Acta Agriculturae Zhejiangensis ›› 2022, Vol. 34 ›› Issue (4): 870-878.DOI: 10.3969/j.issn.1004-1524.2022.04.24
• Review • Previous Articles
LIU Chen(), XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia(
)
Received:
2021-07-23
Online:
2022-04-25
Published:
2022-04-28
Contact:
DU Changxia
CLC Number:
LIU Chen, XU Haobo, SI Yuyang, LI Yapeng, GUO Yuting, DU Changxia. Research progress on regulation mechanism of plant response to salt stress based on transcriptomics[J]. Acta Agriculturae Zhejiangensis, 2022, 34(4): 870-878.
[1] |
LOCKHART D J, WINZELER E A. Genomics, gene expression and DNA arrays[J]. Nature, 2000, 405(6788): 827-836.
DOI URL |
[2] | 王芳, 万书波, 孟庆伟, 等. Ca2+在植物盐胁迫响应机制中的调控作用[J]. 生命科学研究, 2012, 16(4): 362-367. |
WANG F, WAN S B, MENG Q W, et al. Regulation of Ca2+ in plant response mechanisms under salt stress[J]. Life Science Research, 2012, 16(4): 362-367. (in Chinese with English abstract) | |
[3] | 徐晓琪. 基于转录组测序对菊花耐盐性的研究[D]. 泰安: 山东农业大学, 2020. |
XU X Q. Study on salt tolerance of chrysanthemum based on transcriptome sequencing[D]. Taian: Shandong Agricultural University, 2020. (in Chinese with English abstract) | |
[4] | 吉福桑. 香蕉响应盐胁迫转录组及蛋白质组分析[D]. 海口: 海南大学, 2017. |
JI F S. Transcriptomic and proteomic analysis of banana response to salt stress[D]. Haikou: Hainan University, 2017. (in Chinese with English abstract) | |
[5] | MIRANSARI M, RANGBAR B, KHAJEH K, et al. Salt stress and MAPK signaling in plants[M/OL]//PARVAIZAHMAD, AZOOZ M MM, PRASAD N V.S Salt stress in plants. New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6108-1. |
[6] |
DROILLARD M J, BOUDSOCQ M, BARBIER-BRYGOO H, et al. Involvement of MPK4 in osmotic stress response pathways in cell suspensions and plantlets of Arabidopsis thaliana: activation by hypoosmolarity and negative role in hyperosmolarity tolerance[J]. FEBS Letters, 2004, 574(1/2/3): 42-48.
DOI URL |
[7] |
DING H D, ZHANG X H, XU S C, et al. Induction of protection against paraquat-induced oxidative damage by abscisic acid in maize leaves is mediated through mitogen-activated protein kinase[J]. Journal of Integrative Plant Biology, 2009, 51(10): 961-972.
DOI URL |
[8] |
ZHU J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5): 441-445.
DOI URL |
[9] |
CONDE A, CHAVES M M, GERÓS H. Membrane transport, sensing and signaling in plant adaptation to environmental stress[J]. Plant and Cell Physiology, 2011, 52(9): 1583-1602.
DOI URL |
[10] | 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版), 2014, 29(3): 315-318, 373. |
MENG F H, WANG C, XU S J. Advances in research on effects of salt stress on plant and the mechanism of plant salt tolerance[J]. Journal of Inner Mongolia University for Nationalities (Natural Sciences), 2014, 29(3): 315-318, 373. (in Chinese with English abstract) | |
[11] | 李中虎. 盐生植物滨麦响应盐分胁迫的转录组分析[D]. 烟台: 鲁东大学, 2018. |
LI Z H. Transcriptome analysis of Leymus mollis response to salt stress[D]. Yantai: Ludong University, 2018. (in Chinese with English abstract) | |
[12] |
WEI Y Y, XU Y C, LU P, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis[J]. PLoS One, 2017, 12(5): e0178313.
DOI URL |
[13] |
LI J, GAO Z, ZHOU L, et al. Comparative transcriptome analysis reveals K+ transporter gene contributing to salt tolerance in eggplant[J]. BMC Plant Biology, 2019, 19(1): 67.
DOI URL |
[14] | 赵龙. 盐生植物碱地肤耐盐生理及分子机制研究[D]. 长春: 东北师范大学, 2018. |
ZHAO L. Pysiological and molecular mechanisms underlying salt tolerance in halophyte Kochia sieversiana[D]. Changchun: Northeast Normal University, 2018. (in Chinese with English abstract) | |
[15] |
ZHANG H W, FENG H, ZHANG J W, et al. Emerging crosstalk between two signaling pathways coordinates K+ and Na+ homeostasis in the halophyte Hordeum brevisubulatum[J]. Journal of Experimental Botany, 2020, 71(14): 4345-4358.
DOI URL |
[16] | 刘奕媺, 于洋, 方军. 盐碱胁迫及植物耐盐碱分子机制研究[J]. 土壤与作物, 2018, 7(2): 201-211. |
LIU Y M, YU Y, FANG J. Saline-alkali stress and molecular mechanism of saline-alkali tolerance in plants[J]. Soils and Crops, 2018, 7(2): 201-211. (in Chinese with English abstract) | |
[17] |
CHANDRAN D. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance[J]. IUBMB Life, 2015, 67(7): 461-471.
DOI URL |
[18] | UMEZAWA T, SUGIYAMA N, MIZOGUCHI M, et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17588-17593. |
[19] | 周凯悦. 大豆盐胁迫下叶绿体淀粉积累转录组及相关基因功能研究[D]. 杭州: 浙江大学, 2020. |
ZHOU K Y. Transcriptome analysis and research of related gene function of starch accumulation in soybean chloroplast under salt stress[D]. Hangzhou: Zhejiang University, 2020. (in Chinese with English abstract) | |
[20] |
CAO B L, LI N, XU K. Crosstalk of phenylpropanoid biosynthesis with hormone signaling in Chinese cabbage is key to counteracting salt stress[J]. Environmental and Experimental Botany, 2020, 179: 104209.
DOI URL |
[21] |
YANG C, MA B, HE S J, et al. MAOHUZI6/ETHYLENE INSENSITIVE3-LIKE1 and ETHYLENE INSENSITIVE3-LIKE2 regulate ethylene response of roots and coleoptiles and negatively affect salt tolerance in rice[J]. Plant Physiology, 2015, 169(1): 148-165.
DOI URL |
[22] |
WANG N N, SHIH M C, LI N. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses[J]. Journal of Experimental Botany, 2005, 56(413): 909-920.
DOI URL |
[23] |
MA Q, ZHOU H J, SUI X Y, et al. Generation of new salt-tolerant wheat lines and transcriptomic exploration of the responsive genes to ethylene and salt stress[J]. Plant Growth Regulation, 2021, 94(1): 33-48.
DOI URL |
[24] |
DONG H, ZHEN Z Q, PENG J Y, et al. Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis[J]. Journal of Experimental Botany, 2011, 62(14): 4875-4887.
DOI URL |
[25] |
WANG Y N, LIU C, LI K X, et al. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway[J]. Plant Molecular Biology, 2007, 64(6): 633-644.
DOI URL |
[26] | 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6(4): 379-387. |
XU X M, YE H C, LI G F. Progress in research of plant tolerance to saline stress[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(4): 379-387. (in Chinese with English abstract) | |
[27] |
SALEHIN M, BAGCHI R, ESTELLE M. SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development[J]. The Plant Cell, 2015, 27(1): 9-19.
DOI URL |
[28] |
JAIN M, KHURANA J P. Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice[J]. The FEBS Journal, 2009, 276(11): 3148-3162.
DOI URL |
[29] |
PASTERNAK T, POTTERS G, CAUBERGS R, et al. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level[J]. Journal of Experimental Botany, 2005, 56(418): 1991-2001.
DOI URL |
[30] | 王志维. NaCl胁迫条件下旱柳不定根发生的转录组学分析[D]. 泰安: 山东农业大学, 2018. |
WANG Z W. Transcriptomic analysis of adventitious root formation exposed to NaCl stress in Salix[D]. Tai’an: Shandong Agricultural University, 2018. (in Chinese with English abstract) | |
[31] |
LU C C, CHEN M X, LIU R, et al. Abscisic acid regulates auxin distribution to mediate maize lateral root development under salt stress[J]. Frontiers in Plant Science, 2019, 10: 716.
DOI URL |
[32] | 刘莉. 盐胁迫下植物激素对水稻种子萌发及幼苗根系生长的调控机理研究[D]. 武汉: 华中农业大学, 2018. |
LIU L. The regulation and mechanism of phytohormone on rice seed germination and seedling root growth under salinity[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[33] |
SHI P B, GU M F. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress[J]. BMC Plant Biology, 2020, 20(1): 568.
DOI URL |
[34] |
LEI P, LIU Z, HU Y B, et al. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L[J]. Journal of Biotechnology, 2021, 327: 106-116.
DOI URL |
[35] | 焦德志, 宋士伟. 基于转录组测序的扎龙湿地野大麦耐盐性分析[J]. 基因组学与应用生物学, 2020, 39(2): 658-665. |
JIAO D Z, SONG S W. Salt tolerance analysis of Hordeum brevisubulatum in Zhalong Wetland based on transcriptome sequencing[J]. Genomics and Applied Biology, 2020, 39(2): 658-665. (in Chinese with English abstract) | |
[36] | 曹晟阳. 高盐胁迫下翅碱蓬的全转录组研究[D]. 大连: 大连海洋大学, 2018. |
CAO S Y. Study on the whole transcriptome of Suaeda heteroptera in response to high salt stress[D]. Dalian: Dalian Ocean University, 2018. (in Chinese with English abstract) | |
[37] |
LIN J, LI J P, YUAN F, et al. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress[J]. Photosynthetica, 2018, 56(4): 998-1009.
DOI URL |
[38] | 董明, 再吐尼古丽·库尔班, 吕芃, 等. 高粱苗期耐盐性转录组分析和基因挖掘[J]. 中国农业科学, 2019, 52(22): 3987-4001. |
DONG M, KUERBAN Z, LÜ P, et al. Transcriptome analysis and gene mining of salt tolerance in Sorghum seedlings(Sorghum bicolor L. Moench)[J]. Scientia Agricultura Sinica, 2019, 52(22): 3987-4001. (in Chinese with English abstract) | |
[39] |
YANG L, MA C Q, WANG L L, et al. Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14[J]. Journal of Plant Physiology, 2012, 169(9): 839-850.
DOI URL |
[40] |
SOBHANIAN H, MOTAMED N, JAZII F R, et al. Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides(Poaceae), a halophyte C(4) plant[J]. Journal of Proteome Research, 2010, 9(6): 2882-2897.
DOI URL |
[41] |
GILL S S, TUTEJA N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology and Biochemistry, 2010, 48(12): 909-930.
DOI URL |
[42] |
SUN X C, XU L, WANG Y, et al. Transcriptome-based gene expression profiling identifies differentially expressed genes critical for salt stress response in radish (Raphanus sativus L.)[J]. Plant Cell Reports, 2016, 35(2): 329-346.
DOI URL |
[43] |
BLUMWALD E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology, 2000, 12(4): 431-434.
DOI URL |
[44] | 何敬和, 姚丽. 小麦Mn-SOD基因的克隆及其在盐胁迫下的表达分析[J]. 麦类作物学报, 2010, 30(4): 630-633. |
HE J H, YAO L. Cloning and expression of Mn-SOD gene of wheat under salt stress[J]. Journal of Triticeae Crops, 2010, 30(4): 630-633. (in Chinese with English abstract) | |
[45] | 贾鹏燕. 盐胁迫下苦苣菜的生理响应及转录组分析[D]. 杨凌: 西北农林科技大学, 2017. |
JIA P Y. Physiological and transcriptome study of Sonchus oleraceus L.response to salt stress[D]. Yangling: Northwest A & F University, 2017. (in Chinese with English abstract) | |
[46] |
WEI Y Y, XU Y C, LU P, et al. Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis[J]. PLoS One, 2017, 12(5): e0178313.
DOI URL |
[47] | 张倩倩. 短期盐胁迫下中国石竹幼苗响应的转录组测序、组装和分析[D]. 呼和浩特: 内蒙古农业大学, 2017. |
ZHANG Q Q. Transcriptional sequencing, assembly and analysis of Dianthus chinensis L. seedlings in response to short time salt-stress[D]. Hohhot: Inner Mongolia Agricultural University, 2017. (in Chinese with English abstract) | |
[48] | 于乐. 胡杨响应盐胁迫的组织特异性转录组研究[D]. 兰州: 兰州大学, 2018. |
YU L. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings[D]. Lanzhou: Lanzhou University, 2018. (in Chinese with English abstract) | |
[49] |
BAHIELDIN A, ATEF A, SABIR J S M, et al. RNA-Seq analysis of the wild barley (H. spontaneum) leaf transcriptome under salt stress[J]. Comptes Rendus Biologies, 2015, 338(5): 285-297.
DOI URL |
[50] | 牛灵慧. 丹参生物学特性及盐胁迫对其次生代谢影响研究[D]. 南京: 南京农业大学, 2016. |
NIU L H. Preliminary study on biological characteristics of Salvia miltiorrhiza[D]. Nanjing: Nanjing Agricultural University, 2016. (in Chinese with English abstract) | |
[51] |
PITANN B, ZÖRB C, MÜHLING K H. Comparative proteome analysis of maize (Zea mays L.) expansins under salinity[J]. Journal of Plant Nutrition and Soil Science, 2009, 172(1): 75-77.
DOI URL |
[52] |
SKORUPA M, GOLEBIEWSKI M, DOMAGALSKI K, et al. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima[J]. Plant Science, 2016, 243: 56-70.
DOI URL |
[53] | 宋雪梅, 杨九艳, 吕美婷, 等. 红砂种子萌发对盐胁迫及适度干旱的响应[J]. 中国沙漠, 2012, 32(6): 1674-1680. |
SONG X M, YANG J Y, LYU M T, et al. Responses of Reaumuria soongorica seed germination to salt stress and moderate drought[J]. Journal of Desert Research, 2012, 32(6): 1674-1680. (in Chinese with English abstract) | |
[54] |
CAI C P, NIU E L, DU H, et al. Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploidcotton[J]. The Crop Journal, 2014, 2(2/3): 87-101.
DOI URL |
[55] |
JIANG Y Q, DEYHOLOS M K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes[J]. BMC Plant Biology, 2006, 6: 25.
DOI URL |
[56] | 端木慧子, 陶鑫, 王建慧, 等. 甜菜M14品系盐胁迫转录组数据库的转录因子分析[J]. 黑龙江大学工程学报, 2017, 8(4): 48-54. |
DUANMU H Z, TAO X, WANG J H, et al. Analysis of transcription factors in the transcriptome database of sugar beet M14 line under salt stress[J]. Journal of Engineering of Heilongjiang University, 2017, 8(4): 48-54. (in Chinese with English abstract) | |
[57] |
WEI W, ZHANG Y X, HAN L, et al. A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant Cell Reports, 2008, 27(4): 795-803.
DOI URL |
[58] |
CUI M H, YOO K S, HYOUNG S, et al. An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance[J]. FEBS Letters, 2013, 587(12): 1773-1778.
DOI URL |
[59] | 王星哲, 武悦, 王艺煊, 等. 玉米发芽期响应盐胁迫的转录组分析[J/OL]. 分子植物育种. https://kns.cnki.netkcmsdetail/46.1068.S.20210323.0947.007.html. |
WANG X Z, WU Y, WANG YX, et al. Transriptome analysis of maize in response to salt stress at germination stage[J/OL]. Molecular Plant Breeding. https://kns.cnki.netkcmsdetail/46.1068.S.20210323.0947.007.html. | |
[60] | SHAO H B, WANG H Y, TANG X L. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects[J]. Frontiers in Plant Science, 2015, 6: 902. |
[61] | CHEN T, CAI X, WU X Q, et al. Casparian strip development and its potential function in salt tolerance[J]. Plant Signaling & Behavior, 2011, 6(10): 1499-1502. |
[62] | NIJHAWAN A, JAIN M, TYAGI A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2007, 146(2): 323-324. |
[63] |
WELTMEIER F, RAHMANI F, EHLERT A, et al. Expression patterns within the Arabidopsis C/S1 bZIP transcription factor network: availability of heterodimerization partners controls gene expression during stress response and development[J]. Plant Molecular Biology, 2009, 69(1/2): 107-119.
DOI URL |
[1] | WANG Qiankun, ZHANG Xiaohui, PANG Youzhi, QI Yanxia, LEI Ying, BAI Junyan, HU Yunqi, ZHAO Yiwei, YUAN Zhiwen, WANG Tao. Screening of genes related to auto-sexing on feather color based on RNA-seq technology [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 498-506. |
[2] | LAN Guoxiang, JIN Siqi, LI Xingrun, LIU Xiyu, LI Guomei, DONG Xinxing. Screening and functional analysis of differentially expressed genes in breast muscle transcriptome between Plateau raindrop pigeon and Janssen pigeon [J]. Acta Agriculturae Zhejiangensis, 2022, 34(3): 507-516. |
[3] | YANG Xinxia, TANG Mansheng, ZHANG Bin. Identification of soybean PP2C family genes and transcriptome analysis in response to salt stress [J]. Acta Agriculturae Zhejiangensis, 2022, 34(2): 207-220. |
[4] | ZHOU Beining, MAO Lian, HUA Zhuangzhuang, LU Jianguo. Effects of alkaline salt stress on growth and ion allocation of Sinocalycanthus chinensis [J]. Acta Agriculturae Zhejiangensis, 2022, 34(1): 79-88. |
[5] | MA Jie, QU Wen, CHEN Chunyan, WANG Lei, MA Jun, LIU Zhenshan, MA Wei, ZHOU Ping, HE Yuankuan, SUN Bo. Development of SSR markers based on transcriptome sequencing and genetic diversity analysis of Nainaiqingcai leaf mustard [J]. Acta Agriculturae Zhejiangensis, 2021, 33(9): 1640-1649. |
[6] | HUANG Changbing, CHENG Peilei, YANG Shaozong, ZHANG Huanchao, JIANG Zhengzhi, JIN Limin. Transcriptome analysis of Hemerocallis fulva under low temperature stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(8): 1445-1460. |
[7] | YANG Xinxia, ZHANG Bin. Identification of soybean LAZ1 gene family and functional analysis of GmLAZ1-9 [J]. Acta Agriculturae Zhejiangensis, 2021, 33(4): 586-594. |
[8] | LU Anqiao, ZHANG Fengju, WANG Xueqin, XU Xing. Effects of NaCl and Na2SO4 stress on content and distribution of K + and Na + of Echinochloa frumentacea seedlings [J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 396-403. |
[9] | JIANG Zhifang, HAN Yidie, LOU Panpan, GUO Hong, FENG Shangguo, SHEN Chenjia, WANG Huizhong1. Identification and expression analysis of cytochrome P450 family genes from Physalis angulata L. [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2009-2016. |
[10] | FENG Shangle, LI Xuenan, CHEN Yige, LIU Ruiqi, BAI Zhiyi, LI Wenjuan. Screening and expression of cyclins gene in Hyriopsis cumingii [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2041-2050. |
[11] | ZHAO Hua, REN Qingwen, WANG Xiyu, LI Zhenni, TANG Xiumei, JIANG Lihui, LIU Peng, XING Chenghua. Effects of arbuscular mycorrhizal fungi on antioxidant enzymes activities and photosynthetic characteristics of Solanum lycopersicum L. under salt stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(11): 2075-2084. |
[12] | MAO Shuang, ZHOU Wanli, YANG Fan, DI Xiaolin, LIN Jixiang, YANG Qingjie. Research progress on mechanism of plant roots response to salt-alkali stress [J]. Acta Agriculturae Zhejiangensis, 2021, 33(10): 1991-2000. |
[13] | YIN Minghua, CAO Qing, CHEN Hong, DENG Siyu, DENG Yanmei. Transcriptome analysis of red bud taro and green stem taro in Yanshan, Jiangxi Province [J]. , 2020, 32(9): 1533-1543. |
[14] | LIU Xinyu, TIAN Jie. Analysis of simple sequence repeats in transcriptome of garlic (Allium sativum L.) and development of molecular markers [J]. , 2020, 32(9): 1615-1625. |
[15] | SONG Xindan, CHEN Binbin, MA Zengling, XU Lili, LIN Lidong, WU Mingjiang. Effects of salinity level on photosynthetic characteristics of Sargassum fusiforme seedlings [J]. , 2020, 32(9): 1634-1644. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1091
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1218
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||