Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (8): 1582-1590.DOI: 10.3969/j.issn.1004-1524.2022.08.02
• Crop Science • Previous Articles Next Articles
JIANG Haoliang1,2(), HUANG Yun1, LIANG Shaofang1,2, XIE Mengchen1,2, XU Tiancheng1, SONG Zhiting1,2, XIANG Wenwen1,2, CHEN Qingchun1,2, WAN Xiaorong1,2, SUN Wei1,2,*(
)
Received:
2021-09-21
Online:
2022-08-25
Published:
2022-08-26
Contact:
SUN Wei
CLC Number:
JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats[J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.08.02
性状Trait | RPH | RRL | RRN | RSFW | RRFW | RSDW | RRDW | RSFW/RRFW | RSDW/RRDW | RTDW |
---|---|---|---|---|---|---|---|---|---|---|
RRL | 0.431** | |||||||||
RRN | 0.586** | 0.274* | ||||||||
RSFW | 0.845** | 0.230 | 0.601** | |||||||
RRFW | 0.659** | -0.009 | 0.503** | 0.855** | ||||||
RSDW | 0.743** | 0.484** | 0.810** | 0.788** | 0.634** | |||||
RRDW | 0.087 | -0.104 | 0.122 | 0.129 | 0.198 | 0.102 | ||||
RSFW/RRFW | 0.039 | 0.450** | 0.443** | -0.071 | -0.048 | 0.526** | -0.027 | |||
RSDW/RRDW | -0.113 | -0.125 | -0.036 | -0.109 | -0.082 | -0.103 | 0.954** | -0.048 | ||
RTDW | 0.371** | -0.069 | 0.325* | 0.480** | 0.564** | 0.368** | 0.910** | -0.046 | 0.762** | |
RTFW | 0.828** | 0.330* | 0.733** | 0.944** | 0.825** | 0.918** | 0.136 | 0.196 | -0.111 | 0.470** |
Table 1 Correlation coefficient matrix of different indexes of sweet corn inbred lines under cadmium stress
性状Trait | RPH | RRL | RRN | RSFW | RRFW | RSDW | RRDW | RSFW/RRFW | RSDW/RRDW | RTDW |
---|---|---|---|---|---|---|---|---|---|---|
RRL | 0.431** | |||||||||
RRN | 0.586** | 0.274* | ||||||||
RSFW | 0.845** | 0.230 | 0.601** | |||||||
RRFW | 0.659** | -0.009 | 0.503** | 0.855** | ||||||
RSDW | 0.743** | 0.484** | 0.810** | 0.788** | 0.634** | |||||
RRDW | 0.087 | -0.104 | 0.122 | 0.129 | 0.198 | 0.102 | ||||
RSFW/RRFW | 0.039 | 0.450** | 0.443** | -0.071 | -0.048 | 0.526** | -0.027 | |||
RSDW/RRDW | -0.113 | -0.125 | -0.036 | -0.109 | -0.082 | -0.103 | 0.954** | -0.048 | ||
RTDW | 0.371** | -0.069 | 0.325* | 0.480** | 0.564** | 0.368** | 0.910** | -0.046 | 0.762** | |
RTFW | 0.828** | 0.330* | 0.733** | 0.944** | 0.825** | 0.918** | 0.136 | 0.196 | -0.111 | 0.470** |
自交系Inbred lines | CI1 | CI2 | CI3 | U1 | U2 | U3 | D | 耐镉性Cd tolerance |
---|---|---|---|---|---|---|---|---|
KY188 | -2.551 | -3.822 | 1.704 | 0 | 0 | 0.975 | 0.099 | 不耐镉Not tolerant |
M114A | -1.579 | -1.487 | -2.335 | 0.233 | 0.485 | 0 | 0.230 | 不耐镉Not tolerant |
M103 | -0.795 | -0.881 | -1.066 | 0.420 | 0.611 | 0.306 | 0.377 | 中度耐镉Medium tolerant |
M119 | -0.554 | -0.537 | -1.190 | 0.478 | 0.682 | 0.276 | 0.418 | 中度耐镉Medium tolerant |
T52-1 | -0.203 | -0.418 | -0.575 | 0.562 | 0.707 | 0.425 | 0.477 | 中度耐镉Medium tolerant |
M118 | -0.976 | 0.623 | 0.505 | 0.377 | 0.923 | 0.686 | 0.478 | 中度耐镉Medium tolerant |
T96-2 | -0.396 | -0.148 | -0.275 | 0.516 | 0.763 | 0.497 | 0.478 | 中度耐镉Medium tolerant |
M55 | -0.083 | -0.205 | -1.351 | 0.591 | 0.751 | 0.238 | 0.482 | 中度耐镉Medium tolerant |
T43 | -0.283 | -0.205 | -0.340 | 0.543 | 0.751 | 0.482 | 0.486 | 中度耐镉Medium tolerant |
T35 | 0.148 | 0.152 | 0.227 | 0.646 | 0.826 | 0.618 | 0.564 | 高度耐镉Highly tolerant |
T8-1 | 0.707 | 0.055 | 1.807 | 0.780 | 0.805 | 1.000 | 0.657 | 高度耐镉Highly tolerant |
M3 | 1.297 | 0.372 | -0.388 | 0.921 | 0.871 | 0.470 | 0.683 | 高度耐镉Highly tolerant |
T96-4 | 1.628 | 0.992 | -2.241 | 1.000 | 1.000 | 0.023 | 0.706 | 高度耐镉Highly tolerant |
Table 2 Cadmium tolerance of different sweet corn inbred lines
自交系Inbred lines | CI1 | CI2 | CI3 | U1 | U2 | U3 | D | 耐镉性Cd tolerance |
---|---|---|---|---|---|---|---|---|
KY188 | -2.551 | -3.822 | 1.704 | 0 | 0 | 0.975 | 0.099 | 不耐镉Not tolerant |
M114A | -1.579 | -1.487 | -2.335 | 0.233 | 0.485 | 0 | 0.230 | 不耐镉Not tolerant |
M103 | -0.795 | -0.881 | -1.066 | 0.420 | 0.611 | 0.306 | 0.377 | 中度耐镉Medium tolerant |
M119 | -0.554 | -0.537 | -1.190 | 0.478 | 0.682 | 0.276 | 0.418 | 中度耐镉Medium tolerant |
T52-1 | -0.203 | -0.418 | -0.575 | 0.562 | 0.707 | 0.425 | 0.477 | 中度耐镉Medium tolerant |
M118 | -0.976 | 0.623 | 0.505 | 0.377 | 0.923 | 0.686 | 0.478 | 中度耐镉Medium tolerant |
T96-2 | -0.396 | -0.148 | -0.275 | 0.516 | 0.763 | 0.497 | 0.478 | 中度耐镉Medium tolerant |
M55 | -0.083 | -0.205 | -1.351 | 0.591 | 0.751 | 0.238 | 0.482 | 中度耐镉Medium tolerant |
T43 | -0.283 | -0.205 | -0.340 | 0.543 | 0.751 | 0.482 | 0.486 | 中度耐镉Medium tolerant |
T35 | 0.148 | 0.152 | 0.227 | 0.646 | 0.826 | 0.618 | 0.564 | 高度耐镉Highly tolerant |
T8-1 | 0.707 | 0.055 | 1.807 | 0.780 | 0.805 | 1.000 | 0.657 | 高度耐镉Highly tolerant |
M3 | 1.297 | 0.372 | -0.388 | 0.921 | 0.871 | 0.470 | 0.683 | 高度耐镉Highly tolerant |
T96-4 | 1.628 | 0.992 | -2.241 | 1.000 | 1.000 | 0.023 | 0.706 | 高度耐镉Highly tolerant |
Fig.3 Effect of cadmium treatment on seedling biomass of different sweet corn inbred lines “*” and “**” indicated significant difference at P<0.05 and P<0.01, respectively.
自交系Inbred lines | 处理Treatment | 苗高Plant height/cm | 总根数Root number | 根长Root length/cm |
---|---|---|---|---|
KY188 | 对照Control | 14.52±0.54 a | 9.17±0.85 a | 14.01±1.19 a |
镉胁迫Cd stress | 11.78±0.61 b | 6.94±0.49 b | 11.05±0.64 b | |
T96-4 | 对照Control | 14.87±0.61 a | 7.17±0.45 a | 13.45±0.89 a |
镉胁迫Cd stress | 14.77±0.65 a | 7.63±0.49 a | 13.29±1.08 a |
Table 3 Effects of cadmium treatment on plant height, root number and root length of different sweet corn inbred lines
自交系Inbred lines | 处理Treatment | 苗高Plant height/cm | 总根数Root number | 根长Root length/cm |
---|---|---|---|---|
KY188 | 对照Control | 14.52±0.54 a | 9.17±0.85 a | 14.01±1.19 a |
镉胁迫Cd stress | 11.78±0.61 b | 6.94±0.49 b | 11.05±0.64 b | |
T96-4 | 对照Control | 14.87±0.61 a | 7.17±0.45 a | 13.45±0.89 a |
镉胁迫Cd stress | 14.77±0.65 a | 7.63±0.49 a | 13.29±1.08 a |
标记名称Marker name | 染色体Chromosome | 引物序列Primer sequences(5'→3') | P |
---|---|---|---|
bnlg108 | 2 | F: GCACTCACGCGCACAGGTCA R:CGCCTGCCAAGGTACATCAC | 0.001 3 |
bnlg1456 | 3 | F: CTCTAGGTGGTTAAGATTAACTC R: TTCATGAGGACCGTGTTGAA | 0.045 0 |
bnlg589 | 4 | F: GGGTCGTTTAGGGAGGCACCTTTG R: GCGACAGACAGACAGACAAGCG | 0.023 0 |
bnlg2305 | 5 | F: CACCTTGAAAGCATCCTCGT R: GTATCACACCCTCTGCTGCA | 0.000 2 |
umc1083 | 6 | F: CTTTCCTCTCTGGAGCGTGTATTG R: ATATGTTGCAGAACCATCCAGGTC | 0.005 6 |
umc1139 | 8 | F: TTTGTAATATGGCGCTCGAAAACT R: GAAGACGCCTCCAAGATGGATAC | 0.000 4 |
umc1170 | 9 | F: TGGGTGCTAAAACGTAACAACAAA R: GAGGACGAAGCAGAAATCCTACC | 0.004 2 |
bnlg210 | 10 | F: GCCTCGCACCAAGACATAATA R: TGCCCCATTTGAGTAGACTTC | 0.000 8 |
phi059 | 10 | F: AAGCTAATTAAGGCCGGTCATCCC R: TCCGTGTACTCGGCGGACTC | 0.000 2 |
Table 4 Genetic markers of cadmium tolerance traits in sweet corn inbred lines at seedling stage
标记名称Marker name | 染色体Chromosome | 引物序列Primer sequences(5'→3') | P |
---|---|---|---|
bnlg108 | 2 | F: GCACTCACGCGCACAGGTCA R:CGCCTGCCAAGGTACATCAC | 0.001 3 |
bnlg1456 | 3 | F: CTCTAGGTGGTTAAGATTAACTC R: TTCATGAGGACCGTGTTGAA | 0.045 0 |
bnlg589 | 4 | F: GGGTCGTTTAGGGAGGCACCTTTG R: GCGACAGACAGACAGACAAGCG | 0.023 0 |
bnlg2305 | 5 | F: CACCTTGAAAGCATCCTCGT R: GTATCACACCCTCTGCTGCA | 0.000 2 |
umc1083 | 6 | F: CTTTCCTCTCTGGAGCGTGTATTG R: ATATGTTGCAGAACCATCCAGGTC | 0.005 6 |
umc1139 | 8 | F: TTTGTAATATGGCGCTCGAAAACT R: GAAGACGCCTCCAAGATGGATAC | 0.000 4 |
umc1170 | 9 | F: TGGGTGCTAAAACGTAACAACAAA R: GAGGACGAAGCAGAAATCCTACC | 0.004 2 |
bnlg210 | 10 | F: GCCTCGCACCAAGACATAATA R: TGCCCCATTTGAGTAGACTTC | 0.000 8 |
phi059 | 10 | F: AAGCTAATTAAGGCCGGTCATCCC R: TCCGTGTACTCGGCGGACTC | 0.000 2 |
[1] | 郑彦坤. 特用玉米营养品质与淀粉体和蛋白体发育关系的研究进展[J]. 玉米科学, 2019, 27(6): 89-94. |
ZHENG Y K. Research progress on the relationship between special maize nutrient quality and development of amyloplasts and protein bodies[J]. Journal of Maize Sciences, 2019, 27(6): 89-94. (in Chinese with English abstract) | |
[2] | 陈能场, 郑煜基, 何晓峰, 等. 《全国土壤污染状况调查公报》探析[J]. 农业环境科学学报, 2017, 36(9): 1689-1692. |
CHEN N C, ZHENG Y J, HE X F, et al. Analysis of the Report on the national general survey of soil contamination[J]. Journal of Agro-Environment Science, 2017, 36(9): 1689-1692. (in Chinese with English abstract) | |
[3] |
LIU H J, ZHANG C X, WANG J M, et al. Influence and interaction of iron and cadmium on photosynthesis and antioxidative enzymes in two rice cultivars[J]. Chemosphere, 2017, 171: 240-247.
DOI URL |
[4] | 刘丽珍, 戎婷婷, 高昆. 镉对玉米幼苗生长的影响[J]. 农业与技术, 2016, 36(3): 3-5. |
LIU L Z, RONG T T, GAO K. Effects of cadmium on growth of maize seedlings[J]. Agriculture and Technology, 2016, 36(3): 3-5. (in Chinese) | |
[5] | 樊金娟, 刘宇, 曹樱迪, 等. 玉米对镉胁迫的响应及其耐镉机制研究进展[J]. 沈阳农业大学学报, 2018, 49(5): 633-640. |
FAN J J, LIU Y, CAO Y D, et al. Responses of maize to cadmium stress and mechanisms of cadmium tolerance[J]. Journal of Shenyang Agricultural University, 2018, 49(5): 633-640. (in Chinese with English abstract) | |
[6] |
WAHID A, KHALIQ S. Architectural and biochemical changes in embryonic tissues of maize under cadmium toxicity[J]. Plant Biology, 2015, 17(5): 1005-1012.
DOI URL |
[7] | 宇克莉, 邹婧, 邹金华. 镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响[J]. 农业环境科学学报, 2010, 29(6): 1050-1056. |
YU K L, ZOU J, ZOU J H. Effects of cadmium stress on antioxidant enzyme system and absorption of mineral elements in maize seedlings[J]. Journal of Agro-Environment Science, 2010, 29(6): 1050-1056. (in Chinese with English abstract) | |
[8] | CHANEVA G, PARVANOVA P, TZVETKOVA N, et al. Photosynthetic response of maize plants against cadmium and paraquat impact[J]. Water, Air, and Soil Pollution, 2010, 208(1/2/3/4): 287-293. |
[9] | 彭鸣, 王焕校, 吴玉树. 镉、铅在玉米幼苗中的积累和迁移: X射线显微分析[J]. 环境科学学报, 1989, 9(1): 61-67. |
PENG M, WANG H X, WU Y S. Accumulation and transport of cadmium and lead in the seedlings of maize[J]. Acta Scientiae Circumstantiae, 1989, 9(1): 61-67. (in Chinese with English abstract) | |
[10] |
TANWIR K, AKRAM M S, MASOOD S, et al. Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.)[J]. Environmental Science and Pollution Research International, 2015, 22(12): 9193-9203.
DOI URL |
[11] | 王子明, 李春艳, 万世敏, 等. 广东省鲜食玉米产业发展经验与战略发展思路[J]. 作物杂志, 2014(3): 1-4. |
WANG Z M, LI C Y, WAN S M, et al. Experience and strategic development of fresh corn industry in Guangdong Province[J]. Crops, 2014(3): 1-4. (in Chinese) | |
[12] | 张珂, 厉萌萌, 刘德权, 等. 镉胁迫对小麦、玉米种子萌发及幼苗生长的影响[J]. 种子, 2019, 38(5): 90-94. |
ZHANG K, LI M M, LIU D Q, et al. Effects of cadmium stress on seed germination and seedling growth of wheat and maize[J]. Seed, 2019, 38(5): 90-94. (in Chinese) | |
[13] | 杜彩艳, 余小芬, 杜建磊, 等. 不同玉米品种对Cd、Pb、As积累与转运的差异研究[J]. 生态环境学报, 2019, 28(9): 1867-1875. |
DU C Y, YU X F, DU J L, et al. Variety difference of Cd, Pb and As accumulation and translocation in different varieties of Zea mays[J]. Ecology and Environmental Sciences, 2019, 28(9): 1867-1875. (in Chinese with English abstract) | |
[14] | 孟桂元, 唐婷, 周静, 等. 不同玉米品种种子萌发期耐镉性分析[J]. 分子植物育种, 2016, 14(11): 3166-3171. |
MENG G Y, TANG T, ZHOU J, et al. Analysis on cadmium tolerance of different maize varieties during seed germination stage[J]. Molecular Plant Breeding, 2016, 14(11): 3166-3171. (in Chinese with English abstract) | |
[15] | 吴琼, 杨克军, 张翼飞, 等. 不同基因型玉米耐密植抗倒性分析及其鉴定指标的筛选[J]. 玉米科学, 2017, 25(6): 79-86. |
WU Q, YANG K J, ZHANG Y F, et al. Analysis of lodging resistance and determination of resistance evaluation indicators in different maize genotypes under higher population density selection pressures[J]. Journal of Maize Sciences, 2017, 25(6): 79-86. (in Chinese with English abstract) | |
[16] | 沙丽萍. 例谈植物DNA粗提取的CTAB法、SDS法与盐析法[J]. 中学生物教学, 2018(21): 65-67. |
SHA L P. CTAB method, SDS method and salting out method for crude extraction of plant DNA[J]. Teaching of Middle School Biology, 2018(21): 65-67. (in Chinese) | |
[17] | 顾丹丹, 羌维民, 王卓仁, 等. 玉米苗期耐镉胁迫的基因型差异[J]. 西北农业学报, 2014, 23(10): 76-81. |
GU D D, QIANG W M, WANG Z R, et al. Genotypic differences of cadmium tolerance at maize seedling stages[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2014, 23(10): 76-81. (in Chinese with English abstract) | |
[18] | 沈天尔, 施洁, 胡盈盈, 等. 玉米对镉的转运、积累机制及其生理响应[J]. 中国粮油学报, 2019, 34(9): 139-146. |
SHEN T E, SHI J, HU Y Y, et al. Mechanism of cadmium transport and accumulation in maize and its physiological response against Cd toxicity[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(9): 139-146. (in Chinese with English abstract) | |
[19] |
王艳芳, 悦飞雪, 李冬, 等. 镉胁迫对不同基因型玉米生长和镉吸收分配的影响[J]. 核农学报, 2019, 33(7): 1440-1447.
DOI |
WANG Y F, YUE F X, LI D, et al. Effects of cadmium stress on plant growth, cadmium absorption and distribution of different genotypes of maize[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1440-1447. (in Chinese with English abstract) | |
[20] | 于子昊, 李胜宝, 赵晓玲, 等. 玉米根系、根鞘性状与镉吸收的品种差异研究[J]. 农业环境科学学报, 2021, 40(4): 747-755. |
YU Z H, LI S B, ZHAO X L, et al. Differences in root morphology, rhizosheath traits, and Cd uptake in maize cultivars[J]. Journal of Agro-Environment Science, 2021, 40(4): 747-755. (in Chinese with English abstract) | |
[21] |
LAPIE C, LEGLIZE P, PARIS C, et al. Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress[J]. Environmental Science and Pollution Research International, 2019, 26(17): 17520-17534.
DOI URL |
[22] | 单长卷, 徐新娟, 孙海丽, 等. 茉莉酸对镉胁迫下玉米幼苗叶片生理特性的影响[J]. 玉米科学, 2016, 24(3): 99-102. |
SHAN C J, XU X J, SUN H L, et al. Effects of jasmonic acid on the leaf physiological characteristics of maize seedlings under cadmium stress[J]. Journal of Maize Sciences, 2016, 24(3): 99-102. (in Chinese with English abstract) | |
[23] |
RIZWAN M, ALI S, QAYYUM M F, et al. Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review[J]. Environmental Geochemistry and Health, 2017, 39(2): 259-277.
DOI URL |
[24] | 李国良. 重金属镉污染对玉米种子萌发及幼苗生长的影响[J]. 国土与自然资源研究, 2006(2): 91-92. |
LI G L. Effect of cadmium on maize seeds germination and seedling growth[J]. Territory & Natural Resources Study, 2006(2): 91-92. (in Chinese with English abstract) |
[1] | MA Zhonghua, WU Na, CHEN Juan, ZHAO Cong, YAN Chenghong, LIU Jili. Effects of salt stress and phosphorus supply on physiological characteristics of switchgrass seedlings [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1205-1216. |
[2] | DU Hong, LI Yupeng, CHENG Wen, XIAO Rongying, HU Peng. Effects of arbuscular mycorrhizal fungi on plant roots and soil microenvironment under cadmium stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 1039-1048. |
[3] | ZHAO Yuhong, HE Wen, LI Gen, WANG Qiang, XIE Rui, WANG Yan, CHEN Qing, WANG Xiaorong. Fruit quality of Citrus maxima (Burm.) Merrill and its bud mutants varieties in Sichuan area [J]. Acta Agriculturae Zhejiangensis, 2022, 34(5): 995-1004. |
[4] | YANG Lei, HONG Lin, LIU Zhaojun, YANG Haijian, WANG Wu. Comprehensive evaluation of fruit quality and nutrition of six kumquat varieties [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 534-547. |
[5] | PEI Yun, XU Xiuhong, LU Jinbiao, CHEN Amin, ZHANG Wanping. Genetic diversity analysis of 151 cherry tomato resources in Guizhou Province [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 310-316. |
[6] | ZHANG Peng, ZHANG Xi, YANG Xueyan, LIU Yuanlin, LI Ru, LONG Ming, TIAN Xiaojing, ZHANG Fumei, CHEN Shien, MA Zhongren. Discriminant analysis of origin of Panax notoginseng and its main roots and lateral roots based on trace element analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1300-1308. |
[7] | WANG Yingzhen, PAN Zhimei. Comprehensive evaluation of 22 Actinidia eriantha germplasm resources based on principal components analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 825-830. |
[8] | ZHANG Ting, LIU Huiqin, GUO Qinwei, LI Chaosen, ZHANG Xinhui, XIANG Xiaomin, ZHAO Dongfeng, WAN Hongjian. Principal component analysis and cluster analysis for evaluating free amino acids of 16 pepper materials [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 640-650. |
[9] | ZHOU Yanchao, XUE Kun, GE Haiyan, CHEN Huoying, LIU Yang. Comprehensive evaluation of cherry tomato quality based on principal component analysis and cluster analysis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2320-2329. |
[10] | REN Qianqian, SUN Jixia, ZHANG Deshun, DING Zhaotang, ZHANG Yingjie, ZHANG Jingwei. Physiological response and drought resistance evaluation of different Hydrangea varieties under drought stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1852-1860. |
[11] | CUI Pengfei, WEI Lingzhu, CHENG Jianhui, XIANG Jiang, LI Mingshan, WU Jiang2, . Effects of different rootstocks on growth and fruit quality of Tiangong Cuiyu grape [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 52-61. |
[12] | WANG Xiaoming, CHEN Ailing, DONG Lu, SHI Yujun, ZHENG Liuchang, ZHAO Lianhui, ZHANG Ruiqi, ZHANG Fenqin. Cadmium tolerance mechanism of Solanum nigrum L. based on components and enzyme activity changes in apoplast [J]. , 2020, 32(5): 816-823. |
[13] | ZHANG Yu, ZHANG Ji, RONG Tao, OU Kewei, HUANG Guodi, SONG Hongxia. Analysis on genetic relationship of mango (Mangifera indica L.) germplasms by CDDP markers [J]. , 2020, 32(5): 824-830. |
[14] | SHEN Di, CHEN Longzheng, LU Xiaohua, TAO Jianping, FENG Gucheng, LIU Jiexia, FENG Kai, YIN Lian, DING Xu, JIA Lili, XU Zhisheng, LIU Huiji, XIONG Aisheng. Resources evaluation of 29 celery varieties for autumn-winter cultivation in southern Jiangsu [J]. , 2020, 32(4): 653-660. |
[15] | WANG Changjin, XU Yunlin, CHENG Xinxin, ZHOU Yi, YU Haibing. Genome-wide association study of seed nutritional quality in sweet corn [J]. , 2020, 32(3): 383-389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||