Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (8): 1927-1936.DOI: 10.3969/j.issn.1004-1524.20221222
• Biosystems Engineering • Previous Articles Next Articles
MA Qilianga(), YANG Xiaominga, HU Shuixinga, HUANG Zihongb, QI Hengnianb,c,*(
)
Received:
2022-08-22
Online:
2023-08-25
Published:
2023-08-29
CLC Number:
MA Qiliang, YANG Xiaoming, HU Shuixing, HUANG Zihong, QI Hengnian. Automatic detection method of corn seed germination based on Mask RCNN and vision technology[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1927-1936.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20221222
Fig.4 Results of seed positioning and germinated seeds image segmentation From left to right, it is seed positioning, seed bud root binary image, and germinated seed bud and root segmentation image.
Fig.5 Result statistics of the ratio of the absolute difference of radius and the centroid distance to the circumscribed circle radius of the marked mask
Fig.6 Automatic identification results of seed germination status The red elliptical contour indicates that the seed has not germinated, and the green elliptical contour indicates that the seed has germinated.
方法 Method | 第2天Day 2 | 第3天Day 3 | 第4天Day 4 | 第5天Day 5 | 第6天Day 6 | 第7天Day 7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | |
人工统计 | 17 | 34 | 48 | 96 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 |
Manual statistics | ||||||||||||
算法统计 | 8 | 16 | 37 | 74 | 47 | 94 | 50 | 100 | 50 | 100 | 50 | 100 |
Algorithm statistics |
Table 1 Germinated seed numbers and ratios by manual and algorithm automatic statistics
方法 Method | 第2天Day 2 | 第3天Day 3 | 第4天Day 4 | 第5天Day 5 | 第6天Day 6 | 第7天Day 7 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | 数量 Number | 占比 Ratio/% | |
人工统计 | 17 | 34 | 48 | 96 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | 100 |
Manual statistics | ||||||||||||
算法统计 | 8 | 16 | 37 | 74 | 47 | 94 | 50 | 100 | 50 | 100 | 50 | 100 |
Algorithm statistics |
编号 Number | 最大绝对误差 Maximum absolute error/mm | 最小绝对误差 Minimum absolute error/mm | ||
---|---|---|---|---|
芽Bud | 根Root | 芽Bud | 根Root | |
1~5 | 1.30 | 4.42 | 0.26 | 2.6 |
6~10 | 1.56 | 4.55 | 0.52 | 1.30 |
10~15 | 1.05 | 4.29 | 0.28 | 1.97 |
16~20 | 1.38 | 4.17 | 0.16 | 2.05 |
Table 2 Error analysis of bud length and root length of corn seedling
编号 Number | 最大绝对误差 Maximum absolute error/mm | 最小绝对误差 Minimum absolute error/mm | ||
---|---|---|---|---|
芽Bud | 根Root | 芽Bud | 根Root | |
1~5 | 1.30 | 4.42 | 0.26 | 2.6 |
6~10 | 1.56 | 4.55 | 0.52 | 1.30 |
10~15 | 1.05 | 4.29 | 0.28 | 1.97 |
16~20 | 1.38 | 4.17 | 0.16 | 2.05 |
[1] | 贾良权, 祁亨年, 胡文军, 等. 采用TDLAS技术的玉米种子活力快速无损分级检测[J]. 中国激光, 2019, 46(9): 297-305. |
JIA L Q, QI H N, HU W J, et al. Rapid nondestructive grading detection of maize seed vigor using TDLAS technique[J]. Chinese Journal of Lasers, 2019, 46(9): 297-305. (in Chinese with English abstract) | |
[2] | 李美凌, 邓飞, 刘颖, 等. 基于高光谱图像的水稻种子活力检测技术研究[J]. 浙江农业学报, 2015, 27(1): 1-6. |
LI M L, DENG F, LIU Y, et al. Study on detection technology of rice seed vigor based on hyperspectral image[J]. Acta Agriculturae Zhejiangensis, 2015, 27(1): 1-6. (in Chinese with English abstract) | |
[3] | 王冬, 王坤, 吴静珠, 等. 基于光谱及成像技术的种子品质无损速测研究进展[J]. 光谱学与光谱分析, 2021, 41(1): 52-59. |
WANG D, WANG K, WU J Z, et al. Progress in research on rapid and non-destructive detection of seed quality based on spectroscopy and imaging technology[J]. Spectroscopy and Spectral Analysis, 2021, 41(1): 52-59. (in Chinese with English abstract) | |
[4] | 孙俊, 张林, 周鑫, 等. 采用高光谱图像深度特征检测水稻种子活力等级[J]. 农业工程学报, 2021, 37(14): 171-178. |
SUN J, ZHANG L, ZHOU X, et al. Detection of rice seed vigor level by using deep feature of hyperspectral images[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 171-178. (in Chinese with English abstract) | |
[5] | 傅丹桂, 孙雁, 黄正仙, 等. 水稻种子不同活力测定方法的比较[J]. 云南农业大学学报(自然科学), 2018, 33(5): 811-817. |
FU D G, SUN Y, HUANG Z X, et al. Comparative research on the testing methods of different seed vigor in rice[J]. Journal of Yunnan Agricultural University(Natural Science), 2018, 33(5): 811-817. (in Chinese with English abstract) | |
[6] | 徐振飞, 过晟鹏, 钱旺, 等. 3种杉木种子活力测定方法比较[J]. 浙江农林大学学报, 2020, 37(6): 1230-1234. |
XU Z F, GUO S P, QIAN W, et al. A comparative study of three determination methods for seed vigor of Cunninghamia lanceolata[J]. Journal of Zhejiang A & F University, 2020, 37(6): 1230-1234. (in Chinese with English abstract) | |
[7] | 高嘉轩. 基于机器视觉的类圆形水果缺陷检测关键技术的研发与实现[D]. 南京: 南京邮电大学, 2020. |
GAO J X. Research and implementation of key techniques for defect detection of round-like fruits based on machine vision[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020. (in Chinese with English abstract) | |
[8] | 张晗, 王成, 董宏图, 等. 基于机器视觉的白菜种子精选方法研究[J]. 农机化研究, 2021, 43(12): 31-36. |
ZHANG H, WANG C, DONG H T, et al. Study on the seed selection method of cabbage based on machine vision[J]. Journal of Agricultural Mechanization Research, 2021, 43(12): 31-36. (in Chinese with English abstract) | |
[9] | 潘霞, 谭会君. 计算机视觉技术在玉米种子自动检测中的应用[J]. 农机化研究, 2019, 41(3): 228-231. |
PAN X, TAN H J. Application of computer vision technology in maize seed automatic detection[J]. Journal of Agricultural Mechanization Research, 2019, 41(3): 228-231. (in Chinese with English abstract) | |
[10] | 杨丽丽, 张大卫, 罗君, 等. 基于SVM和AdaBoost的棉叶螨危害等级识别[J]. 农业机械学报, 2019, 50(2): 14-20. |
YANG L L, ZHANG D W, LUO J, et al. Automatic recognition for cotton spider mites damage level based on SVM and AdaBoost[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 14-20. (in Chinese with English abstract) | |
[11] | 张万红. 基于图像法的离体小麦叶片几何参数计算[J]. 浙江大学学报(农业与生命科学版), 2018, 44(6): 748-754. |
ZHANG W H. Geometrical parameter calculation of excised wheat leaves based on image analysis[J]. Journal of Zhejiang University(Agriculture and Life Sciences), 2018, 44(6): 748-754. (in Chinese with English abstract) | |
[12] | 金沙沙, 贾良权, 龙伟, 等. 基于特征选择与骨架提取的种子萌发的芽长、根长检测[J]. 江苏农业学报, 2021, 37(3): 597-605. |
JIN S S, JIA L Q, LONG W, et al. Detection of seed bud length and root length based on feature selection and skeleton extraction[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(3): 597-605. (in Chinese with English abstract) | |
[13] | 马启良, 胡水星, 林冬茂, 等. CSA-FFCM算法在玉米种子芽根长度自动化测定中的应用[J]. 湖州师范学院学报, 2021, 43(4): 42-49. |
MA Q L, HU S X, LIN D M, et al. Application of CSA FFCM algorithm in the automatic determination of corn seed bud root length[J]. Journal of Huzhou University, 2021, 43(4): 42-49. (in Chinese with English abstract) | |
[14] | 吴旭东, 张晗, 罗斌, 等. 基于机器视觉的小麦种子活力检测方法[J]. 江苏农业科学, 2021, 49(24): 189-194. |
WU X D, ZHANG H, LUO B, et al. Study on wheat seed vigor detection method based on machine vision[J]. Jiangsu Agricultural Sciences, 2021, 49(24): 189-194. (in Chinese) | |
[15] | 范丽丽, 赵宏伟, 赵浩宇, 等. 基于深度卷积神经网络的目标检测研究综述[J]. 光学精密工程, 2020, 28(5): 1152-1164. |
FAN L L, ZHAO H W, ZHAO H Y, et al. Survey of target detection based on deep convolutional neural networks[J]. Optics and Precision Engineering, 2020, 28(5): 1152-1164. (in Chinese with English abstract) | |
[16] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). October 22-29, 2017, Venice, Italy. IEEE, 2017: 2980-2988. |
[17] | 杜文圣, 王春颖, 朱衍俊, 等. 采用改进Mask R-CNN算法定位鲜食葡萄疏花夹持点[J]. 农业工程学报, 2022, 38(1): 169-177. |
DU W S, WANG C Y, ZHU Y J, et al. Fruit stem clamping points location for table grape thinning using improved mask R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 169-177. (in Chinese with English abstract) | |
[18] | 冯青春, 成伟, 李亚军, 等. 基于Mask R-CNN的番茄植株整枝操作点定位方法[J]. 农业工程学报, 2022, 38(3): 128-135. |
FENG Q C, CHENG W, LI Y J, et al. Method for identifying tomato plants pruning point using Mask R-CNN[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3): 128-135. (in Chinese with English abstract) | |
[19] | 孙建波, 张叶, 常旭岭. 基于改进Mask R-CNN+LaneNet的车载图像车辆压线检测[J]. 光学精密工程, 2022, 30(7): 854-868. |
SUN J B, ZHANG Y, CHANG X L. Vehicle pressure line detection based on improved Mask R-CNN+LaneNet[J]. Optics and Precision Engineering, 2022, 30(7): 854-868. (in Chinese with English abstract) | |
[20] | 袁山, 汤浩, 郭亚. 基于改进Mask R-CNN模型的植物叶片分割方法[J]. 农业工程学报, 2022, 38(1): 212-220. |
YUAN S, TANG H, GUO Y. Segmentation method for plant leaves using an improved Mask R-CNN model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 212-220. (in Chinese with English abstract) | |
[21] | 李振, 廖同庆, 冯青春, 等. 基于机器视觉的蔬菜种子活力指数检测算法研究及系统实现[J]. 浙江农业学报, 2015, 27(12): 2218-2224. |
LI Z, LIAO T Q, FENG Q C, et al. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision[J]. Acta Agriculturae Zhejiangensis, 2015, 27(12): 2218-2224. (in Chinese with English abstract) |
[1] | YE Lei, ZHANG Bo, YANG Xuezhen, LI Xiaolin, ZHANG Xiaoping, TAN Wei. Feasibility of Auricularia cornea cultivation with bamboo sawdust instead of wood sawdust and comprehensive evaluation of quality [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1416-1426. |
[2] | XU Jinming, CHANG Yihong, GONG Han, GONG Wenfang, YUAN Deyi. Effects of different exogenous substances on pollen germination and pollen tube growth of Camellia oleifera [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 789-798. |
[3] | LI Yanan, YE Wenxing, ZHU Xiangde, CHEN Lin, XU Xiaofeng, ZHANG Lili. LC-MS/MS-based study on effect of rice straw instead of partial corn silage on plasma metabolites of dairy cows [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 266-274. |
[4] | JIANG Haoliang, HUANG Yun, LIANG Shaofang, XIE Mengchen, XU Tiancheng, SONG Zhiting, XIANG Wenwen, CHEN Qingchun, WAN Xiaorong, SUN Wei. Influences of cadmium stress on seedling growth of different sweet corn inbred lines and screening of associated molecular markers via simple sequence repeats [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1582-1590. |
[5] | REN Mengyun, DU Longgang, WANG Meixing, HUANG Yifeng. Characteristics of soluble sugar components in waxy corn and its postharvest quality [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1133-1140. |
[6] | JIANG Yuhang, XIN Weigang, ZHANG Qili, DENG Xianyu, WANG Feng, LIN Lianbing. Isolation and identification of fungi from mildewed feed corn and study on anti-mildew and antifungal effects of lactobacillin [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1283-1291. |
[7] | DONG Aiqin, LI Jianguo, YANG Tao, CHEN Yuanhua, XU Changxu, WAN Hui, PENG Zhiping, XIE Jie. Effects of different sulfate soaking agents on seed germination and cadmium uptake of rice seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2213-2223. |
[8] | YANG Yiwei, XIAO Hua, CHEN Hu, XIAO Niejia, GUO Cheng. Structural characteristics of soil mite communities under different modes of rose-based agroforestry in Karst area [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 112-121. |
[9] | NIU Bo, LI Lina, PANG Guangchang, LU Dingqiang. Construction of plant root tip mesenchymal sensors and their effects on urea sensing dynamics [J]. , 2020, 32(8): 1466-1474. |
[10] | WANG Changjin, XU Yunlin, CHENG Xinxin, ZHOU Yi, YU Haibing. Genome-wide association study of seed nutritional quality in sweet corn [J]. , 2020, 32(3): 383-389. |
[11] | TAO Jing, WU Qifeng, SHI Jiang, LI Songhao, GE Jiangfei, CHEN Junhui, XU Qiufang, LIANG Chenfei, QIN Hua. Impact of intercropping and arbuscular mycorrhizal fungi on soil fertility and corn yield in a newly cultivated mountain land [J]. , 2020, 32(1): 115-123. |
[12] | DING Xiaoxue, WANG Bingliang, HAI Rui, HU Yuqing, MI Yuehua, YE Hongxia. Studies on germination characteristics of Solanum torvum seeds from various sources [J]. , 2019, 31(3): 420-427. |
[13] | TAN Min, YU Yongfu, HU Zhengfeng, ZHANG Kefeng. Simulation study on effects of root length distribution and soil texture on crop transpiration [J]. , 2018, 30(8): 1382-1388. |
[14] | SONG Jun, YE Xianlin, YIN Quan, ZHANG Fuli, WANG Dong, LI Jie. Measurement uncertainty in genetically modified maize DAS-4-40278-9 estimated by Monte Carlo method [J]. , 2018, 30(5): 681-687. |
[15] | GAO Liang, YAN Min, ZHAO Fang. Plant leaf recognition based on fusion of multiple features [J]. , 2017, 29(4): 668-675. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||