Acta Agriculturae Zhejiangensis ›› 2024, Vol. 36 ›› Issue (8): 1820-1831.DOI: 10.3969/j.issn.1004-1524.20231044
• Horticultural Science • Previous Articles Next Articles
YUAN Xiao1,2(), JIANG Yuanyuan1, ZHU Yunna1, QU Shanshan3,*(
), WANG Yukun1, YUAN Yuan1, WANG Bin1,*(
)
Received:
2023-08-31
Online:
2024-08-25
Published:
2024-09-06
Contact:
QU Shanshan,WANG Bin
CLC Number:
YUAN Xiao, JIANG Yuanyuan, ZHU Yunna, QU Shanshan, WANG Yukun, YUAN Yuan, WANG Bin. Expression analysis of JAZ family genes in harvested cucumber fruit under cold storage condition[J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1820-1831.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.20231044
基因名称 Gene name | 登录号 Accession number | 氨基酸 Amino acid | ||||||
---|---|---|---|---|---|---|---|---|
序列长度 Sequence length | 分子量 Molecular weight/ku | 等电点 Isoelectric point | 不稳定系数 Instability index | 脂肪指数 Aliphatic index | 亲水性均值 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | ||
JAZ1 | CsaV3_3G030830 | 209 | 22.87 | 8.94 | 52.09 | 62.2 | -0.63 | 细胞核Nucleus |
JAZ2 | CsaV3_2G030170 | 352 | 38.58 | 4.86 | 44.39 | 62.84 | -0.71 | 细胞核Nucleus |
JAZ3 | CsaV3_4G002460 | 200 | 22.49 | 6.98 | 62.80 | 74.60 | -0.55 | 细胞核Nucleus |
JAZ4 | CsaV3_5G037080 | 381 | 39.67 | 9.30 | 44.47 | 68.22 | -0.29 | 细胞核Nucleus |
JAZ5 | CsaV3_7G033740 | 303 | 33.95 | 6.39 | 44.74 | 64.65 | -0.87 | 细胞核Nucleus |
JAZ6 | CsaV3_7G034270 | 295 | 32.09 | 9.31 | 52.17 | 60.98 | -0.76 | 细胞核Nucleus |
JAZ7 | CsaV3_4G007460 | 129 | 14.86 | 10.42 | 57.84 | 68.84 | -0.43 | 细胞核Nucleus |
JAZ8 | CsaV3_1G032370 | 119 | 13.28 | 10.38 | 78.91 | 80.42 | -0.44 | 细胞核Nucleus |
JAZ9 | CsaV3_2G030180 | 279 | 30.47 | 8.69 | 45.54 | 73.01 | -0.51 | 细胞核Nucleus |
JAZ10 | CsaV3_6G051810 | 132 | 14.74 | 9.50 | 74.04 | 64.32 | -0.81 | 细胞核Nucleus |
JAZ11 | CsaV3_6G007840 | 184 | 20.31 | 9.41 | 43.64 | 88.1 | -0.32 | 细胞核Nucleus |
JAZ12 | CsaV3_1G041270 | 231 | 25.03 | 9.98 | 71.00 | 67.97 | -0.46 | 细胞核Nucleus |
JAZ13 | CsaV3_7G006810 | 313 | 33.67 | 5.13 | 42.90 | 69.14 | -0.62 | 细胞核Nucleus |
JAZ14 | CsaV3_2G013410 | 336 | 36.97 | 6.71 | 53.52 | 65.6 | -0.75 | 细胞核Nucleus |
JAZ15 | CsaV3_1G007260 | 339 | 36.49 | 9.10 | 53.87 | 72.51 | -0.24 | 细胞核Nucleus |
JAZ16 | CsaV3_2G031660 | 274 | 28.70 | 9.30 | 44.57 | 66.28 | -0.51 | 细胞核Nucleus |
JAZ17 | CsaV3_3G046630 | 376 | 40.25 | 8.64 | 43.82 | 62.61 | -0.62 | 细胞核Nucleus |
Table 1 Accession number and basic characteristics of cucumber JAZ family genes
基因名称 Gene name | 登录号 Accession number | 氨基酸 Amino acid | ||||||
---|---|---|---|---|---|---|---|---|
序列长度 Sequence length | 分子量 Molecular weight/ku | 等电点 Isoelectric point | 不稳定系数 Instability index | 脂肪指数 Aliphatic index | 亲水性均值 Grand average of hydropathicity | 亚细胞定位 Subcellular localization | ||
JAZ1 | CsaV3_3G030830 | 209 | 22.87 | 8.94 | 52.09 | 62.2 | -0.63 | 细胞核Nucleus |
JAZ2 | CsaV3_2G030170 | 352 | 38.58 | 4.86 | 44.39 | 62.84 | -0.71 | 细胞核Nucleus |
JAZ3 | CsaV3_4G002460 | 200 | 22.49 | 6.98 | 62.80 | 74.60 | -0.55 | 细胞核Nucleus |
JAZ4 | CsaV3_5G037080 | 381 | 39.67 | 9.30 | 44.47 | 68.22 | -0.29 | 细胞核Nucleus |
JAZ5 | CsaV3_7G033740 | 303 | 33.95 | 6.39 | 44.74 | 64.65 | -0.87 | 细胞核Nucleus |
JAZ6 | CsaV3_7G034270 | 295 | 32.09 | 9.31 | 52.17 | 60.98 | -0.76 | 细胞核Nucleus |
JAZ7 | CsaV3_4G007460 | 129 | 14.86 | 10.42 | 57.84 | 68.84 | -0.43 | 细胞核Nucleus |
JAZ8 | CsaV3_1G032370 | 119 | 13.28 | 10.38 | 78.91 | 80.42 | -0.44 | 细胞核Nucleus |
JAZ9 | CsaV3_2G030180 | 279 | 30.47 | 8.69 | 45.54 | 73.01 | -0.51 | 细胞核Nucleus |
JAZ10 | CsaV3_6G051810 | 132 | 14.74 | 9.50 | 74.04 | 64.32 | -0.81 | 细胞核Nucleus |
JAZ11 | CsaV3_6G007840 | 184 | 20.31 | 9.41 | 43.64 | 88.1 | -0.32 | 细胞核Nucleus |
JAZ12 | CsaV3_1G041270 | 231 | 25.03 | 9.98 | 71.00 | 67.97 | -0.46 | 细胞核Nucleus |
JAZ13 | CsaV3_7G006810 | 313 | 33.67 | 5.13 | 42.90 | 69.14 | -0.62 | 细胞核Nucleus |
JAZ14 | CsaV3_2G013410 | 336 | 36.97 | 6.71 | 53.52 | 65.6 | -0.75 | 细胞核Nucleus |
JAZ15 | CsaV3_1G007260 | 339 | 36.49 | 9.10 | 53.87 | 72.51 | -0.24 | 细胞核Nucleus |
JAZ16 | CsaV3_2G031660 | 274 | 28.70 | 9.30 | 44.57 | 66.28 | -0.51 | 细胞核Nucleus |
JAZ17 | CsaV3_3G046630 | 376 | 40.25 | 8.64 | 43.82 | 62.61 | -0.62 | 细胞核Nucleus |
Fig.7 Effects of silencing HHO2 and GRP3 on the expression of JAZ family genes under low temperature in postharvest cucumber CK: Overexpression of TRV1 vector; V-GRP3: Silencing GRP3; V-HHO2: Silencing HHO2; V-G+H: Simultaneous silencing of GRP3 and HHO2 genes.
[1] | 王涛, 雷锦桂, 陈永快, 等. 海鲜菇渣复合基质对黄瓜生长、果实品质和产量的影响[J]. 热带作物学报, 2019, 40(1): 32-38. |
WANG T, LEI J G, CHEN Y K, et al. Effect of compound substrate of Hypsizygus marmoreus residue on cucumber growth, fruit quality and yield[J]. Chinese Journal of Tropical Crops, 2019, 40(1): 32-38. (in Chinese with English abstract) | |
[2] | 杨华, 杨宗辉, 刘一涵, 等. 黄瓜品质性状遗传育种研究进展[J]. 中国蔬菜, 2023(8): 23-37. |
YANG H, YANG Z H, LIU Y H, et al. Research progress in genetic breeding of cucumber quality traits[J]. China Vegetables, 2023(8): 23-37. (in Chinese with English abstract) | |
[3] | 王斌, 袁晓, 蒋园园, 等. 采后黄瓜冷害及耐冷性调控研究进展[J]. 江苏农业学报, 2023, 39(2): 596-608. |
WANG B, YUAN X, JIANG Y Y, et al. Research advances in chilling injury and the regulation of chilling tolerance of postharvest cucumber fruit[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(2): 596-608. (in Chinese with English abstract) | |
[4] | 王斌, 朱世江. 阶段降温对冷藏黄瓜耐冷性的诱导作用[J]. 江苏农业学报, 2020, 36(4): 1028-1035. |
WANG B, ZHU S J. Induction of chilling tolerance in cold-stored cucumbers by slowly cooling treatment[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 1028-1035. (in Chinese with English abstract) | |
[5] | WANG B, ZHU S J. Pre-storage cold acclimation maintained quality of cold-stored cucumber through differentially and orderly activating ROS scavengers[J]. Postharvest Biology and Technology, 2017, 129: 1-8. |
[6] | ZHANG W L, JIANG H T, CAO J K, et al. Advances in biochemical mechanisms and control technologies to treat chilling injury in postharvest fruits and vegetables[J]. Trends in Food Science & Technology, 2021, 113: 355-365. |
[7] | BAI L, LIU M H, SUN Y. Overview of food preservation and traceability technology in the smart cold chain system[J]. Foods, 2023, 12(15): 2881. |
[8] | LI C, XU M X, CAI X, et al. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs[J]. International Journal of Molecular Sciences, 2022, 23(7): 3945. |
[9] | 罗晓萍, 涂米雪, 周宏丹, 等. 茉莉酸信号在植物响应逆境胁迫中的新角色[J]. 云南师范大学学报(自然科学版), 2023, 43(4): 1-8. |
LUO X P, TU M X, ZHOU H D, et al. Novel role of jasmonic acid signaling in plant response to environmental stress[J]. Journal of Yunnan Normal University(Natural Sciences Edition), 2023, 43(4): 1-8. (in Chinese with English abstract) | |
[10] | 李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制[J]. 植物保护学报, 2021, 48(3): 563-569. |
LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense[J]. Journal of Plant Protection, 2021, 48(3): 563-569. (in Chinese with English abstract) | |
[11] | PAUWELS L, GOOSSENS A. The JAZ proteins: a crucial interface in the jasmonate signaling cascade[J]. The Plant Cell, 2011, 23(9): 3089-3100. |
[12] | KAZAN K, MANNERS J M. MYC2: the master in action[J]. Molecular Plant, 2013, 6(3): 686-703. |
[13] | BROWSE J, WALLIS J G. Arabidopsis flowers unlocked the mechanism of jasmonate signaling[J]. Plants, 2019, 8(8): 285. |
[14] | 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展[J]. 植物生理学报, 2021, 57(5): 1039-1046. |
WEI X, LIU Y H, LIU Y Y, et al. Advances of JAZ family in plants[J]. Plant Physiology Journal, 2021, 57(5): 1039-1046. (in Chinese with English abstract) | |
[15] | RUAN J J, ZHOU Y X, ZHOU M L, et al. Jasmonic acid signaling pathway in plants[J]. International Journal of Molecular Sciences, 2019, 20(10): 2479. |
[16] | 刘德帅, 冯美, 姚磊, 等. 葡萄VvJAZ9蛋白原核表达与多克隆抗体制备[J]. 核农学报, 2023, 37(6): 1138-1149. |
LIU D S, FENG M, YAO L, et al. Prokaryotic expression and polyclonal antibody preparation of VvJAZ9 protein in Vitis vinifera[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(6): 1138-1149. (in Chinese with English abstract) | |
[17] | MELOTTO M, MECEY C, NIU Y J, et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine-and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein[J]. The Plant Journal: for Cell and Molecular Biology, 2008, 55(6): 979-988. |
[18] | 范佳利, 朱立勋, 郭志强, 等. 普通小麦JAZ基因家族鉴定及其响应冻害时基因差异表达和DNA变异分析[J]. 植物生理学报, 2022, 58(10): 1873-1889. |
FAN J L, ZHU L X, GUO Z Q, et al. Identification of JAZ gene family and analysis on their differential expression under freezing stress and DNA variation in common wheat[J]. Plant Physiology Journal, 2022, 58(10): 1873-1889. (in Chinese with English abstract) | |
[19] | ZHANG H Y, LI W J, NIU D X, et al. Tobacco transcription repressors NtJAZ: potential involvement in abiotic stress response and glandular trichome induction[J]. Plant Physiology and Biochemistry, 2019, 141: 388-397. |
[20] | CHINI A, BEN-ROMDHANE W, HASSAIRI A, et al. Identification of TIFY/JAZ family genes in Solanum lycopersicum and their regulation in response to abiotic stresses[J]. PLoS One, 2017, 12(6): e0177381. |
[21] | 袁晓, 杨盼迪, 朱云娜, 等. 黄瓜肌醇半乳糖苷合成酶基因GolS2克隆与表达调控[J]. 山东农业科学, 2023, 55(6): 15-24. |
YUAN X, YANG P D, ZHU Y N, et al. Cloning and expression regulation of cucumber inositol galactinol synthase gene GolS2[J]. Shandong Agricultural Sciences, 2023, 55(6): 15-24. (in Chinese with English abstract) | |
[22] | CHEN C J, CHEN H, ZHANG Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194-1202. |
[23] | WANG B, WU C S, WANG G, et al. Transcriptomic analysis reveals a role of phenylpropanoid pathway in the enhancement of chilling tolerance by pre-storage cold acclimation in cucumber fruit[J]. Scientia Horticulturae, 2021, 288: 110282. |
[24] | WANG B, WANG G, SHEN F, et al. A Glycine-rich RNA-binding protein, CsGR-RBP3, is involved in defense responses against cold stress in harvested cucumber (Cucumis sativus L.) fruit[J]. Frontiers in Plant Science, 2018, 9: 540. |
[25] | LIU Y F, YANG X X, ZHU S J, et al. Postharvest application of MeJA and NO reduced chilling injury in cucumber (Cucumis sativus) through inhibition of H2O2 accumulation[J]. Postharvest Biology and Technology, 2016, 119: 77-83. |
[26] | MANDAOKAR A, THINES B, SHIN B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal: for Cell and Molecular Biology, 2006, 46(6): 984-1008. |
[27] | TAO J J, JIA H M, WU M T, et al. Genome-wide identification and characterization of the TIFY gene family in kiwifruit[J]. BMC Genomics, 2022, 23(1): 179. |
[28] | SUN P D, SHI Y N, VALERIO A G O, et al. An updated census of the maize TIFY family[J]. PLoS One, 2021, 16(2): e0247271. |
[29] | HEIDARI P, FARAJI S, AHMADIZADEH M, et al. New insights into structure and function of TIFY genes in Zea mays and Solanum lycopersicum: a genome-wide comprehensive analysis[J]. Frontiers in Genetics, 2021, 12: 657970. |
[30] | YAN C, FAN M, YANG M, et al. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis[J]. Molecular Cell, 2018, 70(1): 136-149.e7. |
[31] | 王斌, 黄泳谚, 易景怡, 等. 黄瓜GR-RBP3启动子克隆及低温对其活性的诱导[J]. 山东农业科学, 2022, 54(7): 15-23. |
WANG B, HUANG Y Y, YI J Y, et al. Molecular cloning of cucumber GR-RBP3 promoter and induction of low temperature on its activity[J]. Shandong Agricultural Sciences, 2022, 54(7): 15-23. (in Chinese with English abstract) | |
[32] | SONG M Y, WANG H M, MA H Q, et al. Genome-wide analysis of JAZ family genes expression patterns during fig (Ficus carica L.) fruit development and in response to hormone treatment[J]. BMC Genomics, 2022, 23(1): 170. |
[33] | JIA K, YAN C Y, ZHANG J, et al. Genome-wide identification and expression analysis of the JAZ gene family in turnip[J]. Scientific Reports, 2021, 11(1): 21330. |
[34] | TIAN H X, QI T C, LI Y, et al. Regulation of the WD-repeat/bHLH/MYB complex by gibberellin and jasmonate[J]. Plant Signaling & Behavior, 2016, 11(8): e1204061. |
[35] | CHUNG H S, HOWE G A. A critical role for the TIFY motif in repression of jasmonate signaling by a stabilized splice variant of the JASMONATE ZIM-domain protein JAZ10 in Arabidopsis[J]. The Plant Cell, 2009, 21(1): 131-145. |
[1] | SUN Peiyuan, RAN Bin, WANG Jiarui, LI Hongyou. Cloning and expression analysis of Fagopyrum tataricum FtDELLA gene [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1709-1718. |
[2] | TANG Hong, GUAN Wenzhi, XU Xiaojun, NIU Baolong, LOU Bao, SHEN Xiaoming, GU Zhimin. Cloning and spatio-temporal expression analysis of foxl2 gene and the influence of EE2 on its expression in Megalobrama terminalis [J]. Acta Agriculturae Zhejiangensis, 2024, 36(8): 1789-1799. |
[3] | SHOU Weisong, WANG Duo, SHEN Jia, XU Xinyang, ZHANG Yuejian, HE Yanjun. Identification and expression analysis of sucrose transporter SUT family in watermelon in fruit development and stress responses [J]. Acta Agriculturae Zhejiangensis, 2024, 36(1): 94-102. |
[4] | ZHANG Xinye, LI Wenjing, ZHU Shu, SUN Yanxiang, WANG Congyan, YAN Xunyou, ZHOU Zhiguo. Identification and analysis of PAT gene family in three kinds of Apiaceae vegetable crops [J]. Acta Agriculturae Zhejiangensis, 2023, 35(6): 1315-1327. |
[5] | LIANG Feishuang, LIANG Huafang, Huang Jiayu, WANG Panmei, WEN Chongqing. Effect of RNA interference with PhCatC1/2 gene on expression of related immune genes in Panulirus homarus [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 1037-1047. |
[6] | YAO Yanlin, MA Li, LIU Lijun, PU Yuanyuan, LI Xuecai, WANG Wangtian, FANG Yan, SUN Wancang, WU Junyan. Bioinformatics and expression analysis of flowering regulation gene BrFT in Brassica rapa L. [J]. Acta Agriculturae Zhejiangensis, 2023, 35(5): 992-1000. |
[7] | YAN Cunyao, JIA Kai, YAN Huizhuan, GAO Jie. Cloning, expression and bioinformatics analysis of BrrLOX7 gene in turnip [J]. Acta Agriculturae Zhejiangensis, 2023, 35(4): 831-840. |
[8] | DONG Feiyan, SONG Jinghan, ZHANG Huadong, WU Haotian, LI Yaqian, LIU Mengwei, GAO Chunbao, FANG Zhengwu, LIU Yike. Clonging and expression analysis of TaPAT1-2D gene in wheat [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 23-32. |
[9] | GUO Chunqian, TIAN Jie. Cloning of garlic hexokinase gene AsHXK2 and expression analysis of its involvement in rhizosphere growth-promoting bacteria alleviating drought stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(9): 1925-1934. |
[10] | HONG Senrong, XIANG Qiongyu, XIE Ying, XIONG Chenlu, XU Chenhui, XU Luke, CHEN Ronghua, CAI Hong. Gene cloning, subcellular localization and tissue expression analysis of tobamovirus multiplication protein 1 gene of Tetrastigma hemsleyanum Diels et Gilg in Huaiyushan [J]. Acta Agriculturae Zhejiangensis, 2022, 34(6): 1193-1204. |
[11] | GONG Weiwei, ZHAO Yichen, LUO Xianlin, YANG Lingling, ZHAO Degang. Expression and promoter sequence analysis of NaD1 gene in Nicotiana alata [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 232-239. |
[12] | MENG Yaxuan, SUN Yingqi, ZHAO Xinyue, WANG Fengxia, WENG Qiaoyun, LIU Yinghui. Identification and expression analysis of millet GH5 gene family [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1797-1807. |
[13] | HE Jiaqi, ZHAI Ying, ZHANG Jun, QIU Shuang, LI Mingyang, ZHAO Yan, ZHANG Meijuan, MA Tianyi. Cloning and expression analysis of GmDof1.5 in soybean under abiotic stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 1-7. |
[14] | WANG Weike, LU Na, YAN Jing, SONG Jiling, YUAN Weidong, ZHOU Zufa. Cloning and expression analysis of PpSAMS gene of Pleurotus pulmonarius [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 62-68. |
[15] | WANG Weike, SONG Jiling, LU Na, YUAN Weidong, YAN Jing, CHEN Guanping. Cloning and expression of the PpFBD1 involved in primordium formation of Pleurotus pulmonarius [J]. , 2020, 32(1): 93-97. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||