Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (8): 1393-1401.DOI: 10.3969/j.issn.1004-1524.2021.08.06
• Animal Science • Previous Articles Next Articles
DONG Zhihao1(), CHEN Yu1, HUANG Gaoxiang1, BAI Junyan1,2,*(
), LI Jingyun1, ZHAO Shujuan1,2, LEI Ying1,2, WANG Xinle1, HU Qihang1, FAN Zhengyu1
Received:
2020-08-07
Online:
2021-08-25
Published:
2021-08-27
Contact:
BAI Junyan
CLC Number:
DONG Zhihao, CHEN Yu, HUANG Gaoxiang, BAI Junyan, LI Jingyun, ZHAO Shujuan, LEI Ying, WANG Xinle, HU Qihang, FAN Zhengyu. Association analysis of VIPR-1 gene polymorphism and early growth traits in egg quail[J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1393-1401.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.08.06
Fig.2 Electrophoretic map of restriction endonuclease products of VIPR-1 gene in Chinese white quail M, Marker DL2000;1、2、3and 6, GG genotype;4, AG genotype;5,AA genotype.
Fig.3 Electrophoretic map of restriction endonuclease products of VIPR-1 gene in Chinese yellow quail M, Marker DL2000;1, AG genotype;2, GG genotype;3 and 4, AA genotype.
Fig.4 Electrophoretic map of restriction endonuclease products of VIPR-1 gene inKoreanquail M, Marker DL2000;1, 2and 4, GG genotype;3,5and6, AG genotype.
品种 Species | 基因型频率 Genotypic frequency | 基因频率 Gene frequency | 杂合度 Heterozy- gosity | 有效等位基因数 Effective number of alleles | 多态信息含量 Polymorphism information content | 哈代温伯格 平衡检验 Hardy-Weinberg equilibrium analysis | |||
---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | A | G | |||||
中国黄羽鹌鹑 | 0.227 | 0.636 | 0.136 | 0.545 | 0.455 | 0.496 | 1.984 | 0.373 | 5.298(0.071) |
Chinese yellow quail | |||||||||
中国白羽鹌鹑 | 0.087 | 0.609 | 0.304 | 0.391 | 0.609 | 0.476 | 1.910 | 0.363 | 5.324(0.070) |
Chinese white quail | |||||||||
朝鲜鹌鹑 | 0 | 0.235 | 0.765 | 0.118 | 0.882 | 0.208 | 1.262 | 0.186 | 0.907(0.812) |
Korean quail |
Table 1 Population genetic analysis of VIPR-1 gene polymorphism in egg quails
品种 Species | 基因型频率 Genotypic frequency | 基因频率 Gene frequency | 杂合度 Heterozy- gosity | 有效等位基因数 Effective number of alleles | 多态信息含量 Polymorphism information content | 哈代温伯格 平衡检验 Hardy-Weinberg equilibrium analysis | |||
---|---|---|---|---|---|---|---|---|---|
AA | AG | GG | A | G | |||||
中国黄羽鹌鹑 | 0.227 | 0.636 | 0.136 | 0.545 | 0.455 | 0.496 | 1.984 | 0.373 | 5.298(0.071) |
Chinese yellow quail | |||||||||
中国白羽鹌鹑 | 0.087 | 0.609 | 0.304 | 0.391 | 0.609 | 0.476 | 1.910 | 0.363 | 5.324(0.070) |
Chinese white quail | |||||||||
朝鲜鹌鹑 | 0 | 0.235 | 0.765 | 0.118 | 0.882 | 0.208 | 1.262 | 0.186 | 0.907(0.812) |
Korean quail |
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 326.819 ±22.397 a | 12.609 ±2.478 a | 60.447 ±5.416 a | 3.005 ±0.109 a | 2.212 ±0.138 a | 2.538 ±0.138 a | 2.603 ±0.158 a | 6.040 ±0.247 a | 1.300 ±0.029 a |
yellow quail | AG | 275.510 ±15.992 ab | 10.377 ±1.393 a | 55.436 ±3.134 ab | 2.928 ±0.059 ab | 2.221 ±0.065 a | 2.500 ±0.070 a | 2.537 ±0.085 a | 5.876 ±0.159 a | 1.224 ±0.020 b |
GG | 231.270 ±40.728 b | 10.377 ±1.394 a | 48.633 ±7.897 b | 2.758 ±0.160 b | 1.972 ±0.166 b | 2.191 ±0.200 b | 2.235 ±0.196 b | 5.644 ±0.371 a | 1.244 ±0.047 b | |
中国白羽鹌鹑 Chinese | AA | 244.524 ±32.646 a | 12.632 ±4.870 a | 45.417 ±7.404 a | 2.708 ±0.139 a | 1.885 ±0.124 a | 2.114 ±0.128 a | 2.011 ±0.182 a | 5.533 ±0.320 a | 1.283 ±0.040 a |
white quail | AG | 255.340 ±15.759 a | 12.582 ±1.512 a | 44.812 ±3.086 a | 2.766 ±0.059 a | 1.881 ±0.058 a | 2.195 ±0.060 a | 2.191 ±0.084 a | 5.724 ±0.148 a | 1.198 ±0.023 b |
GG | 210.476 ±19.422 a | 11.228 ±2.470 a | 40.971 ±3.648 a | 2.657 ±0.082 a | 1.827 ±0.086 a | 2.151 ±0.090 a | 2.063 ±0.137 a | 5.652 ±0.190 a | 1.157 ±0.026 b | |
朝鲜鹌鹑 Korean quail | AG | 353.691 ±36.739 a | 10.675 ±2.382 a | 72.783 ±6.283 a | 3.277 ±0.111 a | 2.529 ±0.104 a | 2.748 ±0.135 a | 2.778 ±0.159 a | 6.342 ±0.278 a | 1.317 ±0.039 a |
GG | 341.319 ±22.964 a | 9.746 ±0.816 a | 65.636 ±4.017 b | 3.148 ±0.067 a | 2.262 ±0.083 b | 2.544 ±0.067 b | 2.636 ±0.112 a | 6.185 ±0.150 a | 1.387 ±0.081 a |
Table 2 Association analysis between VIPR-1 gene polymorphism and growth traits of 1-4 weeks inquails
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 326.819 ±22.397 a | 12.609 ±2.478 a | 60.447 ±5.416 a | 3.005 ±0.109 a | 2.212 ±0.138 a | 2.538 ±0.138 a | 2.603 ±0.158 a | 6.040 ±0.247 a | 1.300 ±0.029 a |
yellow quail | AG | 275.510 ±15.992 ab | 10.377 ±1.393 a | 55.436 ±3.134 ab | 2.928 ±0.059 ab | 2.221 ±0.065 a | 2.500 ±0.070 a | 2.537 ±0.085 a | 5.876 ±0.159 a | 1.224 ±0.020 b |
GG | 231.270 ±40.728 b | 10.377 ±1.394 a | 48.633 ±7.897 b | 2.758 ±0.160 b | 1.972 ±0.166 b | 2.191 ±0.200 b | 2.235 ±0.196 b | 5.644 ±0.371 a | 1.244 ±0.047 b | |
中国白羽鹌鹑 Chinese | AA | 244.524 ±32.646 a | 12.632 ±4.870 a | 45.417 ±7.404 a | 2.708 ±0.139 a | 1.885 ±0.124 a | 2.114 ±0.128 a | 2.011 ±0.182 a | 5.533 ±0.320 a | 1.283 ±0.040 a |
white quail | AG | 255.340 ±15.759 a | 12.582 ±1.512 a | 44.812 ±3.086 a | 2.766 ±0.059 a | 1.881 ±0.058 a | 2.195 ±0.060 a | 2.191 ±0.084 a | 5.724 ±0.148 a | 1.198 ±0.023 b |
GG | 210.476 ±19.422 a | 11.228 ±2.470 a | 40.971 ±3.648 a | 2.657 ±0.082 a | 1.827 ±0.086 a | 2.151 ±0.090 a | 2.063 ±0.137 a | 5.652 ±0.190 a | 1.157 ±0.026 b | |
朝鲜鹌鹑 Korean quail | AG | 353.691 ±36.739 a | 10.675 ±2.382 a | 72.783 ±6.283 a | 3.277 ±0.111 a | 2.529 ±0.104 a | 2.748 ±0.135 a | 2.778 ±0.159 a | 6.342 ±0.278 a | 1.317 ±0.039 a |
GG | 341.319 ±22.964 a | 9.746 ±0.816 a | 65.636 ±4.017 b | 3.148 ±0.067 a | 2.262 ±0.083 b | 2.544 ±0.067 b | 2.636 ±0.112 a | 6.185 ±0.150 a | 1.387 ±0.081 a |
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 233.429 ±22.658 ab | 2.407 ±0.266 ab | 116.787 ±4.304 a | 3.557 ±0.020 a | 3.021 ±0.056 a | 3.456 ±0.056 a | 4.053 ±0.065 a | 8.113 ±0.134 a | 1.487 ±0.022 a |
yellow quail | AG | 175.442 ±15.250 b | 2.161 ±0.217 b | 99.514 ±3.046 b | 3.437 ±0.029 ab | 2.969 ±0.050 a | 3.277 ±0.043 ab | 3.796 ±0.064 b | 7.783 ±0.102 ab | 1.388 ±0.011 b |
GG | 246.349 ±22.918 a | 3.448 ±0.659 a | 97.356 ±5.681 b | 3.394 ±0.087 b | 2.747 ±0.103 b | 3.160 ±0.106 b | 3.597 ±0.114 b | 7.533 ±0.224 b | 1.422 ±0.015 ab | |
中国白羽鹌鹑 Chinese | AA | 157.857 ±23.453 b | 2.252 ±0.358 b | 86.283 ±7.724 a | 3.375 ±0.092 a | 2.636 ±0.124 a | 3.000 ±0.127 a | 3.267 ±0.247 a | 7.100 ±0.369 a | 1.383 ±0.040 a |
white quail | AG | 218.980 ±11.465 a | 2.851 ±0.159 ab | 94.424 ±3.635 a | 3.359 ±0.023 a | 2.693 ±0.049 a | 3.247 ±0.061 a | 3.436 ±0.064 a | 7.483 ±0.102 a | 1.355 ±0.024 a |
GG | 213.129 ±13.816 ab | 3.260 ±0.283 a | 86.338 ±4.777 a | 3.352 ±0.054 a | 2.622 ±0.080 a | 3.092 ±0.097 a | 3.281 ±0.109 a | 7.243 ±0.158 a | 1.352 ±0.018 a | |
朝鲜鹌鹑 Korean quail | AG | 236.190 ±46.561 a | 2.193 ±0.491 a | 133.875 ±5.576 a | 3.848 ±0.061 a | 3.249 ±0.062 a | 3.798 ±0.057 a | 4.233 ±0.087 a | 8.783 ±0.109 a | 1.492 ±0.023 a |
GG | 214.908 ±18.464 a | 2.137 ±0.215 a | 126.803 ±2.867 b | 3.769 ±0.019 a | 3.172 ±0.057 a | 3.617 ±0.057 a | 4.177 ±0.061 a | 8.615 ±0.100 a | 1.492 ±0.011 a |
Table 3 Association analysis between VIPR-1 gene polymorphism and growth traits of 5-7 weeks inquails
品种 Species | 基因型 Genotype | 日增重 Daily gain/ (g·d-1) | 相对生长率 Relative growth rate/% | 体重 Weight/g | 胫长 Tibial length/cm | 胸宽 Chest width/cm | 胸深 Chest depth/cm | 胸骨长 Sternal length/cm | 体长 Body- length/cm | 胫围 Tibial circum- ference/cm |
---|---|---|---|---|---|---|---|---|---|---|
中国黄羽鹌鹑 Chinese | AA | 233.429 ±22.658 ab | 2.407 ±0.266 ab | 116.787 ±4.304 a | 3.557 ±0.020 a | 3.021 ±0.056 a | 3.456 ±0.056 a | 4.053 ±0.065 a | 8.113 ±0.134 a | 1.487 ±0.022 a |
yellow quail | AG | 175.442 ±15.250 b | 2.161 ±0.217 b | 99.514 ±3.046 b | 3.437 ±0.029 ab | 2.969 ±0.050 a | 3.277 ±0.043 ab | 3.796 ±0.064 b | 7.783 ±0.102 ab | 1.388 ±0.011 b |
GG | 246.349 ±22.918 a | 3.448 ±0.659 a | 97.356 ±5.681 b | 3.394 ±0.087 b | 2.747 ±0.103 b | 3.160 ±0.106 b | 3.597 ±0.114 b | 7.533 ±0.224 b | 1.422 ±0.015 ab | |
中国白羽鹌鹑 Chinese | AA | 157.857 ±23.453 b | 2.252 ±0.358 b | 86.283 ±7.724 a | 3.375 ±0.092 a | 2.636 ±0.124 a | 3.000 ±0.127 a | 3.267 ±0.247 a | 7.100 ±0.369 a | 1.383 ±0.040 a |
white quail | AG | 218.980 ±11.465 a | 2.851 ±0.159 ab | 94.424 ±3.635 a | 3.359 ±0.023 a | 2.693 ±0.049 a | 3.247 ±0.061 a | 3.436 ±0.064 a | 7.483 ±0.102 a | 1.355 ±0.024 a |
GG | 213.129 ±13.816 ab | 3.260 ±0.283 a | 86.338 ±4.777 a | 3.352 ±0.054 a | 2.622 ±0.080 a | 3.092 ±0.097 a | 3.281 ±0.109 a | 7.243 ±0.158 a | 1.352 ±0.018 a | |
朝鲜鹌鹑 Korean quail | AG | 236.190 ±46.561 a | 2.193 ±0.491 a | 133.875 ±5.576 a | 3.848 ±0.061 a | 3.249 ±0.062 a | 3.798 ±0.057 a | 4.233 ±0.087 a | 8.783 ±0.109 a | 1.492 ±0.023 a |
GG | 214.908 ±18.464 a | 2.137 ±0.215 a | 126.803 ±2.867 b | 3.769 ±0.019 a | 3.172 ±0.057 a | 3.617 ±0.057 a | 4.177 ±0.061 a | 8.615 ±0.100 a | 1.492 ±0.011 a |
[1] | 陈清. 鹅核型分析和GH、GHR基因多态性与生长性状关联研究[D]. 扬州: 扬州大学, 2008. |
CHEN Q. Analysis on karyotype and polymorphism of GH and GHR gene and its relationship with growth traits in goose[D]. Yangzhou: Yangzhou University, 2008.(in Chinese with English abstract) | |
[2] | 王庆. 鹌鹑GH、GHR基因多态性与生产性能相关性研究[D]. 哈尔滨: 东北农业大学, 2010. |
WANG Q. Study on relationships between GH, GHR gene polymorphism and performance in quail[D]. Harbin: Northeast Agricultural University, 2010.(in Chinese with English abstract) | |
[3] |
MAZUROWSKI A, FRIESKE A, KOKOSZYNSKI D, et al. Examination of growth hormone (GH) gene polymorphism and its association with body weight and selected body dimensions in ducks[J]. Folia Biologica, 2015, 63(1):43-50.
DOI URL |
[4] |
AYKUTA, ÖZENS, GÖKŞEND, et al. Melanocortin 4 receptor (MC4R) gene variants in children and adolescents having familial early-onset obesity: genetic and clinical characteristics[J]. European Journal of Pediatrics, 2020, 179:1445-1452.
DOI URL |
[5] | 陶勇, 李国辉, 王金玉, 等. 京海黄鸡MC4R基因多态性及其与生长性能的关联分析[J]. 中国家禽, 2008, 30(5):21-23. |
TAO Y, LI G H, WANG J Y, et al. SNP of MC4R gene and its association with growth performance in Jinghai yellow chicken[J]. China Poultry, 2008, 30(5):21-23.(in Chinese with English abstract) | |
[6] |
LI C Y, LI H. Association of MC4R gene polymorphisms with growth and body composition traits in chicken[J]. Asian-Australasian Journal of Animal Sciences, 2006, 19(6):763-768.
DOI URL |
[7] | 王琼, 刘益平, 蒋小松, 等. MyoG基因多态性与优质肉鸡屠宰性状和肉质性状的相关性分析[J]. 遗传, 2007, 29(9):1089-1096. |
WANG Q, LIU Y P, JIANG X S, et al. Correlation analysis of relationships between polymorphisms of high quality chicken myogenin gene and slaughter and meat quality traits[J]. Hereditas(Beijing), 2007, 29(9):1089-1096.(in Chinese with English abstract) | |
[8] |
YIN H D, ZHANG Z C, LAN X, et al. Association of MyF5, MyF6 and MyOG gene polymorphisms with carcass traits in Chinese meat type quality chicken populations[J]. Journal of Animal and Veterinary Advances, 2011, 10(6):704-708.
DOI URL |
[9] | 白俊艳, 时坤鹏, 卢小宁, 等. 鹌鹑MyoG基因多态性与早期生长性能的关联分析[J]. 河南农业科学, 2020, 49(4):147-152. |
BAI J Y, SHI K P, LU X N, et al. Association analysis between MyoG gene polymorphism and early growth performance of quail[J]. Journal of Henan Agricultural Sciences, 2020, 49(4):147-152.(in Chinese with English abstract) | |
[10] | 朱智, 徐宁迎, 吴登俊, 等. 鸡IGF-Ⅰ基因SNPs及其对屠体性状的遗传效应分析[J]. 畜牧兽医学报, 2007, 38(10):1021-1026. |
ZHU Z, XU N Y, WU D J, et al. SNPs of IGF-Ⅰgene and its genetic effects on carcass traits in chicken[J]. Chinese Journal of Animal and Veterinary Sciences, 2007, 38(10):1021-1026.(in Chinese with English abstract) | |
[11] | 荣华, 豆腾飞, 张丽春, 等. 大围山微型鸡IGF-1基因表达量与生长性状的相关性分析[J]. 中国家禽, 2015, 37(4):5-8. |
RONG H, DOU T F, ZHANG L C, et al. Correlation analysis on IGF-1 gene expression and growth traits in Daweishan mini chicken[J]. China Poultry, 2015, 37(4):5-8.(in Chinese with English abstract) | |
[12] | 彭琼. IGF1和MEF2A基因在蛋鸡、肉鸡胚胎期骨骼肌中的分子差异研究[D]. 雅安: 四川农业大学, 2018. |
PENG Q. Study on molecular differences of IGF1 and MEF2A genes in skeletal muscle of layers and Broilers[D]. Ya’an: Sichuan Agricultural University, 2018.(in Chinese with English abstract) | |
[13] | 白俊艳, 卢军浩, 付学言, 等. 蛋用鹌鹑IGF-1R基因的多态性与体尺性状相关性分析[J]. 浙江农业学报, 2020, 32(3):398-405. |
BAI J Y, LU J H, FU X Y, et al. Analysis of correlation between polymorphism of IGF-1R gene and body size traits in egg quail[J]. Acta Agriculturae Zhejiangensis, 2020, 32(3):398-405.(in Chinese with English abstract) | |
[14] |
WANG Y, LI J, WANG C Y, et al. Characterization of the receptors for chicken GHRH and GHRH-related peptides: Identification of a novel receptor for GHRH and the receptor for GHRH-LP (PRP)[J]. Domestic Animal Endocrinology, 2010, 38(1):13-31.
DOI URL |
[15] |
LIANG Y, CUI J X, YANG G F, et al. Polymorphisms of 5' flanking region of chicken prolactin gene[J]. Domestic Animal Endocrinology, 2006, 30(1):1-16.
DOI URL |
[16] |
ZHOU M, LEI M, RAO Y, et al. Polymorphisms of vasoactive intestinal peptide receptor-1 gene and their genetic effects on broodiness in chickens[J]. Poultry Science, 2008, 87(5):893-903.
DOI URL |
[17] | 洪军, 王克华, 李东锋, 等. VIPR-1基因SNP位点与如皋黄鸡产蛋性能和蛋品质的关联分析[J]. 中国畜牧杂志, 2011, 47(23):1-5. |
HONG J, WANG K H, LI D F, et al. Association of SNP of VIPR-1 gene with egg production and egg quality traits in Rugao-yellow chicken[J]. Chinese Journal of Animal Science, 2011, 47(23):1-5.(in Chinese with English abstract) | |
[18] | 周敏, 李莹, 沈栩, 等. 鹌鹑VIPR-1的克隆、序列特征和组织表达分析[J]. 中国农业科学, 2012, 45(3):529-539. |
ZHOU M, LI Y, SHEN X, et al. cDNA cloning, sequence analysis and tissue specific expression of vasoactive intestinal peptide type 1 receptor(VIPR-1) in quails[J]. Scientia Agricultura Sinica, 2012, 45(3):529-539.(in Chinese with English abstract) | |
[19] |
PU Y J, WU Y, XU X J, et al. Association of VIPR-1 gene polymorphisms and haplotypes with egg production in laying quails[J]. Journal of Zhejiang University-SCIENCE B, 2016, 17(8):591-596.
DOI URL |
[20] | 蒲跃进. 蛋用鹌鹑产蛋相关基因克隆、表达及其与性状的关联性研究[D]. 武汉: 华中农业大学, 2016. |
PU Y J. Molecular cloning and expression of genes related with laying quail reproduction and their associations with egg performances[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese with English abstract) | |
[21] | 周敏, 梁菲菲, 饶友生, 等. VIPR-1基因12个多态位点与鸡早期产蛋性状的相关性[J]. 畜牧兽医学报, 2008, 39(9):1147-1152. |
ZHOU M, LIANG F F, RAO Y S, et al. Association of twelve polymorphisms of the VIPR-1 gene with chicken early egg production traits[J]. Chinese Journal of Animal and Veterinary Sciences, 2008, 39(9):1147-1152.(in Chinese with English abstract) | |
[22] | 周敏, 梁菲菲, 饶友生, 等. VIPR-1基因5'侧翼区2个SNP与鸡产蛋就巢的相关性[C]//中国畜牧兽医学会. 第十三届全国家禽学术讨论会论文汇编. 2007:513-516. |
[23] | 朱志明, 陈红萍, 杨武, 等. 河田鸡VIPR-1基因外显子2HpaⅡ位点多态性与产蛋性状的关联分析[J]. 畜牧与兽医, 2015, 47(3):46-48. |
ZHU Z M, CHEN H P, YANG W, et al. Association analysis of polymorphism of VIPR-1 gene exon-2 Hpa Ⅱ with laying traits in Hetian chickens[J]. Animal Husbandry & Veterinary Medicine, 2015, 47(3):46-48. | |
[24] | 于海龙. 连成白鸭产蛋性能三个候选基因的相关研究[D]. 南京: 南京农业大学, 2011. |
YU H L. Correlation studies on three candidate genes affecting egg production in Liancheng white duck[D]. Nanjing: Nanjing Agricultural University, 2011.(in Chinese with English abstract) | |
[25] | 周敏, 何丹林, 刘满清, 等. 清远麻鸡VIPR-1基因多态性及与生长性状的关联分析[J]. 养禽与禽病防治, 2009(7):2-4. |
ZHOU M, HE D L, LIU M Q, et al. Polymorphism of VIPR-1 gene and its association with growth traits in Qingyuan partridge chickens[J]. Poultry Husbandry and Disease Control, 2009(7):2-4. | |
[26] | 周敏, 刘满清, 徐海平, 等. 血管活性肠肽Ⅰ型受体基因多态位点与鸡冠高度和体重的相关性[J]. 中国家禽, 2009, 31(20):17-20. |
ZHOU M, LIU M Q, XU H P, et al. Association of polymorphisms of VIPR-1 gene with chicken comb height and body weight[J]. China Poultry, 2009, 31(20):17-20.(in Chinese with English abstract) |
[1] | BAI Junyan, LU Junhao, FU Xueyan, WU Xiaohong, YANG Youbing, LEI Ying, PANG Youzhi, LU Xiaoning, GONG Huirong, HU Luxing, LIU Hongtao, FAN Hongdeng, CAO Heng, SHI Kunpeng, CHEN Mengke, MA Yongkang. Analysis of correlation between polymorphism of IGF-1R gene and body size traits in egg quail [J]. , 2020, 32(3): 398-405. |
[2] | BAI Junyan, CAO Heng, WANG Xu, YANG Youbing, FAN Hongdeng, FU Xueyan, SHI Kunpeng, DONG Zhihao, LU Xiaoning, LI Xinyue, HAO Weiguang, LI Ziheng, ZHENG Feiyang. Association between the polymorphism of PvuⅡ locus of GH gene and growth traits in sheep [J]. , 2019, 31(9): 1416-1422. |
[3] | MU Tong, WANG Guo-mei, YANG Qi-rui, JIN Li, ZHANG Hai-long, ZHANG Li, TIAN Xiao-jing, LIU Li-xia. Polymorphism of SLA-DQB exon 2 and its association with diarrhea in Yantai black pigs [J]. , 2016, 28(10): 1671-1677. |
[4] | YANG Cui\|jun1,2, GE Jian3, CHEN Sai\|juan1,4, LIU Ya\|juan1,4, CHEN Bao\|jiang1,4, GU Zi\|lin1,4,*. Effects of agouti gene mutation and protein structure changes of ASIP on hair colour in colour Rex rabbit [J]. , 2015, 27(12): 2071-. |
[5] | ZHANG Lei;SONG Xue-mei;JIANG Jun-fang;JIANG Yong-qing*. Polymorphisms detection of intron 20 of Chinese Holstein STAT4 gene using PCR-RFLP method [J]. , 2012, 24(5): 0-781. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||