Acta Agriculturae Zhejiangensis ›› 2023, Vol. 35 ›› Issue (12): 2785-2793.DOI: 10.3969/j.issn.1004-1524.20230088
• Animal Science • Previous Articles Next Articles
LU Fuzeng(), HUA Weidong, CHU Xiaohong, DAI Lihe, CHEN Xiaoyu, ZHANG Lifeng, WANG Zhigang, XU Ruhai(
)
Received:
2023-01-29
Online:
2023-12-25
Published:
2023-12-27
CLC Number:
LU Fuzeng, HUA Weidong, CHU Xiaohong, DAI Lihe, CHEN Xiaoyu, ZHANG Lifeng, WANG Zhigang, XU Ruhai. Genes and pathways related to piglet diarrhea in miRNAs-MUC13 regulation system[J]. Acta Agriculturae Zhejiangensis, 2023, 35(12): 2785-2793.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20230088
基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 基因编号 Gene number | 熔解温度 Melting temperature/℃ | 产物大小 Product size/bp |
---|---|---|---|---|---|
MUC13 | GTGATGCAGATGCCAGAGGT | AAAGAAAGCTTGTGCGGCAG | NM_001105293.1 | 60 | 135 |
SRF | GCACTGATTCAGACCTGCCT | CGCAGGTTTCGGTGTATCCT | XM_001929265.3 | 60 | 162 |
IL-6 | CCTCCAGGAACCCAGCTATG | GTGGCATCACCTTTGGCATC | NM_214399.1 | 60 | 139 |
MAPK | ACAGGGTTCCTGACGGAGTA | ATGTGGTTCAGCTGGTCGAG | NM_001198922.1 | 60 | 179 |
STAG2 | ACAACATTCATGTGACGGGC | AGACAATTCCGAAGTCGGGC | XM_003360436.1 | 60 | 133 |
NF-κB | ATGGAGTACCCTGAGGCTATAA | GTCCGCAATGGAGGAGAAG | EU399817.1 | 60 | 138 |
TLR7 | CCAGCTGAAGACTGTCCCTG | GAGCTGAGGTCCAGATGTCG | NM_001097434.1 | 60 | 141 |
GAPDH | CGATGGTGAAGGTCGGAGTG | TGCCGTGGGTGGAATCATAC | NM_001206359.1 | 60 | 159 |
Table 1 Primer sequence of target gene
基因名称 Gene name | 上游引物 Forward primer (5'→3') | 下游引物 Reverse primer (5'→3') | 基因编号 Gene number | 熔解温度 Melting temperature/℃ | 产物大小 Product size/bp |
---|---|---|---|---|---|
MUC13 | GTGATGCAGATGCCAGAGGT | AAAGAAAGCTTGTGCGGCAG | NM_001105293.1 | 60 | 135 |
SRF | GCACTGATTCAGACCTGCCT | CGCAGGTTTCGGTGTATCCT | XM_001929265.3 | 60 | 162 |
IL-6 | CCTCCAGGAACCCAGCTATG | GTGGCATCACCTTTGGCATC | NM_214399.1 | 60 | 139 |
MAPK | ACAGGGTTCCTGACGGAGTA | ATGTGGTTCAGCTGGTCGAG | NM_001198922.1 | 60 | 179 |
STAG2 | ACAACATTCATGTGACGGGC | AGACAATTCCGAAGTCGGGC | XM_003360436.1 | 60 | 133 |
NF-κB | ATGGAGTACCCTGAGGCTATAA | GTCCGCAATGGAGGAGAAG | EU399817.1 | 60 | 138 |
TLR7 | CCAGCTGAAGACTGTCCCTG | GAGCTGAGGTCCAGATGTCG | NM_001097434.1 | 60 | 141 |
GAPDH | CGATGGTGAAGGTCGGAGTG | TGCCGTGGGTGGAATCATAC | NM_001206359.1 | 60 | 159 |
基因名称 Gene name | 基因编号 Gene number | 基因名称 Gene name | 基因编号 Gene number |
---|---|---|---|
Stag2 | NM_001077712 | Gnaq | NM_008139 |
Fam108b | NM_146096 | Dag1 | NM_010017 |
Nfe2l1 | NM_001130451 | Mtap2 | NM_008632 |
Ier5 | NM_010500 | Nrxn3 | NM_172544 |
Rnf38 | NM_001038993 | Tardbp | NM_001003899 |
Zzz3 | NM_198416 | Prkacb | NM_011100 |
Tspan7 | NM_019634 | Neurod1 | NM_010894 |
Ankrd40 | NM_027799 | Zfp608 | NM_175751 |
Adipor2 | NM_197985 | Nrxn1 | NM_177284 |
Srf | NM_020493 | Dnajb12 | NM_019965 |
Fubp1 | NM_057172 | Cd24a | NM_009846 |
Arl8b | NM_026011 | Neurod2 | NM_010895 |
Gabrb2 | NM_008070 | Klf12 | NM_010636 |
Tnrc6b | NM_177124 | Calm1 | NM_009790 |
Ivns1abp | NM_001039512 | Vsnl1 | NM_012038 |
Gabra2 | NM_008066 | Nufip2 | NM_001024205 |
Rtn1 | NM_001007596 | Gal3st3 | NM_001024717 |
Zfhx2 | NM_001039198 | Zmynd11 | NM_144516 |
Table 2 miRNA target gene intersection of MUC13 gene
基因名称 Gene name | 基因编号 Gene number | 基因名称 Gene name | 基因编号 Gene number |
---|---|---|---|
Stag2 | NM_001077712 | Gnaq | NM_008139 |
Fam108b | NM_146096 | Dag1 | NM_010017 |
Nfe2l1 | NM_001130451 | Mtap2 | NM_008632 |
Ier5 | NM_010500 | Nrxn3 | NM_172544 |
Rnf38 | NM_001038993 | Tardbp | NM_001003899 |
Zzz3 | NM_198416 | Prkacb | NM_011100 |
Tspan7 | NM_019634 | Neurod1 | NM_010894 |
Ankrd40 | NM_027799 | Zfp608 | NM_175751 |
Adipor2 | NM_197985 | Nrxn1 | NM_177284 |
Srf | NM_020493 | Dnajb12 | NM_019965 |
Fubp1 | NM_057172 | Cd24a | NM_009846 |
Arl8b | NM_026011 | Neurod2 | NM_010895 |
Gabrb2 | NM_008070 | Klf12 | NM_010636 |
Tnrc6b | NM_177124 | Calm1 | NM_009790 |
Ivns1abp | NM_001039512 | Vsnl1 | NM_012038 |
Gabra2 | NM_008066 | Nufip2 | NM_001024205 |
Rtn1 | NM_001007596 | Gal3st3 | NM_001024717 |
Zfhx2 | NM_001039198 | Zmynd11 | NM_144516 |
Fig.1 Piglet diarrhea gene interaction network constructed around the miRNAs-MUC13 regulatory system The diamond represented the input target gene, while the circle represented the network related gene obtained from text mining.
分类 Category | 所属通路 Pathway affiliated | 基因数量 Gene number | 所含基因名称 Name of gene contained | P值 P value | 发现错误率 False discovery rate |
---|---|---|---|---|---|
分子复合物1 Molecular Complex 1 | KEGG通路:MAPK信号通路 KEGG_PATHWAY: MAPK signaling pathway | 11 | AKT1, TRP53, FOS, MAPK1, ELK4, MAPK3, ELK1, MAPK8, PAK1, SRF, MYC | 2.51×10-8 | 2.55×10-5 |
BIOCART:MAL在Rho介导的SRF 激活中的作用 BIOCARTA: Role of MAL in Rho-mediated activation of SRF | 6 | MAPK1, MAPK3, RHOA, MAPK8, MAL, SRF | 3.50×10-6 | 0.004 047 | |
BIOCARTA:PDGF信号通路 BIOCARTA: PDGF signaling pathway | 6 | FOS, MAPK3, ELK1, MAPK8, SRF, PIK3R1 | 2.74×10-5 | 0.031 626 | |
BIOCARTA:EGF信号通路 BIOCARTA:EGF signaling pathway | 6 | FOS, MAPK3, ELK1, MAPK8, SRF, PIK3R1 | 2.74×10-5 | 0.031 626 | |
KEGG通路:细胞周期 KEGG_PATHWAY: Cell cycle | 5 | TRP53, CDKN1A, SMAD3, MYC, STAG2 | 0.001 506 | 1.518 954 | |
BIOCARTA:IL-6信号通路 BIOCARTA: IL-6 signaling pathway | 4 | FOS, MAPK3, ELK1, SRF | 0.002 880 | 3.275 084 | |
KEGG通路:Toll样受体信号通路 KEGG_PATHWAY: Toll-like receptor signaling pathway | 7 | AKT1, FOS, MAPK1, MAPK3, MAPK8, PIK3R1, STAG2 | 3.63×10-5 | 0.036 899 | |
分子复合物2 Molecular Complex 2 | KEGG通路:MAPK信号通路 KEGG_PATHWAY: MAPK signaling pathway | 3 | BDNF, NTRK2,PFN2 | 0.015 087 | 11.720 810 |
分子复合物3 Molecular Complex 3 | KEGG通路:ABC转运器 KEGG_PATHWAY: ABC transporters | 3 | ABCB1B, ABCC2, ABCG2 | 6.01×10-5 | 0.006 015 |
分子复合物4 Molecular Complex 4 | KEGG通路:p53信号通路 KEGG_PATHWAY: p53 signaling pathway | 3 | BBC3, DDB2, GADD45A | 0.001 039 | 0.735 622 |
Table 3 Gene and pathway enrichment analysis of molecular complex group
分类 Category | 所属通路 Pathway affiliated | 基因数量 Gene number | 所含基因名称 Name of gene contained | P值 P value | 发现错误率 False discovery rate |
---|---|---|---|---|---|
分子复合物1 Molecular Complex 1 | KEGG通路:MAPK信号通路 KEGG_PATHWAY: MAPK signaling pathway | 11 | AKT1, TRP53, FOS, MAPK1, ELK4, MAPK3, ELK1, MAPK8, PAK1, SRF, MYC | 2.51×10-8 | 2.55×10-5 |
BIOCART:MAL在Rho介导的SRF 激活中的作用 BIOCARTA: Role of MAL in Rho-mediated activation of SRF | 6 | MAPK1, MAPK3, RHOA, MAPK8, MAL, SRF | 3.50×10-6 | 0.004 047 | |
BIOCARTA:PDGF信号通路 BIOCARTA: PDGF signaling pathway | 6 | FOS, MAPK3, ELK1, MAPK8, SRF, PIK3R1 | 2.74×10-5 | 0.031 626 | |
BIOCARTA:EGF信号通路 BIOCARTA:EGF signaling pathway | 6 | FOS, MAPK3, ELK1, MAPK8, SRF, PIK3R1 | 2.74×10-5 | 0.031 626 | |
KEGG通路:细胞周期 KEGG_PATHWAY: Cell cycle | 5 | TRP53, CDKN1A, SMAD3, MYC, STAG2 | 0.001 506 | 1.518 954 | |
BIOCARTA:IL-6信号通路 BIOCARTA: IL-6 signaling pathway | 4 | FOS, MAPK3, ELK1, SRF | 0.002 880 | 3.275 084 | |
KEGG通路:Toll样受体信号通路 KEGG_PATHWAY: Toll-like receptor signaling pathway | 7 | AKT1, FOS, MAPK1, MAPK3, MAPK8, PIK3R1, STAG2 | 3.63×10-5 | 0.036 899 | |
分子复合物2 Molecular Complex 2 | KEGG通路:MAPK信号通路 KEGG_PATHWAY: MAPK signaling pathway | 3 | BDNF, NTRK2,PFN2 | 0.015 087 | 11.720 810 |
分子复合物3 Molecular Complex 3 | KEGG通路:ABC转运器 KEGG_PATHWAY: ABC transporters | 3 | ABCB1B, ABCC2, ABCG2 | 6.01×10-5 | 0.006 015 |
分子复合物4 Molecular Complex 4 | KEGG通路:p53信号通路 KEGG_PATHWAY: p53 signaling pathway | 3 | BBC3, DDB2, GADD45A | 0.001 039 | 0.735 622 |
Fig.3 Result of Escherichia coli adhered to IPEC-1 A, Control group, conventionally cultured IPEC-1; B, Test group, IPEC-1 adhered with Escherichia coli 200.
Fig.4 Real-time fluorescence quantitative PCR detection results of related genes Different lowercase letters above the columns represented significant differences among treatments (P<0.05).
[1] | 孙宏伟, 王泽岩, 任少敏, 等. 猪主要腹泻病的发病机制综述[J]. 中国动物检疫, 2016, 33(3): 63-66. |
SUN H W, WANG Z Y, REN S M, et al. Summary on the pathogenesis of porcine primary diarrhea diseases[J]. China Animal Health Inspection, 2016, 33(3): 63-66. (in Chinese with English abstract) | |
[2] | 任军, 晏学明, 艾华水, 等. 仔猪断奶前腹泻抗病基因育种技术的创建及应用[J]. 猪业科学, 2012, 29(1): 44-48. |
REN J, YAN X M, AI H S, et al. Establishment and application of disease-resistant gene breeding technology for diarrhea in piglets before weaning[J]. Swine Industry Science, 2012, 29(1): 44-48. (in Chinese) | |
[3] | 方宇瑜, 吴艳, 高硕, 等. 苏淮猪群体抗腹泻基因MUC13和FUT1多态性分析及其抗腹泻选育方案研究[J]. 畜牧与兽医, 2015, 47(12): 12-17. |
FANG Y Y, WU Y, GAO S, et al. Polymorphism analysis of anti-diarrhea genes MUC13 and FUT1 in Suhuai pigs and its selective breeding on anti-diarrhea traits[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(12): 12-17. (in Chinese with English abstract) | |
[4] | ZHANG X Q, LI C, ZHANG B Z, et al. Differential expression and correlation analysis of miRNA-mRNA profiles in swine testicular cells infected with porcine epidemic diarrhea virus[J]. Scientific Reports, 2021, 11: 1868. |
[5] | WU Z C, QIN W Y, WU S, et al. Identification of microRNAs regulating Escherichia coli F18 infection in Meishan weaned piglets[J]. Biology Direct, 2016, 11(1): 1-19. |
[6] | SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504. |
[7] | TUIKKALA J, VÄHÄMAA H, SALMELA P, et al. A multilevel layout algorithm for visualizing physical and genetic interaction networks, with emphasis on their modular organization[J]. BioData Mining, 2012, 5: 2. |
[8] | HUANG D W, SHERMAN B T, LEMPICKI R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nature Protocols, 2009, 4(1): 44-57. |
[9] | DAWIDOWSKA M, JAKSIK R, DROBNA M, et al. Comprehensive investigation of miRNome identifies novel candidate miRNA-mRNA interactions implicated in T-cell acute lymphoblastic leukemia[J]. Neoplasia, 2019, 21(3): 294-310. |
[10] | WEBER M J. New human and mouse microRNA genes found by homology search[J]. Genome, 2006, 49(10): 1283-1286. |
[11] | KIM J, CHO I S, HONG J S, et al. Identification and characterization of new microRNAs from pig[J]. Mammalian Genome, 2008, 19(7/8): 570-580. |
[12] | 王伟, 滚双宝, 王鹏飞, 等. 猪miR-204组织表达与重要靶基因筛选[J]. 浙江农业学报, 2020, 32(9): 1564-1573. |
WANG W, GUN S B, WANG P F, et al. Tissue expression and significant target genes analysis of swine miR-204[J]. Acta Agriculturae Zhejiangensis, 2020, 32(9): 1564-1573. (in Chinese with English abstract) | |
[13] | 朱静静, 周晓龙, 汪涵, 等. 靶向猪内质网应激通路的microRNAs预测与验证[J]. 中国农业科学, 2020, 53(15): 3169-3179. |
ZHU J J, ZHOU X L, WANG H, et al. Prediction and verification of microRNAs targeting porcine endoplasmic reticulum stress pathway[J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179. (in Chinese with English abstract) | |
[14] | 楚丹, 冉茂良, 卞桥, 等. miR-139进化分析、靶基因功能预测以及在猪睾丸组织中的表达分析[J]. 中国畜牧杂志, 2022, 58(4): 77-83. |
CHU D, RAN M L, BIAN Q, et al. Evolution analysis, target gene function prediction and expression analysis of miR-139 in pig testis[J]. Chinese Journal of Animal Science, 2022, 58(4): 77-83. (in Chinese) | |
[15] | 张名媛, 郭晓萍, 孙晴超, 等. 广西巴马小型猪miR-148b慢病毒制备及靶基因通路预测分析[J]. 南方农业学报, 2019, 50(7): 1596-1604. |
ZHANG M Y, GUO X P, SUN Q C, et al. Construction of miR-148b lentivirus vector and prediction of target gene pathways in Guangxi Bama mini-pig[J]. Journal of Southern Agriculture, 2019, 50(7): 1596-1604. (in Chinese with English abstract) | |
[16] | HUANG Y A, LIN L Y, YU X T, et al. Functional involvements of heterogeneous nuclear ribonucleoprotein A1 in smooth muscle differentiation from stem cells in vitro and in vivo[J]. Stem Cells, 2013, 31(5): 906-917. |
[17] | BORENSZTEIN M, MONNIER P, COURT F, et al. Myod and H19-Igf2 locus interactions are required for diaphragm formation in the mouse[J]. Development, 2013, 140(6): 1231-1239. |
[18] | TRITSCH E, MALLAT Y, LEFEBVRE F, et al. An SRF/miR-1 axis regulates NCX1 and Annexin A5 protein levels in the normal and failing heart[J]. Cardiovascular Research, 2013, 98(3): 372-380. |
[19] | VULTAGGIO A, NENCINI F, PRATESI S, et al. The TLR7 ligand 9-benzyl-2-butoxy-8-hydroxy adenine inhibits IL-17 response by eliciting IL-10 and IL-10-inducing cytokines[J]. The Journal of Immunology, 2011, 186(8): 4707-4715. |
[20] | VULTAGGIO A, NENCINI F, FITCH P M, et al. Modified adenine (9-benzyl-2-butoxy-8-hydroxyadenine) redirects Th2-mediated murine lung inflammation by triggering TLR7[J]. The Journal of Immunology, 2009, 182(2): 880-889. |
[21] | ZHU H, LU W, LAURENT C, et al. Genes encoding catalytic subunits of protein kinase A and risk of spina bifida[J]. Birth Defects Research. Part A, Clinical and Molecular Teratology, 2005, 73(9): 591-6. |
[22] | LEE N, BATT M K, CRONIER B A, et al. Ciliary neurotrophic factor receptor regulation of adult forebrain neurogenesis[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2013, 33(3): 1241-1258. |
[23] | YANG C X, ZHANG K, ZHANG A X, et al. Co-expression network modeling identifies specific inflammation and neurological disease-related genes mRNA modules in mood disorder[J]. Frontiers in Genetics, 2022, 13: 865015. |
[24] | SHENG Y, TRIYANA S, WANG R, et al. MUC1 and MUC13 differentially regulate epithelial inflammation in response to inflammatory and infectious stimuli[J]. Mucosal immunology, 2013, 6(3): 557-568. |
[25] | BEUTLER B, POLTORAK A. Sepsis and evolution of the innate immune response[J]. Critical Care Medicine, 2001, 29: S2-S6. |
[26] | BEUTLER B. Inferences, questions and possibilities in Toll-like receptor signalling[J]. Nature, 2004, 430(6996): 257-263. |
[27] | ABREU M T, VORA P, FAURE E, et al. Decreased expression of toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide[J]. The Journal of Immunology, 2001, 167(3): 1609-1616. |
[28] | MOYNAGH P N. TLR signalling and activation of IRFs: revisiting old friends from the NF-κB pathway[J]. Trends in Immunology, 2005, 26(9): 469-476. |
[29] | HIMMEL M E, HARDENBERG G, PICCIRILLO C A, et al. The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease[J]. Immunology, 2008, 125(2): 145-153. |
[30] | SZEBENI B, VERES G, DEZSÕFI A, et al. Increased expression of Toll-like receptor (TLR) 2 and TLR4 in the colonic mucosa of children with inflammatory bowel disease[J]. Clinical and Experimental Immunology, 2008, 151(1): 34-41. |
[1] | DING Zhaoxue, WANG Jiajie, SHEN Zhonghao, ZHOU Xiaolong, YANG Songbai, JIN Hangfeng, ZHAO Ayong, WANG Han. Construction of PK15 cells with porcine miR-22 upstream sequence mutation [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1849-1855. |
[2] | SHAO Jiahao, WANG Jie, JIA Xianbo, CHEN Shiyi, LAI Songjia. Research progress of microRNA in rabbits [J]. , 2020, 32(1): 176-182. |
[3] | MU Tong, WANG Guo-mei, YANG Qi-rui, JIN Li, ZHANG Hai-long, ZHANG Li, TIAN Xiao-jing, LIU Li-xia. Polymorphism of SLA-DQB exon 2 and its association with diarrhea in Yantai black pigs [J]. , 2016, 28(10): 1671-1677. |
[4] | CHEN Li1, SHEN Jun\|da1, LI Guo\|qin1, FAN Yi\|fei2, MA Jian\|sheng2, LU Li\|zhi1,* . Expression and regulation of Tyr, Tyrp1 and C\|kit gene in feather bulbs of spot\|billed ducks [J]. , 2015, 27(5): 729-. |
[5] | LU Fu\|zeng;CHU Xiao\|hong;DAI Li\|he;CHEN Shao\|meng;FU Chun\|quan;HU Jin\|ping;XYU Ru\|hai;*. Construction of piglet diarrhea regulation network involved with MUC13 gene [J]. , 2013, 25(6): 0-1224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||