Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (1): 128-140.DOI: 10.3969/j.issn.1004-1524.2022.01.16
• Environmental Science • Previous Articles Next Articles
YAN Jingting(), QIAO Kai, CAI Yanfei*(
)
Received:
2021-01-10
Online:
2022-01-25
Published:
2022-02-05
Contact:
CAI Yanfei
CLC Number:
YAN Jingting, QIAO Kai, CAI Yanfei. Application of rpoB, gyrA and cheA genes in identifying Bacillus genus[J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 128-140.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.zjnyxb.cn/EN/10.3969/j.issn.1004-1524.2022.01.16
菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
---|---|---|---|---|---|---|---|
16S rRNA | rpoB | gyrA | cheA | ||||
巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
Rhizosphere soil of diseased beet | |||||||
枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
Bacillus subtilis subsp. subtilis | |||||||
Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
Bacillus subtilis subsp. spizizenii | |||||||
苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
Table 1 Basic information of reference Bacillustype strains used in present study
菌种 Species | 模式菌 Reference strain | GenBank序列号 GenBank accession No. | 序列长度 Sequence length/bp | 菌株来源 Strain source | |||
---|---|---|---|---|---|---|---|
16S rRNA | rpoB | gyrA | cheA | ||||
巨大芽孢杆菌Bacillus megaterium | ATCC 14581T | CP035094.1 | 1 552 | 3 564 | 2 511 | 1 980 | 未知Unknown |
阿氏芽孢杆菌Bacillus aryabhattai | B8W22T | FMZY01000001.1 | 1 533 | — | — | 1 980 | 未知Unknown |
地衣芽孢杆菌Bacillus licheniformis | ATCC 14580T | NC_006322.1 | 1 549 | 3 582 | 2 469 | 2 022 | 未知Unknown |
胶质芽孢杆菌Paenibacillus mucilaginosus | 3016T | NC_016935.1 | 1 545 | 3 555 | 2 508 | — | 根际土Rhizosphere soil |
多黏类芽孢杆菌Paenibacillus polymyxa | ATCC 842T | NZ_GL905390.1 | 1 564 | 3 546 | 2 463 | 2 097 | 未知Unknown |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | DSM7T | FN597644.1 | 1538 | 3 582 | 2 460 | 2 013 | 发酵厂Fermentation plant |
贝莱斯芽孢杆菌Bacillus velezensis | FZB42T | CP000560.2 | 1 553 | 3 582 | 2 460 | 2 019 | 发病甜菜根际土 |
Rhizosphere soil of diseased beet | |||||||
枯草芽孢杆菌枯草亚种 | 168T | NC_000964.3 | 1 554 | 3 582 | 2 466 | 2 019 | 诱变土壤Mutagenic soil |
Bacillus subtilis subsp. subtilis | |||||||
Bacillus subtilis subsp. inaquosorum | KCTC 13429T | NZ_CP029465.1 | 1 554 | 3 582 | 2 466 | 2 010 | 未知Unknown |
枯草芽孢杆菌斯氏亚种 | TU-B-10T | CP002905.1 | 1 538 | 3 582 | 2 466 | 2 016 | 未知Unknown |
Bacillus subtilis subsp. spizizenii | |||||||
苏云金芽孢杆菌Bacillus thuringiensis | ATCC 10792T | CP020754.1 | 1 556 | 3 612 | 2 472 | 2 019 | 动物组织Animal tissue |
蜡样芽孢杆菌Bacillus cereus | ATCC 14579T | CP034551.1 | 1 555 | 3 534 | 2 472 | 2 019 | 未知Unknown |
菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
---|---|---|---|
YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
Table 2 Origins and growth-promoting properties of Bacillus isolates used in present study
菌株 Strain | 菌种 Species | 分离年份与地点 Identification year and source | 促生特性 Growth-promoting properties |
---|---|---|---|
YC001 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC002 | 枯草芽孢杆菌枯草亚种 Bacillus subtilis subsp. subtilis | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC003 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2016,根际土,华南地区 2016,rhizosphere soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC004 | 甲基营养型芽孢杆菌 Bacillus methylotrophicus | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC005 | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 2018,蔬菜土,华南地区 2018,vegetable soil,south China | 生物防治土传病害 Biological control of soil-borne diseases |
YC006 | 苏云金芽孢杆菌 Bacillus thuringiensis | 2015,蔬菜土,华南地区 2015,vegetable soil,south China | 溶磷 Phosphorus-dissolving |
YC007 | 壁芽孢杆菌 Bacillus muralis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC008 | 德林芽孢杆菌 Bacillus drentensis | 2015,火炉山,华南地区 2015,Huolu Mountain,south China | 溶磷 Phosphorus-dissolving |
YC009 | 巨大芽孢杆菌 Bacillus megaterium | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC010 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2016,农场土,华南地区 2016, farmland soil,south China | 溶磷 Phosphorus-dissolving |
YC011 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 溶磷 Phosphorus-dissolving |
YC012 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC013 | 阿氏芽孢杆菌 Bacillus aryabhattai | 2019,甘蔗土,华南地区 2019,sugarcane soil,south China | 产生长素 Auxin-producing |
YC014 | 巨大芽孢杆菌 Bacillus megaterium | 2019,根际土,华南地区 2019,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC015 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC016 | 巨大芽孢杆菌 Bacillus megaterium | 2015,根际土,华南地区 2015,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC017 | 巨大芽孢杆菌 Bacillus megaterium | 2017,根际土,华南地区 2017,rhizosphere soil,south China | 产生长素 Auxin-producing |
YC018 | 五大连池芽孢杆菌 Bacillus wudalianchiensis | 2019,生菜土,华南地区 2019,lettuce soil,south China | 产生长素 Auxin-producing |
YC019 | 根内芽孢杆菌 Bacillus endoradicis | 2019,农场土,华南地区 2019,farmland soil,south China | 产生长素 Auxin-producing |
引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
---|---|---|---|
16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
Table 3 Sequences of designed specific primers
引物名称 Primers name | 上游引物序列 Forward primer sequence (5'→3') | 下游引物序列 Reverse primer sequence (5'→3') | PCR产物长度 PCR product length/bp |
---|---|---|---|
16S rRNA | AGAGTTTGATCMTGGCTCAG | GGTTACCTTGTTACGACTT | 1 465 |
rpoB-bs | GGAAACCGCCGTTTACGTTC | CCATGAGGCACACGAAGAGA | 1 433 |
gyrA-bs | GCGATCCTTGACATGAGGCT | AGACGCACACCTTGAGTGAC | 1 106 |
gyrA-ba | TTGCCAGAACGGGTTTAATCG | CTTCGGTTTCTTCCGGCTCT | 1 239 |
gyrA-bc | GCGTCTGCAACGTTTAACTGG | TGTCGCTACCTCTTGCTCATC | 1 084 |
cheA-bm | ACACCCGGCAGATAATGACC | CGTTAATGACCAGCTAATGCGT | 1 842 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
---|---|---|---|---|---|---|---|---|---|---|
B. v | 99.61 | |||||||||
B. sub | 99.48 | 99.68 | ||||||||
B. ina | 99.42 | 99.49 | 99.74 | |||||||
B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
Table 4 Sequence identities of 16S rRNA gene in reference strains within Bacillus genus %
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m | B. ar |
---|---|---|---|---|---|---|---|---|---|---|
B. v | 99.61 | |||||||||
B. sub | 99.48 | 99.68 | ||||||||
B. ina | 99.42 | 99.49 | 99.74 | |||||||
B. spi | 99.48 | 99.54 | 99.87 | 99.87 | ||||||
B. lich | 98.18 | 98.06 | 98.26 | 98.14 | 98.38 | |||||
B. t | 94.30 | 94.16 | 94.22 | 94.29 | 94.29 | 94.08 | ||||
B. c | 94.01 | 94.09 | 94.16 | 94.29 | 94.29 | 94.02 | 99.74 | |||
B. m | 93.47 | 93.77 | 93.84 | 93.78 | 93.73 | 93.71 | 94.62 | 94.55 | ||
B. ar | 93.36 | 93.55 | 93.62 | 93.62 | 93.55 | 93.49 | 94.52 | 94.48 | 99.80 | |
P. muci | 88.03 | 88.04 | 81.12 | 87.95 | 88.00 | 88.15 | 88.13 | 88.00 | 88.57 | 88.15 |
P. poly | 88.02 | 87.99 | 88.11 | 88.07 | 88.03 | 88.08 | 88.87 | 88.79 | 89.17 | 88.92 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 98.44 | |||||||
B. sub | 90.23 | 90.31 | ||||||
B. ina | 90.29 | 90.26 | 97.88 | |||||
B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
Table 5 Sequence identities of rpoB gene in reference strains within Bacillus genus %
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 98.44 | |||||||
B. sub | 90.23 | 90.31 | ||||||
B. ina | 90.29 | 90.26 | 97.88 | |||||
B. spi | 90.09 | 90.17 | 97.52 | 97.88 | ||||
B. lich | 86.34 | 86.57 | 84.93 | 85.19 | 85.38 | |||
B. t | 78.48 | 78.63 | 78.92 | 79.23 | 78.94 | 76.91 | ||
B. c | 78.28 | 78.69 | 78.97 | 79.31 | 78.96 | 76.97 | 97.37 | |
B. m | 79.47 | 79.63 | 80.49 | 80.41 | 80.56 | 78.18 | 81.68 | 80.70 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
---|---|---|---|---|---|---|---|---|---|
B. v | 94.65 | ||||||||
B. sub | NF | NF | |||||||
B. ina | NF | NF | 94.50 | ||||||
B. spi | NF | NF | 95.00 | 95.83 | |||||
B. lich | 78.21 | NF | NF | NF | NF | ||||
B. t | NF | NF | NF | NF | NF | NF | |||
B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
Table 6 Sequence identities of cheA gene in reference strains within Bacillus genus
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c | B. m |
---|---|---|---|---|---|---|---|---|---|
B. v | 94.65 | ||||||||
B. sub | NF | NF | |||||||
B. ina | NF | NF | 94.50 | ||||||
B. spi | NF | NF | 95.00 | 95.83 | |||||
B. lich | 78.21 | NF | NF | NF | NF | ||||
B. t | NF | NF | NF | NF | NF | NF | |||
B. c | NF | NF | NF | NF | NF | NF | 99.70 | ||
B. m | NF | NF | NF | NF | NF | NF | NF | NF | |
B. ar | NF | NF | NF | NF | NF | NF | NF | NF | 94.55 |
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 95.08 | |||||||
B. sub | 81.16 | NF | ||||||
B. ina | 81.16 | 81.01 | 94.00 | |||||
B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
B. t | NF | NF | NF | NF | NF | NF | ||
B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
Table 7 Sequence identities of gyrA gene in reference strains within Bacillus genus
菌株Strain | B. am | B. v | B. sub | B. ina | B. spi | B. lich | B. t | B. c |
---|---|---|---|---|---|---|---|---|
B. v | 95.08 | |||||||
B. sub | 81.16 | NF | ||||||
B. ina | 81.16 | 81.01 | 94.00 | |||||
B. spi | 81.58 | 81.26 | 94.12 | 95.82 | ||||
B. lich | 78.27 | 78.39 | NF | 78.58 | 78.25 | |||
B. t | NF | NF | NF | NF | NF | NF | ||
B. c | 72.17 | NF | NF | NF | NF | NF | 94.54 | |
B. m | NF | NF | NF | NF | NF | NF | NF | 75.57 |
菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
---|---|
多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
Table 8 Strains and corresponding primers for identification
菌肥标签注明的菌种信息 Bacteria taxonomy listed in product label | 鉴定需用的引物 Primers used for identification |
---|---|
多黏类芽孢杆菌Paenibacillus polymyxa | 16S rRNA |
胶质芽孢杆菌Paenibacillus mucilaginosus | 16S rRNA |
地衣芽孢杆菌Bacillus licheniformis | 16S rRNA、rpoB-bs |
巨大芽孢杆菌Bacillus megaterium | 16S rRNA、cheA-bm |
阿氏芽孢杆菌Bacillus aryabhattai | 16S rRNA、cheA-bm |
枯草芽孢杆菌枯草亚种Bacillus subtilis subsp. subtilis | 16S rRNA、gyrA-bs |
枯草芽孢杆菌斯氏亚种Bacillus subtilis subsp. spizizenii | 16S rRNA、gyrA-bs |
Bacillus subtilis subsp.inaquosorum | 16S rRNA、gyrA-bs |
解淀粉芽孢杆菌Bacillus amyloliquefaciens | 16S rRNA、gyrA-ba |
贝莱斯芽孢杆菌Bacillus velezensis | 16S rRNA、gyrA-ba |
蜡样芽孢杆菌Bacillus cereus | 16S rRNA、gyrA-bc |
苏云金芽孢杆菌Bacillus thuringiensis | 16S rRNA、gyrA-bc |
Fig.2 Electrophoretic results of PCR amplified products 1, DNA marker; 1, YC001; 2, YC002; 3, YC003; 4, YC004; 5, YC005; 6,YC006; 7,YC009; 8, YC010; 9,YC011; 10, YC012; 11, YC013; 12, YC014; 13, YC015; 14, YC016; 15, YC017.
分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
---|---|---|---|---|---|---|
YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
Table 9 Sequence identities of rpoB gene between Bacillus isolates and reference strains within B.subtilis complex %
分离株 Bacillus isolates | 枯草芽孢杆菌 枯草亚种 Bacillus subtilis subsp. subtilis | Bacillus subtilis subsp.inaquosorum | 枯草芽孢杆菌 斯氏亚种 Bacillus subtilis subsp. spizizenii | 解淀粉芽孢杆菌 Bacillus amyloliquefaciens | 贝莱斯芽孢 杆菌 Bacillus velezensis | 地衣芽孢杆菌 Bacillus licheniformis |
---|---|---|---|---|---|---|
YC001 | 99.56 | 97.27 | 97.19 | 87.89 | 88.40 | 83.80 |
YC002 | 88.44 | 88.31 | 88.44 | 97.68 | 98.58 | 84.94 |
YC003 | 88.86 | 88.88 | 89.01 | 97.97 | 98.95 | 85.36 |
YC004 | 88.77 | 88.71 | 89.00 | 97.64 | 98.52 | 85.32 |
YC005 | 88.82 | 88.84 | 89.97 | 98.22 | 99.41 | 85.77 |
分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
---|---|---|
YC009 | 94.06 | 98.42 |
YC010 | 94.75 | 95.77 |
YC011 | 96.90 | 94.64 |
YC012 | 94.99 | 96.11 |
YC013 | 94.86 | 95.94 |
YC014 | 94.31 | 97.97 |
YC015 | 96.42 | 94.61 |
YC016 | 94.29 | 98.76 |
YC017 | 94.92 | 95.99 |
Table 10 Sequence identities of cheA gene between Bacillus isolates and corresponding reference strains %
分离株 Bacillus isolates | 巨大芽孢杆菌 Bacillus megaterium | 阿氏芽孢杆菌 Bacillus aryabhattai |
---|---|---|
YC009 | 94.06 | 98.42 |
YC010 | 94.75 | 95.77 |
YC011 | 96.90 | 94.64 |
YC012 | 94.99 | 96.11 |
YC013 | 94.86 | 95.94 |
YC014 | 94.31 | 97.97 |
YC015 | 96.42 | 94.61 |
YC016 | 94.29 | 98.76 |
YC017 | 94.92 | 95.99 |
[1] |
ABHILASH P C, DUBEY R K, TRIPATHI V, et al. Plant growth-promoting microorganisms for environmental sustainability[J]. Trends in Biotechnology, 2016, 34(11): 847-850.
DOI URL |
[2] |
KOUR D, RANA K L, YADAV A N, et al. Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability[J]. Biocatalysis and Agricultural Biotechnology, 2020, 23: 101487.
DOI URL |
[3] |
BASHAN Y. Inoculants of plant growth-promoting bacteria for use in agriculture[J]. Biotechnology Advances, 1998, 16(4): 729-770.
DOI URL |
[4] |
NAVON A. Bacillus thuringiensis insecticides in crop protection: reality and prospects[J]. Crop Protection, 2000, 19(8/9/10): 669-676.
DOI URL |
[5] |
SCHALLMEY M, SINGH A, WARD O P. Developments in the use of Bacillus species for industrial production[J]. Canadian Journal of Microbiology, 2004, 50(1): 1-17.
DOI URL |
[6] |
FRITZE D. Taxonomy of the genus Bacillus and related genera: the aerobic endospore-forming bacteria[J]. Phytopathology, 2004, 94(11): 1245-1248.
DOI URL |
[7] |
DUNLAP C A. Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists[J]. Biological Control, 2019, 134: 82-86.
DOI URL |
[8] |
FIRA D, DIMKIĆ I, BERIĆ T, et al. Biological control of plant pathogens by Bacillus species[J]. Journal of Biotechnology, 2018, 285: 44-55.
DOI URL |
[9] |
TALBOYS P J, OWEN D W, HEALEY J R, et al. Auxin secretion by Bacillus amyloliquefaciens FZB42 both stimulates root exudation and limits phosphorus uptake in Triticum aestivum[J]. BMC Plant Biology, 2014, 14(1): 1-9.
DOI URL |
[10] | 常文智, 马鸣超, 李力, 等. 施用胶质类芽孢杆菌对土壤生物活性和花生产量的影响[J]. 中国土壤与肥料, 2014(1): 84-89. |
CHANG W Z, MA M C, LI L, et al. Effects of Paenibacillus mucilaginosus on soil biological activity and yield of peanut[J]. Soil and Fertilizer Sciences in China, 2014(1): 84-89.(in Chinese with English abstract) | |
[11] | 张伟伟, 王宝琴. 一株胶质芽孢杆菌解磷活性及其适宜解磷条件研究[J]. 中国农学通报, 2014, 30(21): 136-140. |
ZHANG W W, WANG B Q. Study on phosphate-solubilizing activity and suitable conditions of a strain of Bacillus mucilaginosus[J]. Chinese Agricultural Science Bulletin, 2014, 30(21): 136-140.(in Chinese with English abstract) | |
[12] |
NICHOLSON W L, MUNAKATA N, HORNECK G, et al. Resistance of Bacillus endosporesto extreme terrestrial and extraterrestrial environments[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3): 548-572.
DOI URL |
[13] |
ELSHAGHABEE F M F, ROKANA N, GULHANE R D, et al. Bacillus as potential probiotics: status, concerns, and future perspectives[J]. Frontiers in Microbiology, 2017, 8: 1490.
DOI URL |
[14] |
ULRICH N, NAGLER K, LAUE M, et al. Experimental studies addressing the longevity of Bacillus subtilis spores: the first data from a 500-year experiment[J]. PLoS One, 2018, 13(12): e0208425.
DOI URL |
[15] | GLICK B R. Plant growth-promoting bacteria: mechanisms and applications[J]. Scientifica, 2012, 2012: 963401. |
[16] |
REVA O N, DIXELIUS C, MEIJER J, et al. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis[J]. FEMS Microbiology Ecology, 2004, 48(2): 249-259.
DOI URL |
[17] |
VILAS-BÔAS G T, PERUCA A P S, ARANTES O M N. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis[J]. Canadian Journal of Microbiology, 2007, 53(6): 673-687.
DOI URL |
[18] |
TAYEB L A, LEFEVRE M, PASSET V, et al. Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences[J]. Research in Microbiology, 2008, 159(3): 169-177.
DOI URL |
[19] |
KIM B J, LEE S H, LYU M A, et al. Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB)[J]. Journal of Clinical Microbiology, 1999, 37(6): 1714-1720.
DOI URL |
[20] |
YAMAMOTO S, BOUVET P J M, HARAYAMA S. Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA-DNA hybridization[J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(1): 87-95.
DOI URL |
[21] |
DUNLAP C A, KIM S J, KWON S W, et al. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(3): 1212-1217.
DOI URL |
[22] | 王振亚. 胶质类芽孢杆菌3016基因组学初步研究[D]. 泰安: 山东农业大学, 2012. |
WANG Z Y. Preliminary analysis on the genome of Paenibacillus mucilaginosus[D]. Tai’an: Shandong Agricultural University, 2012. (in Chinese with English abstract) | |
[23] | 王璇. 胶质类芽孢杆菌3016全基因组测序及菌种水平特异分子标识的筛选和鉴定[D]. 泰安: 山东农业大学, 2011. |
WANG X. Genome sequencing of Paenibacillus mucilaginosus 3016 and screening/identification of special molecular marker at species level[D]. Tai’an: Shandong Agricultural University, 2011. (in Chinese with English abstract) | |
[24] | SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425. |
[25] |
CASE R J, BOUCHER Y, DAHLLÖF I, et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies[J]. Applied and Environmental Microbiology, 2007, 73(1): 278-288.
DOI URL |
[26] |
KI J S, ZHANG W, QIAN P Y. Discovery of marine Bacillus species by 16S rRNA and rpoB comparisons and their usefulness for species identification[J]. Journal of Microbiological Methods, 2009, 77(1): 48-57.
DOI URL |
[27] | MAUGHAN H, VAN DER AUWERA G. Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading[J]. Infection, Genetics and Evolution, 2011, 11(5): 789-797. |
[28] |
STUBBS S L, BRAZIER J S, TALBOT P R, et al. PCR-restriction fragment length polymorphism analysis for identification of Bacteroides spp. and characterization of nitroimidazole resistance genes[J]. Journal of Clinical Microbiology, 2000, 38(9): 3209-3213.
DOI URL |
[29] |
FOX G E, WISOTZKEY J D, JURTSHUK P. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. International Journal of Systematic Bacteriology, 1992, 42(1): 166-170.
DOI URL |
[30] |
CELANDRONI F, VECCHIONE A, CARA A, et al. Identification of Bacillus species: implication on the quality of probiotic formulations[J]. PLoS One, 2019, 14(5): e0217021.
DOI URL |
[31] |
GADHAVE K R, DEVLIN P F, EBERTZ A, et al. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner[J]. Microbial Ecology, 2018, 76(3): 741-750.
DOI URL |
[32] |
MUGADZA D T, OWUSU-DARKO R, BUYS E M. Short communication: source tracking Bacillus cereus in an extended-shelf-life milk processing plant using partial sequencing of rpoB and multilocus sequence typing[J]. Journal of Dairy Science, 2019, 102(1): 135-139.
DOI URL |
[33] |
SENESI S, CELANDRONI F, TAVANTI A, et al. Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy[J]. Applied and Environmental Microbiology, 2001, 67(2): 834-839.
DOI URL |
[34] |
AIT TAYEB L, AGERON E, GRIMONT F, et al. Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J]. Research in Microbiology, 2005, 156(5/6): 763-773.
DOI URL |
[35] |
WANG X Q, VU A, LEE K, et al. CheA-receptor interaction sites in bacterial chemotaxis[J]. Journal of Molecular Biology, 2012, 422(2): 282-290.
DOI URL |
[36] |
BARNES M H, LAMARR W A, FOSTER K A. DNA gyrase and DNA topoisomerase of Bacillus subtilis: expression and characterization of recombinant enzymes encoded by the gyrA, gyrB and parC, parE genes[J]. Protein Expression and Purification, 2003, 29(2): 259-264.
DOI URL |
[37] |
CHUN J, BAE K S. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences[J]. Antonie Van Leeuwenhoek, 2000, 78(2): 123-127.
DOI URL |
[38] | 程琳琳, 王芳, 吴琼, 等. 微生物菌剂中5种芽孢杆菌实时荧光PCR鉴定[J]. 中国卫生检验杂志, 2010, 20(2): 246-248. |
CHENG L L, WANG F, WU Q, et al. Identification of five Bacillus species used in environment microbe agentia with real-time PCR[J]. Chinese Journal of Health Laboratory Technology, 2010, 20(2): 246-248.(in Chinese with English abstract) | |
[39] |
ABD ALAMER I S, TOMAH A A, LI B, et al. Isolation, identification and characterization of rhizobacteria strains for biological control of bacterial wilt (Ralstonia solanacearum) of eggplant in China[J]. Agriculture, 2020, 10(2): 37.
DOI URL |
[40] | 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. |
LI S Z, CHEN Y, YANG R H, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp[J]. Acta Microbiologica Sinica, 2019, 59(10): 1969-1983. (in Chinese with English abstract) | |
[41] |
MASUM M M I, LIU L, YANG M, et al. Halotolerant bacteria belonging to operational group Bacillus amyloliquefaciens in biocontrol of the rice brown stripe pathogen Acidovorax oryzae[J]. Journal of Applied Microbiology, 2018, 125(6): 1852-1867.
DOI URL |
[42] | YU C, JIN J, MENG L Q, et al. Sequence comparison of phoR, gyrB, groEL, and cheA genes as phylogenetic markers for distinguishing Bacillus amyloliquefaciens and B. subtilis and for identifying Bacillus strain B29[J]. Cellular and Molecular Biology (Noisy-Le-Grand, France), 2017, 63(5): 19-24. |
[43] |
BLACKWOOD K S, TURENNE C Y, HARMSEN D, et al. Reassessment of sequence-based targets for identification of Bacillus species[J]. Journal of Clinical Microbiology, 2004, 42(4): 1626-1630.
DOI URL |
[44] |
CAAMAÑO-ANTELO S, FERNÁNDEZ-NO I C, BÖHME K, et al. Genetic discrimination of foodborne pathogenic and spoilage Bacillus spp. based on three housekeeping genes[J]. Food Microbiology, 2015, 46: 288-298.
DOI URL |
[45] |
QI Y, PATRA G, LIANG X D, et al. Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis[J]. Applied and Environmental Microbiology, 2001, 67(8): 3720-3727.
DOI URL |
[46] |
KO K S, KIM J M, KIM J W, et al. Identification of Bacillus anthracis by rpoB sequence analysis and multiplex PCR[J]. Journal of Clinical Microbiology, 2003, 41(7): 2908-2914.
DOI URL |
[1] | FENG Xinxin, LI Fenglan, XU Yongqing, LI Lei, HE Fumeng, FENG Yanzhong, YUAN Qiang, LIU Di. Screening of cellulase producing strains from rotten wood in Xinjiang cold area and analysis of their characteristics of enzyme production at low temperature [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1468-1476. |
[2] | JIANG Yuhang, XIN Weigang, ZHANG Qili, DENG Xianyu, WANG Feng, LIN Lianbing. Isolation and identification of fungi from mildewed feed corn and study on anti-mildew and antifungal effects of lactobacillin [J]. Acta Agriculturae Zhejiangensis, 2021, 33(7): 1283-1291. |
[3] | LI Fuyan, LIU Xiaoyu, YAN jingting, CAI Yanfei. Isolation and identification of three indole-3-acetic acid producing plant-growth-promoting rhizosphere Bacillus sp. and their growth-promoting effects [J]. Acta Agriculturae Zhejiangensis, 2021, 33(5): 873-884. |
[4] | YANG Mei, HU Xiaolan, SHEN Tao, TAN Kang, LIU Dailing, QIU Hongbo. Construction of single fragment substitution lines of maize 8th chromosome and sreening of resistant maize germplasm to gray leaf spot [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 383-389. |
[5] | LIU Lei1, WANG Xun, LUO Yi, LIANG Jiyuan, YAN Peiqi, LI Xinyi, LIU Wei, LIU Chenkai, LI Jiajia. Isolation, culture and identification of pigeon intestine epithelium cells [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 239-247. |
[6] | XIN Xiaoting, LIU Daqun, ZHANG Chengcheng, WU Min, CHEN Denggao, ZHANG Jianming. Screening, identification and application of high efficient nitrite degrading functional strains in Chinese characteristic fermented vegetables [J]. Acta Agriculturae Zhejiangensis, 2021, 33(2): 335-345. |
[7] | CHENG Andong, WANG Benqin. Identification and growth characteristics of Sanghuang in Jinzhai County [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2234-2244. |
[8] | CHEN Mengzhu, KANG Zhenya, GUO Xianghui, GENG Yi, BAI Minghuan, OUYANG Ping, CHEN Defang, HUANG Xiaoli, LAI Weimin. Isolation and biological characteristics of a pathogenic ST-251 Aeromonas hydrophila from Procypris Rabaudi (rock carp) [J]. Acta Agriculturae Zhejiangensis, 2021, 33(12): 2286-2294. |
[9] | LI Shitao, ZHANG Wangfei, ZHAO Lixian, WANG Xiyuan. Phenological period identification of oilseed rape based on time-series PolSAR image and decision tree model [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2116-2127. |
[10] | CHEN Wenqiang, WANG Xiaofu, CHEN Xiaoyun, PENG Cheng, XU Junfeng, CAI Jian. Preliminary study on identification of Dendrobium officinale from Zhejiang based on ITS2 and SNP technology [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 69-76. |
[11] | XU Xuefen, NI Chunhui, LI Huixia, LI Huanyu, LI Wenhao, CHEN Yuan, HU Fangdi. Pathogen identification and indoor toxicity tests on root rot of Codonopsis pilosula [J]. Acta Agriculturae Zhejiangensis, 2021, 33(1): 96-103. |
[12] | LIAO Chaomei, YOU Minfang, TAN Guanghui, LI Jiezhang, ZHANG Yiyu, QIN Yuanyu, LIU Ruoyu. Effect of variation of PRKCB gene intron 14 in Sansui ducks on eggshell quality [J]. , 2020, 32(9): 1574-1580. |
[13] | ZHANG Xiaoyan, HE Jing, HOU Caixia, ZHANG Shuheng. Screening and identification of antagonistic strains of wolfberry root rot [J]. , 2020, 32(5): 858-865. |
[14] | GUO Xuesong, TIAN Libo, SHANG Sang, ZOU Kaixi, CHEN Hongrong, LI Wanyu, YUE Xiaoqi. Isolation, identification and characterization of antagonistic actinomycetes A10 and A17 against Botryodiplodia theobromae [J]. , 2020, 32(3): 460-468. |
[15] | LI Xuqing, YAN Jianli, RUAN Songlin. Identification and biological characteristics of anthracnose pathogen on Tetrastigma hemsleyanum [J]. , 2020, 32(11): 2009-2019. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||