Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 727-735.DOI: 10.3969/j.issn.1004-1524.2022.04.09
• Horticultural Science • Previous Articles Next Articles
JIN Xiaojie1(), ZHANG Jingzhen1,2, YANG Xinsun1,*(
)
Received:
2021-08-05
Online:
2022-04-25
Published:
2022-04-28
Contact:
YANG Xinsun
CLC Number:
JIN Xiaojie, ZHANG Jingzhen, YANG Xinsun. Comparative metabolite profiling of rhizome and bulbil of wild Chinese yam (Dioscorea polystachya Turcz.) from Wuxue by widely targeted metabolomics[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 727-735.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.04.09
分类 Class | 代谢物数量 Number of Compounds |
---|---|
氨基酸及其衍生物Amino acids and their derivatives | 54 |
黄酮类Flavonoids | 54 |
脂质Lipid | 17 |
核苷酸及其衍生物Nucleotides and their derivatives | 28 |
有机酸Organic acids | 44 |
酚胺Phenolamides | 27 |
植物激素及其衍生物 | 32 |
Plant hormones and their derivatives | |
多酚Polyphenols | 14 |
糖类Sugars | 14 |
维生素及其衍生物Vitamins and their derivatives | 8 |
其他Other | 93 |
总计Total | 385 |
Table 1 Classification of the metabolites in wild Chinese yam into major classes
分类 Class | 代谢物数量 Number of Compounds |
---|---|
氨基酸及其衍生物Amino acids and their derivatives | 54 |
黄酮类Flavonoids | 54 |
脂质Lipid | 17 |
核苷酸及其衍生物Nucleotides and their derivatives | 28 |
有机酸Organic acids | 44 |
酚胺Phenolamides | 27 |
植物激素及其衍生物 | 32 |
Plant hormones and their derivatives | |
多酚Polyphenols | 14 |
糖类Sugars | 14 |
维生素及其衍生物Vitamins and their derivatives | 8 |
其他Other | 93 |
总计Total | 385 |
代谢物Metabolites | VIP | log2FC | FDR | UP/DOWN |
---|---|---|---|---|
异柚葡糖苷Isohemiphloin | 2.10 | 5.06 | 0.009 | UP |
漆树酸Anacardic acid | 2.10 | 5.41 | 0.013 | UP |
C-hexosyl-chrysoeriol 5-O-hexoside | 2.09 | 5.33 | 0.038 | UP |
扁蓄苷Avicularin | 2.09 | 5.20 | 0.035 | UP |
C-hexosyl-luteolin O-hexoside | 2.01 | 4.50 | 0.028 | UP |
2'-磷酸腺苷Adenosine2’-phosphate | 2.00 | 4.65 | 0.016 | UP |
金圣草素-6-C戊苷-8-C-己糖苷Chrysoeriol-6-C-pentoside-8-C-hexoside | 1.98 | 4.45 | 0.001 | UP |
异鼠李素Isorhamnetin | 1.95 | 4.32 | 0.009 | UP |
溶血磷脂酰甘油(16:0)LysoPG 16:0 | 1.90 | 4.43 | 0.029 | UP |
山奈酚3-半乳糖苷-7-鼠李糖苷Kaempferol 3-galactoside-7-rhamnoside | 1.89 | 4.06 | 0.018 | UP |
哌啶酸Pipecolic acid | 1.89 | 3.91 | 0.019 | UP |
芹菜素-5-O-葡糖苷Apigenin 5-O-glucoside | 1.89 | 4.50 | 0.032 | UP |
异牡荆苷Apigenin 6-C-glucoside | 1.88 | 3.91 | 0.024 | UP |
乙酰左旋肉碱Acetyl-L-carnitine | 1.86 | 3.85 | 0.026 | UP |
飞燕草素-3-O-芸香糖苷Delphinidin 3-O-rutinoside | 1.85 | 3.76 | 0.016 | UP |
乙酰苯胺Acetanilide | 1.81 | 3.57 | 0.009 | UP |
维生素B2Vitamin B2 | 1.79 | 3.93 | 0.049 | UP |
缬氨酸Valine | 1.76 | -5.52 | 0.009 | DOWN |
N-甲基苯甲酰胺N-methylbenzamide | 1.76 | 3.30 | 0.009 | UP |
甲硫氨酸Methionine | 1.76 | -5.54 | 0.013 | DOWN |
Table 2 Top 20 differentially accumulated metabolites between bulbil and rhizome flesh of wild Chinese yam
代谢物Metabolites | VIP | log2FC | FDR | UP/DOWN |
---|---|---|---|---|
异柚葡糖苷Isohemiphloin | 2.10 | 5.06 | 0.009 | UP |
漆树酸Anacardic acid | 2.10 | 5.41 | 0.013 | UP |
C-hexosyl-chrysoeriol 5-O-hexoside | 2.09 | 5.33 | 0.038 | UP |
扁蓄苷Avicularin | 2.09 | 5.20 | 0.035 | UP |
C-hexosyl-luteolin O-hexoside | 2.01 | 4.50 | 0.028 | UP |
2'-磷酸腺苷Adenosine2’-phosphate | 2.00 | 4.65 | 0.016 | UP |
金圣草素-6-C戊苷-8-C-己糖苷Chrysoeriol-6-C-pentoside-8-C-hexoside | 1.98 | 4.45 | 0.001 | UP |
异鼠李素Isorhamnetin | 1.95 | 4.32 | 0.009 | UP |
溶血磷脂酰甘油(16:0)LysoPG 16:0 | 1.90 | 4.43 | 0.029 | UP |
山奈酚3-半乳糖苷-7-鼠李糖苷Kaempferol 3-galactoside-7-rhamnoside | 1.89 | 4.06 | 0.018 | UP |
哌啶酸Pipecolic acid | 1.89 | 3.91 | 0.019 | UP |
芹菜素-5-O-葡糖苷Apigenin 5-O-glucoside | 1.89 | 4.50 | 0.032 | UP |
异牡荆苷Apigenin 6-C-glucoside | 1.88 | 3.91 | 0.024 | UP |
乙酰左旋肉碱Acetyl-L-carnitine | 1.86 | 3.85 | 0.026 | UP |
飞燕草素-3-O-芸香糖苷Delphinidin 3-O-rutinoside | 1.85 | 3.76 | 0.016 | UP |
乙酰苯胺Acetanilide | 1.81 | 3.57 | 0.009 | UP |
维生素B2Vitamin B2 | 1.79 | 3.93 | 0.049 | UP |
缬氨酸Valine | 1.76 | -5.52 | 0.009 | DOWN |
N-甲基苯甲酰胺N-methylbenzamide | 1.76 | 3.30 | 0.009 | UP |
甲硫氨酸Methionine | 1.76 | -5.54 | 0.013 | DOWN |
代谢物Metabolites | VIP | log2FC | FDR | UP/DOWN |
---|---|---|---|---|
反式玉米素-O-葡糖苷核苷Trans-zeatin-O-glucoside riboside | 2.14 | 6.54 | 0.012 | UP |
乙酰左旋肉碱Acetyl-L-carnitine | 2.13 | 5.81 | 0.009 | UP |
维生素B2Vitamin B2 | 2.13 | 6.16 | 0.016 | UP |
C-hexosyl-chrysoeriol 7-O-hexoside | 2.01 | 4.88 | 0.014 | UP |
槲皮素-3-甲基醚Quercetin 3-methyl ether | 1.98 | 5.67 | 0.021 | UP |
乙酰柠檬酸三丁酯Acetyl tributyl citrate | 1.96 | 4.86 | 0.004 | UP |
乙酰苯胺Acetanilide | 1.94 | 4.75 | 0.006 | UP |
N-甲基苯甲酰胺N-methylbenzamide | 1.89 | 4.46 | 0.006 | UP |
MG 18:1 | 1.84 | 4.10 | 0.036 | UP |
精氨酸Arginine | 1.82 | -5.92 | 0.004 | DOWN |
芹菜素-7-O-葡萄糖醛酸甲酯苷Apigenin 7-O-methylglucuronide | 1.76 | 5.12 | 0.037 | UP |
糠酸2-furoate acid | 1.75 | -5.67 | 0.045 | DOWN |
反式玉米素核苷Trans zeatin-riboside | 1.73 | 3.61 | 0.007 | UP |
戊烯二酸Glutaconic acid | 1.72 | -5.53 | 0.009 | DOWN |
溶血磷脂酰乙醇胺(16:0)LysoPE 16:0 | 1.71 | 3.44 | 0.006 | UP |
3-吲哚丁酸Indole-3-butyric acid | 1.68 | 3.25 | 0.033 | UP |
D-Arabinonate | 1.67 | 3.26 | 0.012 | UP |
十二甲基环六硅氧烷Dodecamethylcyclohexasiloxane | 1.67 | 3.18 | 0.011 | UP |
3-[乙基(亚硝基)氨基]丙酸3-[Ethyl(nitroso)amino]propanoic acid | 1.65 | -5.30 | 0.012 | DOWN |
咪唑乙酸Imidazoleacetic acid | 1.65 | 3.18 | 0.006 | UP |
Table 3 Top 20 differentially accumulated metabolites between rhizome peel and rhizome flesh of wild Chinese yam
代谢物Metabolites | VIP | log2FC | FDR | UP/DOWN |
---|---|---|---|---|
反式玉米素-O-葡糖苷核苷Trans-zeatin-O-glucoside riboside | 2.14 | 6.54 | 0.012 | UP |
乙酰左旋肉碱Acetyl-L-carnitine | 2.13 | 5.81 | 0.009 | UP |
维生素B2Vitamin B2 | 2.13 | 6.16 | 0.016 | UP |
C-hexosyl-chrysoeriol 7-O-hexoside | 2.01 | 4.88 | 0.014 | UP |
槲皮素-3-甲基醚Quercetin 3-methyl ether | 1.98 | 5.67 | 0.021 | UP |
乙酰柠檬酸三丁酯Acetyl tributyl citrate | 1.96 | 4.86 | 0.004 | UP |
乙酰苯胺Acetanilide | 1.94 | 4.75 | 0.006 | UP |
N-甲基苯甲酰胺N-methylbenzamide | 1.89 | 4.46 | 0.006 | UP |
MG 18:1 | 1.84 | 4.10 | 0.036 | UP |
精氨酸Arginine | 1.82 | -5.92 | 0.004 | DOWN |
芹菜素-7-O-葡萄糖醛酸甲酯苷Apigenin 7-O-methylglucuronide | 1.76 | 5.12 | 0.037 | UP |
糠酸2-furoate acid | 1.75 | -5.67 | 0.045 | DOWN |
反式玉米素核苷Trans zeatin-riboside | 1.73 | 3.61 | 0.007 | UP |
戊烯二酸Glutaconic acid | 1.72 | -5.53 | 0.009 | DOWN |
溶血磷脂酰乙醇胺(16:0)LysoPE 16:0 | 1.71 | 3.44 | 0.006 | UP |
3-吲哚丁酸Indole-3-butyric acid | 1.68 | 3.25 | 0.033 | UP |
D-Arabinonate | 1.67 | 3.26 | 0.012 | UP |
十二甲基环六硅氧烷Dodecamethylcyclohexasiloxane | 1.67 | 3.18 | 0.011 | UP |
3-[乙基(亚硝基)氨基]丙酸3-[Ethyl(nitroso)amino]propanoic acid | 1.65 | -5.30 | 0.012 | DOWN |
咪唑乙酸Imidazoleacetic acid | 1.65 | 3.18 | 0.006 | UP |
[1] | 李建军, 樊星, 马静潇. 山药药用研究概述[J]. 生物学教学, 2017, 42(10): 4-7. |
LI J J, FAN X, MA J X. An overview of medicinal research on Chinese yam[J]. Biology Teaching, 2017, 42(10): 4-7. (in Chinese) | |
[2] | 国家药典委员会. 中华人民共和国药典:一部[M]. 北京: 中国医药科技出版社, 2020. |
[3] | 楼之岑, 秦波. 常用中药材品种整理和质量研究(北方编): 第2册[M]. 北京: 北京医科大学、中国协和医科大学联合出版社, 1995. |
[4] | 冯昱, 白明, 苗明三. 零余子药用探讨[J]. 中医学报, 2019, 34(3): 509-512. |
FENG Y, BAI M, MIAO M S. Discussion on the medicinal use of bulbil[J]. Acta Chinese Medicine, 2019, 34(3): 509-512. (in Chinese with English abstract) | |
[5] | 滕井通, 高翔, 薛建平, 等. 怀山药零余子薯蓣皂苷元成分的含量测定[J]. 安徽农业科学, 2012, 40(21): 10817-10818. |
TENG J T, GAO X, XUE J P, et al. Determination of the diosgenin content of Dioscorea opposita Thunb. and bulbil[J]. Journal of Anhui Agricultural Sciences, 2012, 40(21): 10817-10818. (in Chinese with English abstract) | |
[6] | 吕鹏. 怀山药及其非药用部位的成分比较和开发研究[D]. 郑州: 河南中医学院, 2012. |
LYU P. Comparative study on the chemical constituents of Dioscorea opposite Thunb and non medicinal parts and developing[D]. Zhengzhou: Henan University of Chinese Medicine, 2012. (in Chinese with English abstract) | |
[7] | 盛玮, 薛建平, 谢笔钧. 怀山药零余子化学成分及其营养评价[J]. 食品科技, 2009, 34(8): 76-79. |
SHENG W, XUE J P, XIE B J. Chemical constituents in the bulbil of dioscoree opposite and its nutrition evaluation[J]. Food Science and Technology, 2009, 34(8): 76-79. (in Chinese with English abstract) | |
[8] |
ZHOU H Y, WANG J H, FANG X S, et al. Physicochemical properties of new starches isolated from Dioscorea opposita Thunb. bulbils[J]. Starch, 2012, 64(4): 290-296.
DOI URL |
[9] | 陈梦雨, 刘伟, 侴桂新, 等. 山药化学成分与药理活性研究进展[J]. 中医药学报, 2020, 48(2): 62-66. |
CHEN M Y, LIU W, CHOU G X, et al. Research progress on chemical constituents and pharmacological activities of Dioscorea opposita Thunb.[J]. Acta Chinese Medicine and Pharmacology, 2020, 48(2): 62-66. (in Chinese with English abstract) | |
[10] |
EPPING J, LAIBACH N. An underutilized orphan tuber crop-Chinese yam: a review[J]. Planta, 2020, 252(4): 58.
DOI URL |
[11] |
OBIDIEGWU J E, LYONS J B, CHILAKA C A. The Dioscorea genus (yam): an appraisal of nutritional and therapeutic potentials[J]. Foods, 2020, 9(9): 1304.
DOI URL |
[12] |
WU Z G, JIANG W, NITIN M, et al. Characterizing diversity based on nutritional and bioactive compositions of yam germplasm (Dioscorea spp.) commonly cultivated in China[J]. Journal of Food and Drug Analysis, 2016, 24(2): 367-375.
DOI URL |
[13] | LI Q, ZHANG C R, DISSANAYAKE A A, et al. Phenanthrenes in Chinese yam peel exhibit antiinflammatory activity, as shown by strong in vitro cyclooxygenase enzyme inhibition[J]. Natural Product Communications, 2016, 11(9): 1313-1316. |
[14] | LIU Y X, LI H F, FAN Y Y, et al. Antioxidant and antitumor activities of the extracts from Chinese yam (Dioscorea opposite Thunb.) flesh and peel and the effective compounds[J]. Journal of Food Science, 2016, 81(6): H1553-H1564. |
[15] | 刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报, 2015, 33(16): 33-38. |
LIU X Q, LUO J. Advances of technologies and research in plant metabolomics[J]. Science & Technology Review, 2015, 33(16): 33-38. (in Chinese with English abstract) | |
[16] | 腊贵晓, 理向阳, 郭红霞, 等. 铁棍山药和太谷山药代谢成分差异研究[J]. 河南农业科学, 2017, 46(5): 116-119. |
LA G X, LI X Y, GUO H X, et al. Research on metabolomics of Tiegun yam and Taigu yam[J]. Journal of Henan Agricultural Sciences, 2017, 46(5): 116-119. (in Chinese with English abstract) | |
[17] |
AN L, YUAN Y L, MA J W, et al. NMR-based metabolomics approach to investigate the distribution characteristics of metabolites in Dioscorea opposita Thunb. cv. Tiegun[J]. Food Chemistry, 2019, 298: 125063.
DOI URL |
[18] |
CHEN W, GONG L, GUO Z L, et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics[J]. Molecular Plant, 2013, 6(6): 1769-1780.
DOI URL |
[19] | PANG Z Q, CHONG J, ZHOU G Y, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights[J]. Nucleic Acids Research, 2021, 49(W1): W388-W396. |
[20] |
PRICE E J, BHATTACHARJEE R, LOPEZ-MONTES A, et al. Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes[J]. Metabolomics, 2017, 13(11): 1-12.
DOI URL |
[21] | DOSS A, TRESINA P S, MOHAN V R. Amino acid composition of wild yam (Dioscorea spp.)[J]. Food Research, 2019, 3(5): 617-621. |
[22] | MORA S I, GARCÍA-ROMÁN J, GÓMEZ-ÑAÑEZ I, et al. Chronic liver diseases and the potential use of S-adenosyl-L-methionine as a hepatoprotector[J]. European Journal of Gastroenterology & Hepatology, 2018, 30(8): 893-900. |
[23] |
WILSON A. S-adenosyl methionine (SAMe) for depression in adults[J]. Issues in Mental Health Nursing, 2019, 40(8): 725-726.
DOI URL |
[24] |
HOSEA BLEWETT H J. Exploring the mechanisms behind S-adenosylmethionine (SAMe) in the treatment of osteoarthritis[J]. Critical Reviews in Food Science and Nutrition, 2008, 48(5): 458-463.
DOI URL |
[25] | SANGEETHA K S S, UMAMAHESWARI S, REDDY CUM, et al. Flavonoids: therapeutic potential of natural pharmacological agents[J]. International Journal of Pharmaceutical Sciences and Research, 2016, 7(10): 3924-3930. |
[26] |
GHIDOLI M, COLOMBO F, SANGIORGIO S, et al. Food containing bioactive flavonoids and other phenolic or sulfur phytochemicals with antiviral effect: can we design a promising diet against COVID-19?[J]. Frontiers in Nutrition, 2021, 8: 661331.
DOI URL |
[27] |
PADHAN B, NAYAK J K, PANDA D. Natural antioxidant potential of selected underutilized wild yams (Dioscorea spp.) for health benefit[J]. Journal of Food Science and Technology, 2020, 57(96): 2370-2376.
DOI URL |
[28] |
PADHAN B, PANDA D. Potential of neglected and underutilized yams (Dioscorea spp.) for improving nutritional security and health benefits[J]. Frontiers in Pharmacology, 2020, 11: 496.
DOI URL |
[29] | SAKTHIDEVI G, MOHAN V R. Total phenolic, flavonoid contents and in vitro antioxidant activity of Dioscorea alata L. tuber[J]. Journal of Pharmaceutical Sciences and Research, 2013, 5(5): 115-119. |
[30] | 孟永海, 孟祥瑛, 付敬菊, 等. 山药及几种炮制品皮与粉质部位总黄酮差异[J]. 化学工程师, 2020, 34(2): 27-28. |
MENG Y H, MENG X Y, FU J J, et al. Difference of total flavonoids in skin and powdery parts of yam and several processed products[J]. Chemical Engineer, 2020, 34(2): 27-28. (in Chinese with English abstract) |
[1] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of six kinds of nematicides on soil microbial population, enzymes activities and nutrients in replanted Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 506-515. |
[2] | FAN Linjuan, LIU Zirong, XU Xueliang, WANG Fenshan, PENG Deliang, YAO Yingjuan. Effects of different planting patterns on soil nematode community structure and soil properties of Chinese yam field [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 316-325. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||