Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (3): 534-543.DOI: 10.3969/j.issn.1004-1524.20230488
• Horticultural Science • Previous Articles Next Articles
ZHANG Luhe1,2(), WANG Duofeng1, ZHANG De1, ZHANG Guangzhong1, ZHAO Tong1, LYU Binyan1, ZHANG Yangjun1, LI Yi2,*(
)
Received:
2023-04-12
Online:
2024-03-25
Published:
2024-04-09
CLC Number:
ZHANG Luhe, WANG Duofeng, ZHANG De, ZHANG Guangzhong, ZHAO Tong, LYU Binyan, ZHANG Yangjun, LI Yi. Identification and bioinformatics analysis of novel-miR16 target gene ZjTCP4 in Chinese jujube[J]. Acta Agriculturae Zhejiangensis, 2024, 36(3): 534-543.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230488
novel-miR16序列 Sequence of novel-miR16 | 靶基因 Target Acc | 靶基因注释 Target gene annotation |
---|---|---|
UUGGACUGAAGGGAGCUCCC | CCG006181 | transcription factor TCP4-like |
Table 1 Predicted target genes of novel-miR16 in Chinese jujube
novel-miR16序列 Sequence of novel-miR16 | 靶基因 Target Acc | 靶基因注释 Target gene annotation |
---|---|---|
UUGGACUGAAGGGAGCUCCC | CCG006181 | transcription factor TCP4-like |
Fig.4 Bioinformatics analysis of protein encoded by ZjTCP4 gene A, Tertiary structure prediction of protein encoded by ZjTCP4 gene;B, Transmembrane domain analysis of protein encoded by ZjTCP4 gene; C, Signal peptide prediction of protein encoded by ZjTCP4 gene;D, Post-translational modification prediction of protein encoded by ZjTCP4 gene; E, Hydrophobicity analysis of protein encoded by ZjTCP4 gene.
Fig.6 Subcellular localization of the ZjTCP4 protein From left to right, superimposed photos of GFP green fluorescent protein, CHI, bright field and three channels of CK/gene, respectively.
Fig.7 The expression level of novel-miR16 and ZjTCP4 under drought stress in Chinese jujube No identical lowercase letters between different time points of the same gene indicate significant differences (P<0.05).
[1] | 刘涛, 陈海荣, 汪成忠, 等. 干旱和盐胁迫下百子莲的抗逆生理研究[J]. 浙江农业学报, 2022, 34(12): 2669-2681. |
LIU T, CHEN H R, WANG C Z, et al. Physiology of stress resistance of Agapanthus praecox under drought and salt stress[J]. Acta Agriculturae Zhejiangensis, 2022, 34(12): 2669-2681. (in Chinese with English abstract) | |
[2] | 孟玉平, 曹秋芬, 郭慧娜, 等. NaCl和PEG6000胁迫下枣组培苗中ZjAPX的表达[J]. 山西农业科学, 2013, 41(2): 107-109, 125. |
MENG Y P, CAO Q F, GUO H N, et al. Expression of ZjAPX in vitro jujube plant tissue culture by salt and drought stress[J]. Journal of Shanxi Agricultural Sciences, 2013, 41(2): 107-109, 125. (in Chinese with English abstract) | |
[3] | 韩春苗. 铜钱树砧抗枣疯病相关miRNAs鉴定及其功能研究[D]. 合肥: 安徽农业大学, 2019. |
HAN C M. Identification functional study of jujube witche’s broom resistance acquired from Chinese Paliurus rootstock relative microRNAs[D]. Hefei: Anhui Agricultural University, 2019. (in Chinese with English abstract) | |
[4] | 王晓丽. CaCl2对NaCl胁迫下酸枣幼苗氮代谢及microRNA表达的影响[D]. 石河子: 石河子大学, 2019. |
WANG X L. Effect of CaCl2 on the nitrogen metabolism and the expression of microRNA in sour jujube seedlings under NaCl stress[D]. Shihezi: Shihezi University, 2019. (in Chinese with English abstract) | |
[5] | 韩雪杨, 刘宁, 温鑫, 等. 植物发育相关miR828基因家族靶基因预测及生物信息学分析[J]. 浙江农业学报, 2023, 35(3): 515-522. |
HAN X Y, LIU N, WEN X, et al. Prediction and bioinformatics analysis of target genes of plant development-related miR828 gene family[J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 515-522. (in Chinese with English abstract) | |
[6] | MANASSERO N G, VIOLA I L, WELCHEN E, et al. TCP transcription factors: architectures of plant form[J]. Biomolecular Concepts, 2013, 4(2): 111-127. |
[7] | LI S T. The Arabidopsis thaliana TCP transcription factors: a broadening horizon beyond development[J]. Plant Signaling & Behavior, 2015, 10(7): e1044192. |
[8] | GONZALEZ D H. Plant transcription factors: evolutionary, structural, and functional aspects[M]. Amsterdam: Academic Press/Elsevier, 2016. |
[9] | 李艳鹏, 魏娜, 翟庆妍, 等. 全基因组水平白花草木樨TCP基因家族的鉴定及在干旱胁迫下表达模式分析[J]. 草业学报, 2023, 32(4): 101-111. |
LI Y P, WEI N, ZHAI Q Y, et al. Genome-wide identification of members of the TCP gene family in Melilotus albus and their expression patterns under drought stress[J]. Acta Prataculturae Sinica, 2023, 32(4): 101-111. (in Chinese with English abstract) | |
[10] | SUN X D, WANG C D, XIANG N, et al. Activation of secondary cell wall biosynthesis by miR319-targeted TCP4 transcription factor[J]. Plant Biotechnology Journal, 2017, 15(10): 1284-1294. |
[11] | 王利彬. 大豆苗期干旱和高温胁迫应答机制研究及关键转录因子的筛选[D]. 哈尔滨: 东北农业大学, 2018. |
WANG L B. The study on response mechanism and screening of key factors under drought and high temperature stresses in soybean (Glycine max(L.)Merrill)[D]. Harbin: Northeast Agricultural University, 2018. (in Chinese with English abstract) | |
[12] | 陈国梁, 祖欢欢, 薛宝平, 等. 枣TCP转录因子鉴定与生物信息学分析[J]. 分子植物育种, 2019, 17(9): 2821-2827. |
CHEN G L, ZU H H, XUE B P, et al. Identification and bioinformatics analysis of the TCP transcription factor family in Ziziphus jujuba[J]. Molecular Plant Breeding, 2019, 17(9): 2821-2827. (in Chinese with English abstract) | |
[13] | ZHANG L H, LI Y, YANG J W, et al. Genome-wide identification of drought-responsive microRNAs and their target genes in Chinese jujube by deep sequencing[J]. Genes & Genomics, 2023, 45(2): 231-245. |
[14] | CHOU K C, SHEN H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization[J]. PLoS One, 2010, 5(6): e11335. |
[15] | SUN G L, STEWART C N JR, XIAO P, et al. microRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress[J]. PLoS One, 2012, 7(3): e32017. |
[16] | SUNKAR R, ZHU J K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2001-2019. |
[17] | NAG A, KING S, JACK T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22534-22539. |
[18] | SCHOMMER C, PALATNIK J F, AGGARWAL P, et al. Control of jasmonate biosynthesis and senescence by miR319 targets[J]. PLoS Biology, 2008, 6(9): e230. |
[19] | ZHOU M, LI D Y, LI Z G, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2013, 161(3): 1375-1391. |
[20] | PALATNIK J F, ALLEN E, WU X L, et al. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. |
[21] | WANG B, SUN Y F, SONG N, et al. microRNAs involving in cold, wounding and salt stresses in Triticum aestivum L[J]. Plant Physiology and Biochemistry, 2014, 80: 90-96. |
[22] | HIVRALE V, ZHENG Y, PULI C O R, et al. Characterization of drought- and heat-responsive microRNAs in switchgrass[J]. Plant Science, 2016, 242: 214-223. |
[23] | ALLEN R S, LI J Y, STAHLE M I, et al. Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(41): 16371-16376. |
[24] | DOERNER P. Phosphate starvation signaling: a threesome controls systemic Pi homeostasis[J]. Current Opinion in Plant Biology, 2008, 11(5): 536-540. |
[25] | VANNINI C, LOCATELLI F, BRACALE M, et al. Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants[J]. The Plant Journal, 2004, 37(1): 115-127. |
[26] | CHIOU T J. The role of microRNAs in sensing nutrient stress[J]. Plant, Cell & Environment, 2007, 30(3): 323-332. |
[27] | CHEN G L, ZU H H, XUE B P, et al. Identification and bioinformatics analysis of the TCP transcription factor family in Ziziphus jujuba[J]. Molecular Plant Breeding, 2019, 17(9): 2821-2827. |
[28] | ALMEIDA D M, GREGORIO G B, OLIVEIRA M M, et al. Five novel transcription factors as potential regulators of OsNHX1 gene expression in a salt tolerant rice genotype[J]. Plant Molecular Biology, 2017, 93(1): 61-77. |
[29] | CAO Z H, ZHANG S Z, WANG R K, et al. Genome wide analysis of the apple MYB transcription factor family allows the identification of MdoMYB121 gene confering abiotic stress tolerance in plants[J]. PLoS One, 2013, 8(7): e69955. |
[30] | SEO P J, XIANG F N, QIAO M, et al. The MYB96 transcription factor mediates abscisic acid signaling during drought stress response in Arabidopsis[J]. Plant Physiology, 2009, 151(1): 275-289. |
[1] | ZHANG Li, WANG Yuanyuan, WANG Rui, LIU Lixia. Cloning sequencing and bioinformatics analysis of DRA gene of yak [J]. Acta Agriculturae Zhejiangensis, 2023, 35(7): 1564-1570. |
[2] | PANG Xueqing, TANG Shi, ZENG Hongmei, ZHAO Wei, WANG Yin, LUO Yan, YAO Xueping, REN Meishen, REN Yongjun, YANG Zexiao. Cloning and analysis of RdRp gene in two strains of GI.1 and GI.2 RHDV [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1286-1296. |
[3] | SONG Yaping, LEI Zhaoxiong, ZHAO Yi’ang, JIANG Chao, WANG Xingping, LUORENG Zhuoma, MA Yun, WEI Dawei. Cloning of CDS region of bovine FoxO1 gene and analysing expression pattern during adipocyte differentiation [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1016-1027. |
[4] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
[5] | YAN Cunyao, JIA Kai, YAN Huizhuan, GAO Jie. Cloning, expression and bioinformatics analysis of BrrLOX7 gene in turnip [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 831-840. |
[6] | HAN Xueyang, LIU Ning, WEN Xin, WEI Jicheng, REN Ruyi, HAO Aiping. Prediction and bioinformatics analysis of target genes of plant development-related miR828 gene family [J]. Acta Agriculturae Zhejiangensis, 2023, 35(3): 515-522. |
[7] | JI Meijun, CAO Ziyi, WANG Yiting, LU Jingru, WANG Baohua. Genome-wide identification and analysis of NCS1 gene family in upland cotton [J]. Acta Agriculturae Zhejiangensis, 2023, 35(2): 249-258. |
[8] | LU Fuzeng, HUA Weidong, CHU Xiaohong, DAI Lihe, CHEN Xiaoyu, ZHANG Lifeng, WANG Zhigang, XU Ruhai. Genes and pathways related to piglet diarrhea in miRNAs-MUC13 regulation system [J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2785-2793. |
[9] | DONG Feiyan, SONG Jinghan, ZHANG Huadong, WU Haotian, LI Yaqian, LIU Mengwei, GAO Chunbao, FANG Zhengwu, LIU Yike. Clonging and expression analysis of TaPAT1-2D gene in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 23-32. |
[10] | DING Zhaoxue, WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han. Construction of PK15 cells with porcine miR-22 upstream sequence mutation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1849-1855. |
[11] | LIANG Chenggang, WANG Yan, GUAN Zhixiu, WEI Chunyu, DENG Jiao, HUANG Juan, MENG Ziye, SHI Taoxiong. Identification and bioinformatics analysis of sucrose transporter family FtSUCs in Tartary buckwheat [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1591-1598. |
[12] | CHU Zhigang, TIAN Yunfang. Cloning and bioinformatics analysis of a PEBP family gene from Cymbidium faberi [J]. Acta Agriculturae Zhejiangensis, 2022, 34(8): 1679-1691. |
[13] | LIU Pengcheng, ZHANG Ji, QIU Ganyuan, GONG Yu, LI Xuesong, LI Wei, ZHANG Yiyu, LIU Ruoyu. Single nucleotide polymorphism screening and bioinformatics analysis of TBC1D7 gene in Guanling cattle [J]. Acta Agriculturae Zhejiangensis, 2022, 34(7): 1402-1411. |
[14] | LI Wenchen, LIU Xin, QI Zezheng, YU Lu, WANG Fang. Bioinformatics of Huipizhi Black soybean GmPUB24 and expression under Heterodera glycines infection [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1124-1132. |
[15] | HONG Senrong, XIANG Qiongyu, XIE Ying, XIONG Chenlu, XU Chenhui, XU Luke, CHEN Ronghua, CAI Hong. Gene cloning, subcellular localization and tissue expression analysis of tobamovirus multiplication protein 1 gene of Tetrastigma hemsleyanum Diels et Gilg in Huaiyushan [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1193-1204. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||