Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (1): 215-224.DOI: 10.3969/j.issn.1004-1524.20230093
• Biosystems Engineering • Previous Articles Next Articles
YANG Xinyu1(), FENG Quan1,*(
), ZHANG Jianhua2, YANG Sen1
Received:
2023-01-30
Online:
2024-01-25
Published:
2024-02-18
CLC Number:
YANG Xinyu, FENG Quan, ZHANG Jianhua, YANG Sen. Plant leaf disease identification based on contrastive learning[J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 215-224.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230093
模式 Mode | Beach_size | 优化方法 Optimization method | 各对比学习方法的准确率Accuracy of contrastive learning methods | ||||
---|---|---|---|---|---|---|---|
MoCo-v2 | DeepCluster-v2 | SwAV | BYOL | 平均值Mean | |||
Linear | 32 | SGD+momentum | 97.26 | 99.70 | 99.74 | 99.70 | 99.10 |
Linear | 64 | SGD+momentum | 96.92 | 99.79 | 99.78 | 99.69 | 99.04 |
Finetune | 32 | SGD+momentum | 99.13 | 99.75 | 99.71 | 99.66 | 99.56 |
Finetune | 64 | SGD+momentum | 99.70 | 98.57 | 99.86 | 99.87 | 99.50 |
Finetune | 32 | SGD+momentum+Adam | 99.52 | 99.77 | 99.64 | 99.59 | 99.63 |
Finetune | 64 | SGD+momentum+Adam | 99.75 | 99.87 | 99.86 | 99.84 | 99.83 |
Table 1 Accuracy of four contrastive learning methods on PlantVillage dataset under Linear and Finetune modes %
模式 Mode | Beach_size | 优化方法 Optimization method | 各对比学习方法的准确率Accuracy of contrastive learning methods | ||||
---|---|---|---|---|---|---|---|
MoCo-v2 | DeepCluster-v2 | SwAV | BYOL | 平均值Mean | |||
Linear | 32 | SGD+momentum | 97.26 | 99.70 | 99.74 | 99.70 | 99.10 |
Linear | 64 | SGD+momentum | 96.92 | 99.79 | 99.78 | 99.69 | 99.04 |
Finetune | 32 | SGD+momentum | 99.13 | 99.75 | 99.71 | 99.66 | 99.56 |
Finetune | 64 | SGD+momentum | 99.70 | 98.57 | 99.86 | 99.87 | 99.50 |
Finetune | 32 | SGD+momentum+Adam | 99.52 | 99.77 | 99.64 | 99.59 | 99.63 |
Finetune | 64 | SGD+momentum+Adam | 99.75 | 99.87 | 99.86 | 99.84 | 99.83 |
类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy |
---|---|---|---|---|---|---|---|
C1 | 100.0 | C11 | 99.54 | C21 | 100.0 | C31 | 99.73 |
C2 | 100.0 | C12 | 100.0 | C22 | 100.0 | C32 | 99.50 |
C3 | 100.0 | C13 | 100.0 | C23 | 100.0 | C33 | 99.12 |
C4 | 100.0 | C14 | 100.0 | C24 | 100.0 | C34 | 99.68 |
C5 | 100.0 | C15 | 100.0 | C25 | 100.0 | C35 | 99.68 |
C6 | 100.0 | C16 | 100.0 | C26 | 100.0 | C36 | 99.91 |
C7 | 100.0 | C17 | 100.0 | C27 | 100.0 | C37 | 100.0 |
C8 | 94.96 | C18 | 100.0 | C28 | 100.0 | C38 | 100.0 |
C9 | 100.0 | C19 | 100.0 | C29 | 100.0 | ||
C10 | 96.28 | C20 | 100.0 | C30 | 98.98 |
Table 2 Accuracy of BYOL for different categories on the PlantVillage dataset %
类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy | 类别 Category | 准确率 Accuracy |
---|---|---|---|---|---|---|---|
C1 | 100.0 | C11 | 99.54 | C21 | 100.0 | C31 | 99.73 |
C2 | 100.0 | C12 | 100.0 | C22 | 100.0 | C32 | 99.50 |
C3 | 100.0 | C13 | 100.0 | C23 | 100.0 | C33 | 99.12 |
C4 | 100.0 | C14 | 100.0 | C24 | 100.0 | C34 | 99.68 |
C5 | 100.0 | C15 | 100.0 | C25 | 100.0 | C35 | 99.68 |
C6 | 100.0 | C16 | 100.0 | C26 | 100.0 | C36 | 99.91 |
C7 | 100.0 | C17 | 100.0 | C27 | 100.0 | C37 | 100.0 |
C8 | 94.96 | C18 | 100.0 | C28 | 100.0 | C38 | 100.0 |
C9 | 100.0 | C19 | 100.0 | C29 | 100.0 | ||
C10 | 96.28 | C20 | 100.0 | C30 | 98.98 |
模式 Mode | Beach_size | 各对比学习方法的准确率Accuracy of contrastive learning methods | ||||
---|---|---|---|---|---|---|
MoCo-v2 | DeepCluster-v2 | SwAV | BYOL | 平均值Mean | ||
Linear | 32 | 97.29 | 98.29 | 97.20 | 98.30 | 97.77 |
Linear | 64 | 98.36 | 98.86 | 98.47 | 98.56 | 98.56 |
Finetune | 32 | 96.38 | 96.56 | 96.38 | 96.23 | 96.39 |
Finetune | 64 | 97.11 | 97.47 | 97.47 | 96.93 | 97.35 |
Table 3 Accuracy of four contrastive learning methods on the self-built cotton disease dataset
模式 Mode | Beach_size | 各对比学习方法的准确率Accuracy of contrastive learning methods | ||||
---|---|---|---|---|---|---|
MoCo-v2 | DeepCluster-v2 | SwAV | BYOL | 平均值Mean | ||
Linear | 32 | 97.29 | 98.29 | 97.20 | 98.30 | 97.77 |
Linear | 64 | 98.36 | 98.86 | 98.47 | 98.56 | 98.56 |
Finetune | 32 | 96.38 | 96.56 | 96.38 | 96.23 | 96.39 |
Finetune | 64 | 97.11 | 97.47 | 97.47 | 96.93 | 97.35 |
类别 Category | 精确率Precision | 召回率Recall | F1值F1 score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | |
D1 | 97.10 | 98.33 | 97.21 | 97.63 | 96.40 | 98.01 | 96.96 | 97.2 | 96.75 | 98.17 | 97.08 | 97.41 |
D2 | 97.85 | 97.17 | 97.81 | 97.44 | 99.21 | 98.10 | 99.01 | 98.7 | 98.53 | 97.63 | 98.41 | 98.07 |
D3 | 99.65 | 99.78 | 99.63 | 99.59 | 98.80 | 99.12 | 98.70 | 98.79 | 99.22 | 99.45 | 99.16 | 99.19 |
D4 | 99.59 | 99.60 | 99.67 | 99.64 | 100.00 | 100.00 | 100.00 | 100.00 | 99.79 | 99.80 | 99.83 | 99.82 |
D5 | 99.03 | 99.40 | 99.17 | 99.21 | 99.67 | 99.85 | 99.76 | 99.87 | 99.35 | 99.62 | 99.46 | 99.54 |
D6 | 87.78 | 89.66 | 88.00 | 87.79 | 86.22 | 86.67 | 85.56 | 85.19 | 86.99 | 88.14 | 86.76 | 86.47 |
D7 | 98.99 | 98.50 | 98.87 | 98.71 | 98.74 | 98.13 | 98.59 | 98.39 | 98.86 | 98.31 | 98.73 | 98.55 |
D8 | 99.83 | 99.67 | 99.79 | 99.75 | 99.65 | 100.00 | 99.79 | 99.75 | 99.74 | 99.83 | 99.79 | 99.75 |
Table 4 Test results of four contrastive learning methods on the self-built cotton disease dataset %
类别 Category | 精确率Precision | 召回率Recall | F1值F1 score | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | M1 | M2 | M3 | M4 | |
D1 | 97.10 | 98.33 | 97.21 | 97.63 | 96.40 | 98.01 | 96.96 | 97.2 | 96.75 | 98.17 | 97.08 | 97.41 |
D2 | 97.85 | 97.17 | 97.81 | 97.44 | 99.21 | 98.10 | 99.01 | 98.7 | 98.53 | 97.63 | 98.41 | 98.07 |
D3 | 99.65 | 99.78 | 99.63 | 99.59 | 98.80 | 99.12 | 98.70 | 98.79 | 99.22 | 99.45 | 99.16 | 99.19 |
D4 | 99.59 | 99.60 | 99.67 | 99.64 | 100.00 | 100.00 | 100.00 | 100.00 | 99.79 | 99.80 | 99.83 | 99.82 |
D5 | 99.03 | 99.40 | 99.17 | 99.21 | 99.67 | 99.85 | 99.76 | 99.87 | 99.35 | 99.62 | 99.46 | 99.54 |
D6 | 87.78 | 89.66 | 88.00 | 87.79 | 86.22 | 86.67 | 85.56 | 85.19 | 86.99 | 88.14 | 86.76 | 86.47 |
D7 | 98.99 | 98.50 | 98.87 | 98.71 | 98.74 | 98.13 | 98.59 | 98.39 | 98.86 | 98.31 | 98.73 | 98.55 |
D8 | 99.83 | 99.67 | 99.79 | 99.75 | 99.65 | 100.00 | 99.79 | 99.75 | 99.74 | 99.83 | 99.79 | 99.75 |
[1] | 孙俊, 谭文军, 毛罕平, 等. 基于改进卷积神经网络的多种植物叶片病害识别[J]. 农业工程学报, 2017, 33(19): 209-215. |
SUN J, TAN W J, MAO H P, et al. Recognition of multiple plant leaf diseases based on improved convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 209-215. (in Chinese with English abstract) | |
[2] | MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in Plant Science, 2016, 7: 1419. |
[3] | 刘洋, 冯全, 王书志. 基于轻量级CNN的植物病害识别方法及移动端应用[J]. 农业工程学报, 2019, 35(17): 194-204. |
LIU Y, FENG Q, WANG S Z. Plant disease identification method based on lightweight CNN and mobile application[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(17): 194-204. (in Chinese with English abstract) | |
[4] | 侯志松, 冀金泉, 李国厚, 等. 集成学习与迁移学习的作物病害图像识别算法[J]. 中国科技论文, 2021, 16(7): 708-714. |
HOU Z S, JI J Q, LI G H, et al. Crop disease image recognition algorithm based on ensemble learning and transfer learning[J]. China Sciencepaper, 2021, 16(7): 708-714. (in Chinese with English abstract) | |
[5] | 刘翱宇, 吴云志, 朱小宁, 等. 基于深度残差网络的玉米病害识别[J]. 江苏农业学报, 2021, 37(1): 67-74. |
LIU A Y, WU Y Z, ZHU X N, et al. Corn disease recognition based on deep residual network[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(1): 67-74. (in Chinese with English abstract) | |
[6] | 郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. |
GUO X Q, FAN T J, SHU X. Tomato leaf diseases recognition based on improved Multi-Scale AlexNet[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(13): 162-169. (in Chinese with English abstract) | |
[7] | 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191. |
ZHAO L X, HOU F D, LYU Z C, et al. Image recognition of cotton leaf diseases and pests based on transfer learning[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 184-191. (in Chinese with English abstract) | |
[8] | ALBELWI S. Survey on self-supervised learning: auxiliary pretext tasks and contrastive learning methods in imaging[J]. Entropy, 2022, 24(4): 551. |
[9] | 张重生, 陈杰, 李岐龙, 等. 深度对比学习综述[J]. 自动化学报, 2023, 49(1): 15-39. |
ZHANG C S, CHEN J, LI Q L, et al. Deep contrastive learning: a survey[J]. Acta Automatica Sinica, 2023, 49(1): 15-39. (in Chinese with English abstract) | |
[10] | CARON M, MISRA I, MAIRAL J, et al. Unsupervised learning of visual features by contrasting cluster assignments[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. December 6-12, 2020, Vancouver, BC, Canada. New York: ACM, 2020: 9912-9924. |
[11] | GRILL J B, STRUB F, ALTCH’E F, et al. Bootstrap your own latent: a new approach to self-supervised learning[EB/OL].(2020-06-13) [2023-01-30]. https://arxiv.org/abs/2006.07733. |
[12] | 田浩江, 路娜, 崔二洋. 基于改进对比学习的道路裂缝图像分类[J]. 计算机系统应用, 2023, 32(2): 310-315. |
TIAN H J, LU N, CUI E Y. Road crack image classification based on improved contrastive learning[J]. Computer Systems and Applications, 2023, 32(2): 310-315. (in Chinese with English abstract) | |
[13] | 奚琰. 基于对比学习的细粒度遮挡人脸表情识别[J]. 计算机系统应用, 2022, 31(11): 175-183. |
XI Y. Fine-grained occluded facial expression recognition based on contrastive learning[J]. Computer Systems and Applications, 2022, 31(11): 175-183. (in Chinese with English abstract) | |
[14] | GitHub Inc. linusericsson/ssl-transfer: code[EB/OL]. [2023-01-30]. https://github.com/linusericsson/ssl-transfer. |
[15] | SOHN K. Improved deep metric learning with multi-class N-pair loss objective[EB/OL]. [2023-01-30]. https://papers.nips.cc/paper/2016/file/6b180037abbebea991d8b1232f8a8ca9-Paper.pdf. |
[16] | 陈伟文, 邝祝芳, 王忠伟. 基于卷积神经网络的种苗病害识别方法[J]. 中南林业科技大学学报, 2022, 42(7): 35-43. |
CHEN W W, KUANG Z F, WANG Z W. Method of seed disease recognition based on convolutional neural network[J]. Journal of Central South University of Forestry & Technology, 2022, 42(7): 35-43. (in Chinese with English abstract) | |
[17] | MOHAMETH F, CHEN B C, SADA K A. Plant disease detection with deep learning and feature extraction using plant village[J]. Journal of Computer and Communications, 2020, 8(6): 10-22. |
[18] | TOO E C, LI Y J, NJUKI S, et al. A comparative study of fine-tuning deep learning models for plant disease identification[J]. Computers and Electronics in Agriculture, 2019, 161: 272-279. |
[19] | ZHU D Q, FENG Q, ZHANG J H, et al. Cotton disease identification method based on pruning[J]. Frontiers in Plant Science, 2022, 13: 1038791. |
[1] | LIU Yuanyuan, WANG Dingkun, WU Lei, HUANG Dechang, ZHU Lu. A light-weight model for plant disease identification based on model pruning and knowledge distillation [J]. Acta Agriculturae Zhejiangensis, 2023, 35(9): 2250-2264. |
[2] | ZHU Dongqin, FENG Quan, ZHANG Jianhua. Plant disease identification based on pruning [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1462-1472. |
[3] | BAO Lie, WANG Mantao, LIU Jiangchuan, WEN Bo, MING Yue. Estimation method of wheat yield based on convolution neural network [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2244-2252. |
[4] | LIU Zhi, HE Zheng, MIAO Fangfang, JIA Biao. Method and experiment for estimating emergence rate of water and fertilizer integrated maize based on drone technology [J]. , 2019, 31(6): 977-985. |
[5] | WANG Yanxiang, ZHANG Yan, YANG Chengya, MENG Qinglong, SHANG Jing. Advances in new nondestructive detection and identification techniques of crop diseases based on deep learning [J]. , 2019, 31(4): 669-676. |
[6] | BU Zhengyan, LI Zhenfeng, SONG Feihu, LI Bin, LI Jing. Determination of moisture content in soybean leaves based on terahertz imaging [J]. , 2018, 30(8): 1420-1426. |
[7] | YANG Guoliang, XU Nan, KANG Lele, GONG Man, HONG Zhiyang. Identification of navel orange lesions leaves based on parametric exponential non-linear residual neural network [J]. , 2018, 30(6): 1073-1081. |
[8] | GU Zhengmin, LI Zhenfeng, SONG Feihu, ZHANG Junsheng, ZHUANG Wei. Investigation of measurement method of soybean canopy leaf area based on light field camera [J]. , 2018, 30(12): 2144-2152. |
[9] | LI Qi, HU Yicong, WU Fuchuang. Environment control system of seedling box based on image processing [J]. , 2017, 29(11): 1912-1919. |
[10] | SHI Tie,SUO Xue\|song*,ZHOU Jing\|ren,HAN Chang\|xing,GAO Li\|ai. Study on traceability management of modern agricultural facilities: based on the analysis of image recognition of solar cells [J]. , 2015, 27(2): 285-. |
[11] | LI Zhen1,2, LIAO Tong\|qing1, FENG Qing\|chun2,3,4,5, ZHANG Dong\|yan1,2,3,4,5, WANG Xiu2,3,4,5,*. Study on vegetable seed vigor index detection algorithm and system realization based on machine vision [J]. , 2015, 27(12): 2218-. |
[12] | HU Meng-han;DONG Qing-li;*;LIU Bao-lin;ZHANG Chong-yang;YE Fei. Banana shape recognition based on elliptic Fourier descriptor [J]. , 2014, 26(1): 200-205. |
[13] | YAO Li-jian;BIAN Qi;LEI Liang-yu;ZHAO Da-xu. Classification of fruit based on the BP neural network [J]. , 2012, 24(5): 0-930. |
[14] | LIU Jian-jun;YAO Li-jian;PENG Zhang-lin. Detection technique for cathay hickory grade based on machine vision [J]. , 2010, 22(6): 854-858. |
[15] | ZHENG Ji-rong;WANG Hui-li. Resistance identification and genetic analysis of Tomato yellow leaf curl virus(TYLCV) [J]. , 2010, 22(4): 0-447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||