Acta Agriculturae Zhejiangensis ›› 2021, Vol. 33 ›› Issue (11): 2116-2127.DOI: 10.3969/j.issn.1004-1524.2021.11.14
• Environmental Science • Previous Articles Next Articles
LI Shitaoa(), ZHANG Wangfeib,*(
), ZHAO Lixianb, WANG Xiyuanb
Received:
2020-12-15
Online:
2021-11-25
Published:
2021-11-26
Contact:
ZHANG Wangfei
CLC Number:
LI Shitao, ZHANG Wangfei, ZHAO Lixian, WANG Xiyuan. Phenological period identification of oilseed rape based on time-series PolSAR image and decision tree model[J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2116-2127.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2021.11.14
生长发育时期 Growth period | 播后时间 Days after sowing/d | 物候阶段 Phenological phase |
---|---|---|
苗期Growth period | 1-15 | S1 |
蕾薹期Grey moss period | 16-39 | S2 |
花期Flowering period | 40-63 | S3 |
角果成熟期Ripening stage of pod | 64-87 | S4 |
成熟衰落期Maturity and decay period | 88-110 | S5 |
Table 1 Phenological stage division and growth time of rape
生长发育时期 Growth period | 播后时间 Days after sowing/d | 物候阶段 Phenological phase |
---|---|---|
苗期Growth period | 1-15 | S1 |
蕾薹期Grey moss period | 16-39 | S2 |
花期Flowering period | 40-63 | S3 |
角果成熟期Ripening stage of pod | 64-87 | S4 |
成熟衰落期Maturity and decay period | 88-110 | S5 |
分解方法 Decomposition methods | 分解参数 Decomposition parameters | 描述 Description |
---|---|---|
H/A/alpha分解 H/A/alpha decomposition | Alpha、Anisotropy、Entropy、 Lambda (Span) | 基于H/A/alpha的参数:目标散射角、反熵、散射熵、散射特征值(功率) Parameters based on H/A/alpha: target scattering angle, inverse entropy, scattering entropy, scattering eigenvalue (power) |
Alpha1、Alpha2、Alpha3;Beta1、 Beta2、Beta3;Delta1、Delta2、 Delta3;Gamma1、Gamma2、 Gamma3 | 基于特征向量的参数:3种散射机制对应的散射角,目标方位角,相位角差 Parameters based on eigenvectors: scattering angles corresponding to the three scattering mechanisms, target azimuth, phase angle difference | |
L1、L2、L3;P1、P2、P3;Pedestal; RVI | 基于特征值的参数:3种散射机制对应的特征值,3种散射机制对应的熵,极化特征的基准高度,雷达植被指数 Parameters based on eigenvalues: eigenvalues corresponding to the three scattering mechanisms, entropy corresponding to the three scattering mechanisms, reference height of the polarization characteristics, radar vegetation index (RVI) | |
Freeman-Durden 二、三分量分解 Freeman-Durden two-and three-component decomposition | Ground、Canopy、Odd、Dbl、Vol | 地面散射、冠层散射分量、奇次散射、偶次散射与体散射分量 Ground scattering, canopy scattering component, odd scattering, even scattering and volume scattering component |
Yamaguchi四分量分解 Yamaguchi four- component decomposition | Odd_Y、Dbl_Y、Vol_Y、Helix | 奇次散射、偶次散射、体散射与螺旋体散射分量 Odd scattering, even scattering, volume scattering and helix scattering components |
Table 2 Parameters extracted by different polarization decomposition methods
分解方法 Decomposition methods | 分解参数 Decomposition parameters | 描述 Description |
---|---|---|
H/A/alpha分解 H/A/alpha decomposition | Alpha、Anisotropy、Entropy、 Lambda (Span) | 基于H/A/alpha的参数:目标散射角、反熵、散射熵、散射特征值(功率) Parameters based on H/A/alpha: target scattering angle, inverse entropy, scattering entropy, scattering eigenvalue (power) |
Alpha1、Alpha2、Alpha3;Beta1、 Beta2、Beta3;Delta1、Delta2、 Delta3;Gamma1、Gamma2、 Gamma3 | 基于特征向量的参数:3种散射机制对应的散射角,目标方位角,相位角差 Parameters based on eigenvectors: scattering angles corresponding to the three scattering mechanisms, target azimuth, phase angle difference | |
L1、L2、L3;P1、P2、P3;Pedestal; RVI | 基于特征值的参数:3种散射机制对应的特征值,3种散射机制对应的熵,极化特征的基准高度,雷达植被指数 Parameters based on eigenvalues: eigenvalues corresponding to the three scattering mechanisms, entropy corresponding to the three scattering mechanisms, reference height of the polarization characteristics, radar vegetation index (RVI) | |
Freeman-Durden 二、三分量分解 Freeman-Durden two-and three-component decomposition | Ground、Canopy、Odd、Dbl、Vol | 地面散射、冠层散射分量、奇次散射、偶次散射与体散射分量 Ground scattering, canopy scattering component, odd scattering, even scattering and volume scattering component |
Yamaguchi四分量分解 Yamaguchi four- component decomposition | Odd_Y、Dbl_Y、Vol_Y、Helix | 奇次散射、偶次散射、体散射与螺旋体散射分量 Odd scattering, even scattering, volume scattering and helix scattering components |
物候期 Phenological phase | S1 | S2 | S3 | S4 | S5 | 总计 Total |
---|---|---|---|---|---|---|
S1 | 65 | 7 | 0 | 0 | 0 | 72 |
S2 | 4 | 91 | 0 | 0 | 0 | 95 |
S3 | 0 | 0 | 90 | 0 | 5 | 95 |
S4 | 0 | 0 | 1 | 90 | 4 | 95 |
S5 | 0 | 0 | 8 | 2 | 85 | 95 |
总计Total | 69 | 98 | 99 | 92 | 94 |
Table 3 Accuracy evaluation of original decision tree after combining parameters of the three decomposition methods
物候期 Phenological phase | S1 | S2 | S3 | S4 | S5 | 总计 Total |
---|---|---|---|---|---|---|
S1 | 65 | 7 | 0 | 0 | 0 | 72 |
S2 | 4 | 91 | 0 | 0 | 0 | 95 |
S3 | 0 | 0 | 90 | 0 | 5 | 95 |
S4 | 0 | 0 | 1 | 90 | 4 | 95 |
S5 | 0 | 0 | 8 | 2 | 85 | 95 |
总计Total | 69 | 98 | 99 | 92 | 94 |
精度Accuracy | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
制图精度 | 90.28 | 95.79 | 94.74 | 94.74 | 89.47 |
Mapping accuracy | |||||
用户精度 | 94.20 | 92.86 | 90.90 | 97.83 | 90.42 |
User accuracy |
Table 4 Accuracy evaluation of original decision tree after combining parameters of the three decomposition methods %
精度Accuracy | S1 | S2 | S3 | S4 | S5 |
---|---|---|---|---|---|
制图精度 | 90.28 | 95.79 | 94.74 | 94.74 | 89.47 |
Mapping accuracy | |||||
用户精度 | 94.20 | 92.86 | 90.90 | 97.83 | 90.42 |
User accuracy |
决策树模型 Decision tree model | 极化分解方法Polarization decomposition method | ||||
---|---|---|---|---|---|
Freeman-Durden分解 Freeman decomposition | Yamaguchi分解 Yamaguchi decomposition | H/A/alpha分解 H/A/alpha decomposition | 3种分解组合 Three kinds of decomposition synthesis | ||
原始决策树Primitive decision tree | 89.45 | 89.34 | 93.40 | 94.00 | |
minleaf决策树Minleaf decision tree | 82.96 | 84.87 | 88.63 | 89.54 | |
剪枝决策树Pruning decision tree | 86.13 | 87.83 | 92.21 | 91.61 |
Table 5 Overall precision of decision tree classification model %
决策树模型 Decision tree model | 极化分解方法Polarization decomposition method | ||||
---|---|---|---|---|---|
Freeman-Durden分解 Freeman decomposition | Yamaguchi分解 Yamaguchi decomposition | H/A/alpha分解 H/A/alpha decomposition | 3种分解组合 Three kinds of decomposition synthesis | ||
原始决策树Primitive decision tree | 89.45 | 89.34 | 93.40 | 94.00 | |
minleaf决策树Minleaf decision tree | 82.96 | 84.87 | 88.63 | 89.54 | |
剪枝决策树Pruning decision tree | 86.13 | 87.83 | 92.21 | 91.61 |
[1] | 王汉中. 我国油菜产需形势分析及产业发展对策[J]. 中国油料作物学报, 2007, 29(1):101-105. |
WANG H Z. Strategy for rapeseed industry development based on the analysis of rapeseed production and demand in China[J]. Chinese Journal of Oil Crop Sciences, 2007, 29(1):101-105.(in Chinese with English abstract) | |
[2] | 李颖, 陈怀亮, 李耀辉, 等. 一种利用MODIS数据的夏玉米物候期监测方法[J]. 应用气象学报, 2018, 29(1):111-119. |
LI Y, CHEN H L, LI Y H, et al. A method for summer maize phenology monitoring by MODIS data[J]. Journal of Applied Meteorological Science, 2018, 29(1):111-119.(in Chinese with English abstract) | |
[3] | 张晓萱, 崔耀平, 刘素洁, 等. 自然植被物候遥感提取精度评估[J]. 生态学杂志, 2019, 38(5):1589-1599. |
ZHANG X X, CUI Y P, LIU S J, et al. Evaluation of the accuracy of phenology extraction methods for natural vegetation based on remote sensing[J]. Chinese Journal of Ecology, 2019, 38(5):1589-1599.(in Chinese with English abstract) | |
[4] |
MATTIA F, LE TOAN T, PICARD G, et al. Multitemporal C-band radar measurements on wheat fields[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7):1551-1560.
DOI URL |
[5] |
ADAMS J R, BERG A A, MCNAIRN H, et al. Sensitivity of C-band SAR polarimetric variables to unvegetated agricultural fields[J]. Canadian Journal of Remote Sensing, 2013, 39(1):1-16.
DOI URL |
[6] | CLOUDE S. Polarisation: applications in remote sensing[M]. Oxford: Oxford University Press, 2009. |
[7] |
LE TOAN T, BEAUDOIN A, RIOM J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2):403-411.
DOI URL |
[8] |
LIU C, SHANG J L, VACHON P W, et al. Multiyear crop monitoring using polarimetric RADARSAT-2 data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(4):2227-2240.
DOI URL |
[9] |
XU J, LI Z, TIAN B S, et al. Polarimetric analysis of multi-temporal RADARSAT-2 SAR images for wheat monitoring and mapping[J]. International Journal of Remote Sensing, 2014, 35(10):3840-3858.
DOI URL |
[10] |
LOPEZ-SANCHEZ J M, VICENTE-GUIJALBA F, BALLESTER-BERMAN J D, et al. Polarimetric response of rice fields at C-band: analysis and phenology retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5):2977-2993.
DOI URL |
[11] | 杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015. |
YANG H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric SAR imagery[D]. Beijing: Chinese Academy of Forestry, 2015. (in Chinese with English abstract) | |
[12] |
YANG Z, LI K, LIU L, et al. Rice growth monitoring using simulated compact polarimetric C band SAR[J]. Radio Science, 2014, 49(12):1300-1315.
DOI URL |
[13] |
MCNAIRN H, JIAO X F, PACHECO A, et al. Estimating canola phenology using synthetic aperture radar[J]. Remote Sensing of Environment, 2018, 219:196-205.
DOI URL |
[14] |
DEY S, BHATTACHARYA A, RATHA D, et al. Novel clustering schemes for full and compact polarimetric SAR data: an application for rice phenology characterization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169:135-151.
DOI URL |
[15] |
SATALINO G, BALENZANO A, MATTIA F, et al. C-band SAR data for mapping crops dominated by surface or volume scattering[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(2):384-388.
DOI URL |
[16] | 张亚红, 张王菲, 姬永杰, 等. 油菜简缩极化参数响应及其长势参数反演[J]. 江苏农业科学, 2018, 46(15):170-175. |
ZHANG Y H, ZHANG W F, JI Y J, et al. Reduced polarization parameter response of rapeseed and its inversion of growth parameters[J]. Jiangsu Agricultural Sciences, 2018, 46(15):170-175.(in Chinese) | |
[17] | ERTEN E, ROSSI C, YUZUGULLU O, et al. Phenological growth stages of paddy rice according to the BBCH scale and SAR images[C/OL]// [2020-12-15].2014 IEEE Geoscience and Remote Sensing Symposium. IEEE, 2014.https://www.researchgate.net/publication/269286721_Phenological_growth_stages_of_paddy_rice_according_to_the_BBCH_scale_and_SAR_images. |
[18] | 孙丹, 马久云. 各向异性自适应滤波在合成孔径雷达图像中对斑点噪声的去除[J]. 计算机光盘软件与应用, 2014, 17(12):133-135. |
SUN D, MA J Y. Anisotropic adaptive filtering for speckle noise removal in synthetic aperture radar images[J]. Computer CD Software and Applications, 2014, 17(12):133-135.(in Chinese) | |
[19] | 李坤, 邵芸, 张风丽. 基于RadarSat-2全极化数据的水稻识别[J]. 遥感技术与应用, 2012, 27(1):86-93. |
LI K, SHAO Y, ZHANG F L. Extraction of rice based on quad-polarization RadarSat-2 data[J]. Remote Sensing Technology and Application, 2012, 27(1):86-93.(in Chinese with English abstract) | |
[20] |
FREEMAN A, DURDEN S L. A three-component scattering model for polarimetric SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3):963-973.
DOI URL |
[21] |
CLOUDE S R, POTTIER E. An entropy based classification scheme for land applications of polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1):68-78.
DOI URL |
[22] |
YAMAGUCHI Y, MORIYAMA T, ISHIDO M, et al. Four-component scattering model for polarimetric SAR image decomposition[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1699-1706.
DOI URL |
[23] | HAN J W. Data mining: concepts and techniques[M]. San Francisco: Morgan Kaufmann Publishers Inc. 2005. |
[24] | 张继超, 周沛希, 张永红. 面向对象的多种特征极化SAR决策树分类方法[J]. 测绘科学, 2019, 44(10):181-189. |
ZHANG J C, ZHOU P X, ZHANG Y H. Object-oriented decision tree classification method of multi-feature polarimetric SAR[J]. Science of Surveying and Mapping, 2019, 44(10):181-189.(in Chinese with English abstract) | |
[25] |
WANG H Q, MAGAGI R, GOÏTA K, et al. Crop phenology retrieval via polarimetric SAR decomposition and random forest algorithm[J]. Remote Sensing of Environment, 2019, 231:111234.
DOI URL |
[26] |
CANISIUS F, SHANG J L, LIU J G, et al. Tracking crop phenological development using multi-temporal polarimetric Radarsat-2 data[J]. Remote Sensing of Environment, 2018, 210:508-518.
DOI URL |
[27] |
LOPEZ-SANCHEZ J M, CLOUDE S R, BALLESTER-BERMAN J D. Rice phenology monitoring by means of SAR polarimetry at X-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7):2695-2709.
DOI URL |
[1] | SHEN Liuhong, QIAN Bolin, YOU Liuchao, ZHANG Yue, SHEN Yu, LYU Shangkui, XIAO Jinbang, YU Shumin, SU Zhetong, DONG Ke, YANG Shilin, FENG Yulin, CAO Suizhong. Effect of Pulsatilla saponin B4 on treatment efficiency and serum inflammatory and immune factors of dairy cows with clinical mastitis [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1184-1191. |
[2] | WU Jian, WANG Jiangong, CHU Weixiong. Effect of natamycin treatment on grape quality in e-commerce logistics process [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 916-922. |
[3] | YANG Ying, SHI Yingchun, XING Jianrong, LIU Zhe, ZHENG Meiyu, LU Shengmin. Optimization of “terpenoids removing and aroma enhancing” process for grapefruit essential oil [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2128-2136. |
[4] | SONG Wen, WANG Qiang, ZHANG Jia, LIU Caixiu, ZHANG Nan, CHEN Liping, NIE Dongxing, YAO Haili, CANG Tao. Effects of forchlorfenuron on growth and quality of Fujiminori grape under different fertilizer applications [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1879-1888. |
[5] | XIONG Tinghao, HUANG Yiguo, ZHOU Xuan, LU Yanhong, ZI Tao, HU Yuqian, SONG Haixing. Evaluation on soil nutrients and heavy metals pollution risk in main producing areas of rapeseed in Hunan Province, China [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1904-1912. |
[6] | CUI Pengfei, WEI Lingzhu, CHENG Jianhui, XIANG Jiang, LI Mingshan, WU Jiang2, . Effects of different rootstocks on growth and fruit quality of Tiangong Cuiyu grape [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 52-61. |
[7] | GE Jintao, WANG Jiangying, ZHAO Wenjing, SHAO Xiaobin, ZHU Pengbo, TANG Xueyan, SUN Mingwei, LIU Xingman. Transcriptome analysis on development of aerial root in grape of Weike [J]. , 2020, 32(9): 1645-1655. |
[8] | HUANG Xiaozhen, QIAO Zhongquan, ZENG Huijie, LI Yongxin, HE Gang, WANG Xiaoming. Isolation and expression of floral organ development regulating gene LiFUL1 in Lagerstroemia indica L. [J]. , 2020, 32(7): 1206-1214. |
[9] | ZHANG Jinran, LI Cunchao, LI Xun, SUN Guojun, HE Ruiyin, WEI Qing. Design and experiment of precise seeding control system for rapeseed seeding machine based on GIS [J]. , 2020, 32(3): 518-526. |
[10] | YANG Mingxia, LIAN Hongjuan, WANG Xiaofang, DU Yiyang, DONG Zhigang, JI Wei. Identification and expression analysis of grape MPT gene family [J]. Acta Agriculturae Zhejiangensis, 2020, 32(12): 2173-2185. |
[11] | CAO Yuehua, WEI Lingzhu, SHEN Biwei, CHENG Jianhui, XIANG Jiang, WU Jiang. Effects of rootstocks on growth and fruit quality of Xinyu grape [J]. , 2019, 31(6): 908-914. |
[12] | HAN Guomin, LIU Xi, TANG Meiling, DAI Lingmin. Effects of exogenous melatonin on physiological characteristics of 5BB grape leaves under NaCl stress [J]. , 2019, 31(4): 556-564. |
[13] | CHEN Hongqiang, XIA Hui, WANG Jin, DENG Qunxian, LIANG Dong, LYU Xiulan, TANG Liping. Identification and expression analysis of STS gene family in grape [J]. , 2019, 31(3): 401-407. |
[14] | ZHENG Ting, ZHANG Kekun, ZHU Xudong, GUAN Le, SHANGGUAN Lingfei, JIA Haifeng, FANG Jinggui. Rules of sap flow in grapevine during bleeding period [J]. , 2019, 31(2): 250-259. |
[15] | LI Hongqiao, DUAN Qiuyu, LIU Shishan, YANG Yunfei, LI Mengying, WU Yongcheng. Comparative study of yield and nitrogen efficiency between dwarf variety and normal variety in oilseed rape (Brassica napus L.) [J]. , 2019, 31(11): 1796-1802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||