stress on seed germination and seedling growth of Medicago sativa. cv. Zhongmu No.1[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(11): 157-161,168. (in Chinese with English abstract) | |
| [48] | KHAN M A, UNGAR I A. Biology of salt tolerant plants[M]. Chelsea, Michigan: Book Crafters, 1995. |
| [1] | HU Yingjie, DU Chenqi, WANG Liufan, SHOU Jianxin, WANG Chao, XU Mei, YAN Xu. Research progress of vesicle trafficking in plant response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(9): 2003-2011. |
| [2] | GUAN Xiusheng, LIU Tieshan, WANG Juan, ZHANG Maolin, LIU Chunxiao, DONG Rui, GUAN Haiying, LIU Qiang, XU Yang, HE Chunmei. Bioinformatics analysis and cloning of NF-YA family genes in maize(Zea mays) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1605-1614. |
| [3] | LIU Guomin, ZHENG Xu, LIAO Yujiao, QIN Yexin, QIN Weizhi. Effect of grafting on cold resistance of potato seedlings under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1615-1623. |
| [4] | LI Yujing, HUANG Qianru, ZHANG Aidong, WU Xuexia, ZHU Dongxing, XIAO Kai. Function of the SmMYB13 gene in drought stress response in eggplant (Solanum melongena L.) [J]. Acta Agriculturae Zhejiangensis, 2025, 37(8): 1666-1679. |
| [5] | TAN Yali, GAO Mengxiang, LI Xiaojie, ZHOU Yingjie, XIONG Jian, ZENG Ziqi, LI Xiao, YANG Hua. Quality of mainly cultivated walnuts in Hubei Province of China at different harvest periods [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1459-1468. |
| [6] | JIANG Zhenlan, CHEN Fuxun, LUO Shuangfei, LUO Yeqin, SHA Jinming. Inversion of soil total iron content using random forest model based on multi-spectral transformation and principle compoment analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(7): 1521-1532. |
| [7] | YUE Li, ZHUANG Hongmei, ZULIPIYA· Maimaiti, WANG Jiamin, MAO Hongyan, ZHANG Yingxian, NIGARY· Yadikar, YU Ming. Comprehensive evaluation of the texture quality of turnip succulent root based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2025, 37(5): 1057-1071. |
| [8] | LIU Sitong, HOU Yu, PAN Jiaquan, ZHOU Huanan, CUI Liang, WAN Bo, YU Tao. Physiological response of sweetpotato to the low temperature and evaluation of cold tolerance [J]. Acta Agriculturae Zhejiangensis, 2025, 37(4): 767-778. |
| [9] | TAN Jingru, HU Qizan, YUE Zhichen, TAO Peng, LEI Juanli, LI Biyuan, ZHAO Yanting, ZANG Yunxiang. Comprehensive evaluation system for heat tolerance of seedling-edible Chinese cabbage (Brassica rapa L. ssp.) based on chlorophyll fluorescence parameters [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 288-299. |
| [10] | REN Yuanlong, MA Rong, WANG Xiaozhuo, ZHANG Xueyan. Mitigative effect of foliar spraying melatonin on drought stress of cabbage seedlings [J]. Acta Agriculturae Zhejiangensis, 2025, 37(2): 338-348. |
| [11] | CUI Bowen, ZHANG Siyi, WANG Jialing, WANG Jinghong, LIN Jixiang, YANG Qingjie. Bioinformatics analysis and drought-tolerant gene mining of WRKY family members in Carex siderosticta [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2087-2103. |
| [12] | LIAO Xiaolong, WANG Xingsheng, CHEN Yong, LI Bin, HONG Sidan, MEI Lina, GUO Ying. Identification of the HKT gene family members in Populus species and analysis of their expression patterns under salt stress [J]. Acta Agriculturae Zhejiangensis, 2025, 37(10): 2104-2115. |
| [13] | MIN Jiangyan, TANG Zhuolei, YANG Xue, HUANG Xiaoyan, HUANG Kaifeng, HE Peiyun. Effect of different drought-rewatering modes on growth and yield of Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2000-2009. |
| [14] | PAN Zhihong, WEN Xueting, YANG Hua, LYU Wentao, ZHANG Junjie, XIAO Yingping. Study on developmental changes of amino acid spectrum in Muscovy duck muscle [J]. Acta Agriculturae Zhejiangensis, 2024, 36(9): 2010-2019. |
| [15] | YANG Mingfeng, JI Chunrong, LIU Yong, BAI Shujun, CHEN Xue, LIU Ailin. Effects of continuous drought stress on cotton growth and soil drought threshold at flowering and boll stage [J]. Acta Agriculturae Zhejiangensis, 2024, 36(4): 738-747. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||